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Abstract: We investigate the practical implementation of a previously proposed method for deter-
mining the transverse dimensions of an electron beam on a target by measuring the two-dimensional
angular distributions of diffracted transition radiation of relativistic electrons for two distances be-
tween the crystal where the radiation is generated and the coordinate detector for femtosecond
bunches. We show that determining electron microbunches with small longitudinal sizes requires
an increased photon energy, achieved by decreasing the observation angle. The sensitivity limits of
the method and the influence of the emission of secondary electrons and photons from the detector
pixels are discussed.
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1 Introduction

The divergence and transverse size of accelerated particles beams are important parameters for
accelerators. In linear electron accelerators, optical radiation such as optical transition radiation
(OTR) [1] and optical diffraction radiation (ODR) [2] is widely used to measure the beam pa-
rameters. However, it has recently been shown that OTR cannot be used to measure the profiles
of electron beams of linear accelerators used to create free-electron x-ray lasers [3], since OTR
becomes coherent if the beam longitudinal size becomes comparable with the wavelength of the
observed radiation [4].

This coherence effect can be avoided by using radiation with a shorter wavelength, and the use
of parametric x-ray radiation (PXR) has been proposed [5, 6]. PXR is quasimonochromatic, has
a relatively narrow angular distribution, and emits at a large angle in the direction of the particle
motion ΘD = 2ΘB, where ΘB is the Bragg angle; see, for example, [7] and the literature cited
therein. Measurements of the angular distributions of PXR using coordinate detectors [6, 8, 9] have
confirmed the feasibility of determining the beam size using this method.

In ref. [10], a calculation technique was proposed that takes into account the effect of the trans-
verse dimensions of the particle beam on the radiation angular distribution for three mechanisms:
PXR, diffracted bremsstrahlung (DB), and diffracted transition radiation (DTR). Comparisons of
the calculation results with experimental data [11, 12] showed good agreement and confirmed that
the method is satisfactory. In this article, a model-independent method is proposed for determining
the size of an electron beam in the horizontal and vertical planes by measuring the two-dimensional
angular distributions of radiation for two distances between the crystal and the coordinate detector.

In ref. [13], it was shown that the error in determining the beam sizes by the method of
ref. [10] does not exceed 5–7%, and the minimum measured dimensions σx,y are determined by
the conditions σx,y > δ and σx,y/R > 0.1Θch, where δ is the pixel size of the coordinate detector,
R is the distance between the crystal and detector, and Θch is the characteristic radiation angle.

For particles of energy Ee < 1GeV, the predominantmechanismof electron emission in crystals
is PXRwith a characteristic angle ofΘph =

√
γ−2 + ω2

p/ω2 [7], where γ is the Lorentz factor andω
and ωp are the photon and plasmon energies of the material, respectively. The minimum measured
dimensions are limited by the distance between the detector and the target and cannot be less than
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50–100 microns [13]. For electron energies above 5GeV, the PXR contribution in the centre of the
emission spot is negligible [14]. The highest angular density of DTR with a characteristic emission
angle of Θch ∼ γ−1 reduces the minimum dimensions that can be determined using the method
of ref. [10], which is mainly limited by the size of the element of the coordinate detector, with a
minimum measured beam size of σx,y ∼ 10–15 microns [13].

Reference [13] investigated the use of radiation with a photon energy of ω ∼ 11 keV and a
wavelength of λ ∼ 0.1 nm, which is comparable to the size of microbunches of the particle beam of
an X-ray free-electron laser [3]. It is desirable to reduce the wavelength of the detected radiation to
apply the technique of [10, 13] for FEL diagnostic purposes.

Based on the above, it is important and pertinent to study the possibilities of extending the
method of ref. [10] for determining the transverse dimensions of electron beams, including X-ray
free-electron lasers, and the limits of its applicability.

2 Method description

This section provides a brief description of how to estimate the beam size on a crystal following
the method of refs. [10, 13]. The effect of beam size and the distance between the crystal and the
detector on the measured two-dimensional angular radiation distribution (see for example [6]) can
be described by:

Y (θy, θx) =
∬

Y (θ ′y, θ
′
x)G(θ

′
y → θy, θ

′
x → θx)dθ ′ydθ ′x , (2.1)

where θx and θy are the horizontal and vertical angles of the photons, measured from the centre
of the reflection angle ΘD relative to the direction of the electron beam. Y (θy, θx) and Y (θ ′y, θ

′
x)

are the angular distributions of the radiation for an extended and a point-like beam of particles on
the target, respectively, where the integration is carried out over a full solid angle. The function
G(θ ′y → θy, θ

′
x → θx) describes the connection between the variables of each of these distributions.

For a two-dimensional Gaussian distribution of the scatter of the points where the electrons hit the
crystal, the function can be presented in the form:

G(θ ′y → θy, θ
′
x → θx) =

1
2πσ′yσ′x

exp
−(θy − θ

′
y)

2

2(σ′y)2
exp
−(θx − θ

′
x)

2

2(σ′x)2
, (2.2)

where σ′x = σx/R and σ′y = σy/R are the effective divergence angles in the horizontal and vertical
planes, and R is the distance between the crystal and the detector. The above expressions show
that a change in the distance between the crystal and the detector changes the recorded angular
distribution of the radiation, which can then be used to determine the beam size by comparing the
distributions for different distances between the crystal and the detector.

For a detector placed at a distance R, the measured two-dimensional angular distribution of
radiation intensity YR(θyi , θx j ) can be written in the following form:

YR(θyi , θx j ) =
∬

∆Ω(yi ,x j )

YR(θy, θx)dθydθx , (2.3)

where YR(θy, θx) is defined in accordance with expressions (2.1) and (2.2). ∆Ω(yi, xj) is the solid
angle covered by the coordinate detector element located at the point yi, xj .
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It is clear that the difference in the distributions YR1(θyi , θx j ) and YR2(θyi , θx j ), measured for
distances R1 and R2, is due only to the characteristic dimensions of the beam and the distances
between the crystal and the detector. The distributions are the results of convolutions of the
angular distribution for a point-like electron beam of Y (θ ′y, θ

′
x) and two two-dimensional Gaussian

distributions with standard deviations σ′x1,y1 = σx,y/R1 and σ′x2,y2 = σx,y/R2.
We assume that R1 = k · R2, where k is an integer coefficient and the solid angles covered by

the detectors are the same in each measurement, that is, the sizes of the detector elements for each
of the distances differ by a factor of k. In this case, in the first approximation, we can assume that
YR2(θyi , θx j ) is a convolution of the distribution YR1(θyi , θx j ) with a Gaussian distribution with a
dispersion that depends on the unknown sizes of the beam on the target and on R1 and R2.

To determine the desired beam sizes on the target, we use the ordinary least squares method,
minimizing the quadratic form:

n∑
i=1

m∑
j=1

(
YR2(θyi , θx j ) −

1
2πσ̃′xσ̃′y

n∑
i′=1

m∑
j′=1

YR1(θyi′ , θx j′ )

exp
(
−
(θyi − θyi′ )

2

2(σ̃′y)2
)

exp
(
−
(θx j − θx j′ )

2

2(σ̃′x)2
))2
= Min ,

(2.4)

where m and n are the numbers of points of the measured distributions in the horizontal and vertical
directions and σ̃′x and σ̃′y are fitting parameters that minimize this form and are related to the size
of the beam on the target σ̃x , σ̃y as:

σ̃y,x ≈
k · R2
√

k2 − 1
σ̃′y,x . (2.5)

3 Determination of the transverse dimensions of the electron beam

To test the capabilities of the technique and determine the limits of its applicability, a calculation
was carried out to determine the parameters of an electron beam with an energy of 10GeV from
two-dimensional distributions of diffracted transition radiation using a variation of the convolution
parameters. The simulation was carried out for a reflection (022) of a silicon crystal and an
observation angle of 32.2◦. The detector element size was 10 × 10 µm2 for short distances and
20 × 20 µm2 for larger distances. The size of the electron beam on the crystal was σx = 40 µm and
σy = 20 µm. The plane on which the photons were reflected was vertical.

For the DTR angular distribution, we used a formula obtained in ref. [15]. To obtain the angular
distribution of the radiation from a point-like electron beamY (θ ′x, θ

′
y), the DTR angular distribution

was convolved with a two-dimensional Gaussian distribution describing an electron beam with a
divergence angle of θe = 15 µrad.

To determine the sensitivity of the method, we carried out a cycle of estimates of the beam
size obtained using this technique for the same conditions, depending on the distance between the
crystal and the detector. To take into account the possible influence of the statistical spread of the
measurement results, noise with a uniform distribution in the range of ±10% was added at each
point to the dependences YR1(θyi , θx j ) and YR2(θyi , θx j ). In each fitting, the noise was factored in.
The dependence of the estimated beam size σ̃y,x on the distance was obtained from the fitting,
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shown in figure 1. The standard deviation of the resulting values from the mean was taken as the
error. We assumed that R1 = 2R2.

Figure 1. Dependence of the beam size estimates on the distance between the crystal and the detector.
Silicon crystal, electron energy 10GeV, observation angle ΘD = 32.2◦, σx = 40 µm, σy = 20 µm.

Figure 1 shows that for distances R2 less than two and a half meters, the error in determining the
vertical size of the beam does not exceed 6%, and the values obtained from the fitting coincide with
those in the simulation. For large distances, the difference between the estimate σ̃y and the beam
size of σy = 20 microns increases. At the same time, the fitting error grows. For the horizontal
beam size, deviation and growth of the fitting error begin for distances greater than 5m. The arrows
show the boundaries of the area of applicability of the technique for a noise level of ±10%. In both
cases, the differences begin to exceed the fitting error when σ′x,y = σx,y/R2 ≤ 0.1γ−1.

To understand the source of the errors in estimating σ̃x,y and its spread, figure 2 shows the
vertical angular distributions for a point-like and an extended electron beam for R2 = 2m and 4m.

Figure 2. Vertical angular distribution of radiation, showing the radiation distribution for a point-like
electron beam and distributions for extended electron beams with distances of R1 = 4m, R2 = 2m (a) and
R1 = 8m, R2 = 4m (b). Electron energy 10GeV, silicon crystal thickness 20 microns, (022) reflection order,
observation angle ΘD = 32.2◦.

Comparing figures 2a and 2b for R2 = 2m and 4m, it is clear that with increasing R2, the
differences between the distributions for different distances decrease and become almost invisible
for R2 = 4m, and therefore the method loses sensitivity. Due to the larger horizontal size of the
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beam, an increase in the distance between the crystal and the coordinate detector has a weaker effect
on the fitting error and the estimation value. It should be noted here that with an increase in the
level of noise, a deviation of σ̃x,y from σx,y begins to appear for shorter distances.

Free-electron lasers in the X-ray frequency range [3] operate up to wavelengths of ∼ 0.1 nm,
which corresponds to a photon energy of ω ∼ 15 keV. In other words, the wavelength we have
chosen here and in ref. [13] to test the applicability and conditions of the method is comparable
to the longitudinal dimensions of the bunch, which is insufficient to exclude coherent effects in
the radiation. However, for ω � γωp, which is valid for the X-ray frequency range, and an
electron energy of Ee > 5GeV, the angular distribution and intensity of the transition radiation, and
consequently the DTR, are virtually independent of the photon energy [7]. Therefore, all the results
and conclusions obtained above and in ref. [13] remain valid for shorter wavelengths. Furthermore,
a decrease in the radiation wavelength by a factor of more than 10 to λ ∼ 0.01 nm is achievable,
since in the experiment in ref. [16] for a diamond crystal and an observation angle of 4◦, PXR and
DB were clearly detected with a photon energy of ω ∼ 145 keV.

The transverse dimensions of the electron beam for X-ray FEL implementation are of the order
of tens of microns and higher, which allows the distance between the crystal and the coordinate
detector to be increased without violating the condition σ′x,y = σx,y/R2 > 0.1γ−1. This allows
the photon energy to be increased by reducing the viewing angle while maintaining the ability to
protect the detector from bremsstrahlung from the crystal; see ref. [13] for details.

Effect of emission of secondary electrons and quanta. The main condition for implementing
the method to evaluate the beam size [10, 13] is that the solid angles covered by the detectors for
both distances should be the same, provided by a proportional increase in the number of pixels for
a greater distance. The emission of secondary electrons and quanta from the element, in which
photons interact with the substances of the detector, in the neighbouring pixels distorts the measured
distributions, smoothing them out. This effect is stronger for a smaller distance between the crystal
and the detector due the smaller size of the detector element. Therefore, it is similar to the effect of
increasing the beam size [13].

To verify the significance of the effect of the emission of secondary electrons and quanta, we
performed a simulation of the methodology of [10, 13], with and without taking into account this
effect, via a Monte Carlo approach, for the following conditions: electron energy 10GeV, photon
energy ω = 15 keV, detector pixel sizes 10 × 10 µm2 and 20 × 20 µm2 for distances between the
crystal and detector of 1m and 2m, respectively. The characteristic sizes of the electron beam on
the target were 10 microns and 20 microns in the horizontal and vertical planes, respectively. The
divergence of an axially symmetric electron beam was 10 µrad.

To simplify the simulation process, instead of using the DTR angular distribution obtained in
ref. [15], we used the azimuthally symmetric spectral-angular distribution of transition radiation,
known as the Garibyan formula [7].

The simulation was carried out for P43 phosphor with chemical composition Gd2O2S as the
working substance of the HR25 detector [17] used in the experiment [8]. The phosphor plate has a
thickness of 30 microns. The key features of the modelling technique are briefly described in [18].
A more detailed description of the modelling process and results, as well as the dependence of the
efficiency and spatial resolution on the photon energy and phosphor thickness, will be given later.
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Figure 3 shows the ratio of the radiation intensities recorded by the detector for two distances
in the horizontal (a) and vertical (b) planes. The simulation was carried out for the following
conditions: a point-like electron beam (line) and an extended electron beam (circles) without taking
into account the emission of secondary radiation, and a point-like electron beam taking into account
the emission of secondary radiation (triangles).

Figure 3. Ratio of radiation intensities for distant and close locations of the detectors in the horizontal (a)
and vertical (b) planes.

Figure 3 shows that without taking into account the size of the electron beam on the target and
the effect of the emission of secondary particles and quanta, the angular distributions measured for
the two distances coincide. Their ratio is close to unity for the entire range of viewing angles. The
scatter of values for large viewing angles is due to the low statistics arising from the sharp decrease
in the transition radiation intensity with an increase in the photon emission angle (see figure 2).
The influence of the process of secondary electrons and quanta emission (triangles in figure 3) is
practically negligible because of their small path for a detected photon energy of 15 keV.

The effect of the size of the beam on the crystal (circles in figure 3) is more significant. The
deviation of the ratio of radiation intensities for the two distances from unity reaches 20%. The
sizes of the electron beam in the vertical and horizontal planes differ, and therefore the ratios of
the intensities recorded by the detector for the two distances differ in the vertical and horizontal
planes, which is the basis for the method for determining the size of the electron beam in ref. [10].
Simultaneously considering the size of the beam on the target and the effect of the emission of
secondary electrons and quanta did not practically change the ratio of radiation intensities for
different distances compared with the situation where the emission of secondary electrons and
quanta was not taken into account; therefore, this dependence is not presented.

Increasing the energy of the detected radiation to eliminate the effects of coherence in the
radiation decreases the registration efficiency and increases the energy of secondary electrons and
quanta. Modelling shows that for a phosphor thickness of 30 microns the registration efficiency
changes from ε = 54% for ω = 15 keV to 3% and 4.5% for photon energies of 50 keV and 80 keV.
The detector thickness increase leads to an increase in the registration efficiency but can increase
the influence of the secondary emission, which should be monitored.

Figure 4 shows the ratio of the radiation intensities in the vertical plane recorded by the detector
for two distances and for detector thicknesses of 100 µm (a) and 200 µm (b) for a photon energy of
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50 keV. The simulation was carried out for the following conditions: a point-like electron beam
without taking into account the emission of secondary radiation (line), a point-like electron beam
(triangles) and an extended electron beam (circles) taking into account secondary emission.

Figure 4. Ratio of radiation intensities for a photon energy of 50 keV in the vertical plane for distant and
close locations for detectors thicknesses of 100 µm (a) and 200 µm (b).

Figure 4 shows that the increase in photon energy had practically no effect on the ratio of
intensities for the near and distant detector positions and the extended electron beam (circles) (see
figures 3b and 4), which confirms the assertion that the method applicability is independent of the
photon energy. Also, the ratio of intensities for a point-like beam, taking into account the emission
of secondary electrons and quanta (triangles), differs from unity. For a thicker detector (figure 4b),
this difference is larger, in contrast to the ratio for an extended beam, which has not changed. The
same behaviour has been observed for a photon energy of 80 keV.

The reason for the observed difference is the greater average path length of secondary electrons
in a larger pixel and the consequent greater loss of energy in that pixel. As a result, the energy
left by the detected radiation in the far detector for the entire range of viewing angles is 0.5–1.5%
greater than in the near detector. This difference is significantly smaller than the contribution of the
beam sizes on the target and, to a first approximation, need not be taken into account.

4 Conclusions

The size of an electron beam with energies above 5GeV σx,y can be determined by measuring
the angular distributions of diffracted transition radiation of fast electrons in thin crystals for two
distances that differ by at least a factor of two, between the source and the coordinate detector. The
desired beam sizes are determined by fitting the distribution for the smaller distance by convolving
the distribution for the larger distance with a two-dimensional Gaussian distribution, the parameters
of which are uniquely related to the beam size and the distances between the crystal and the detectors.

The technique can determine the size of a beam with a small bunch length of the order of
0.1 nm or less by switching to a lower viewing angle and a higher photon energy up to 100–150 keV.
The effect of the emission of secondary electrons and photons is small and can be neglected in the
first approximation.
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