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DIFFRACTED TRANSITIVE RADIATION AS A MEANS FOR 

INDICATING THE DIVERGENCE OF AN ULTRARELATIVISTIC 

ELECTRON BEAM 

S. V. Blazhevich,1 M. V. Bronnikova,1 and A. V. Noskov2  UDC 537.8 

Diffracted transition radiation (DTR) emitted by a beam of relativistic electrons traversing a thin single-crystal 
plate in the Laue scattering geometry is considered. An expression has been obtained describing the angular 
DTR density when the electron path length in a target is far less than the extinction length of x-rays in the 
crystal. It is shown that in this case, the DTR process has a clearly pronounced kinematic character. Numerical 
calculations of the DTR photon yield in the direction of Bragg’s scattering performed for different solid angles 
of recording show that it is significantly affected by the electron beam divergence. We have concluded that the 
DTR photon yield measured for a given solid angle can be used for indicating the electron beam divergence. 
Results of model calculations of the electron beam divergence parameters for a given yield of DTR photons 
traversing the slit collimator have shown that the formula proposed in this work can be successfully used as 
a basis for the development of methods for measuring the divergence of ultrahigh-energy relativistic electron 
beams based on the angular DTR distribution. 
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INTRODUCTION 

When carrying out fundamental and applied experimental investigations of high-energy electron beams, the 
researchers face the problem of insufficient information on the parameters of the employed beams. The transverse sizes 
and the divergence are the key parameters of the beams. The main problem for physicists dealing with the electron 
beams having energies in the range 100–1000 MeV is measuring the transverse beam sizes, because the beam 
divergence of modern accelerators (of the order of 0.001 mrad) is insignificant for the beams with transverse sizes of 
the order of or greater than 10 m. Nowadays two new electron-positron colliders are being developed [1, 2]. In these 
colliders, electrons and positrons will be accelerated to energy of 250 GeV in beams with very small transverse sizes 
(~5–100 nm), and the main problem here will be the measurement of the beam divergence. A solution of this problem 
will allow experimental data of both fundamental and applied research to be interpreted more precisely. In [3, 4] the 
feasibility of application of relativistic electrons of parametric x-ray radiation (PXR) for diagnostics of the transverse 
relativistic beam sizes was experimentally investigated. 

The influence of the electron beam divergence on PXR in a crystal was experimentally investigated in Tomsk 
and Tokyo [5] for electrons with energies of 600 and 800 MeV, respectively. The researchers showed that the 
orientational dependence of PXR generated by relativistic electrons in a crystal was sensitive to the beam divergence 
and proposed to use PXR as a simple means for determining the angular divergence of beams of high-energy charged 
particles. In [6] it was proposed to use the parametric x-ray radiation generated in thin crystals to obtain real-time data 

1National Research University “Belgorod State University,” Belgorod, Russia, e-mail: blazh@bsu.edu.ru; 
mvb12@mail.ru; 2Belgorod State Technological University named after V. G. Shukhov, Belgorod, Russia, e-mail: 
noskovburk@mail.ru. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 6, pp. 100–112, June, 
2020. Original article submitted January 9, 2020. 

1064-8887/20/6306-1010 2020 Springer Science+Business Media, LLC 

DOI 10.1007/s11182-020-02131-2



 1011

on the electron beam location and sizes. PXR in the direction of Bragg’s scattering is accompanied by diffracted 
transition radiation (DTR) [7–10] generated on the front side of a crystal target. We have developed the dynamic theory 
of coherent x-ray radiation excited by diverging beams of relativistic electrons traversing a single-crystal plate in the 
Laue scattering geometry for the general case of electron field reflection asymmetric relative to the target surface [11]. 

Expressions for the angular density of coherent radiation obtained in [11] showed that DTR photons emitted by 
beams of electrons with energies exceeding several hundred megaelectronvolts have a much narrower angular 
distribution than the PXR photons. As a result, the angular DTR density is more sensitive to the beam divergence. With 
further increase in the relativistic electron energy, the angular distribution of the generated DTR photons becomes 
narrower, while the width of the angular distribution of PXR photons saturates and ceases to change. In this case, the 
maximum of the angular PXR density is located far outside the range of DTR angles at which its intensity becomes 
many times lower than the DTR intensity. Thus, as the electron energy increased, the only suitable means for indicating 
the parameters of electron beams with the relativistic factor γ > 2000 remains DTR. For the effective DTR application 
for this purpose, it is important to determine the most suitable characteristics of its angular distribution. In particular, it 
is possible to expect that the use of the integral DTR characteristics will considerably simplify the indication process. In 
the present work, we demonstrate the feasibility of application of the integral DTR photon yield measured within 
a preset solid angle (the collimated DTR photon yield) for this purpose. Diffracted transition radiation of ultrarelativistic 
electrons in a single crystal is studied in the Laue scattering geometry. The case of a very thin target is considered when 
multiple scattering of electrons on atoms of the target is insignificant. It is an important case, because it provides 
measurements with very small distortions of the measurable parameters. An expression describing the angular DTR 
density is obtained when the electron path length in the target is much less than the extinction length. It is shown that in 
this case, the expression obtained has a clearly pronounced kinematic character. It should be noted that DTR for such 
a small target thickness has not yet been considered. Conventionally, DTR was considered only for the case when the 
electron path length was much greater than the extinction length, that is, when the DTR waves in a single crystal are 
dynamically diffracted [7–11]. In this regard, the formulas used in [7–11] are dynamic. 

In the present work, we investigate the feasibility of application of the integral yield of photons of collimated 
DTR emitted by an ultrarelativistic electron beam traversing a very thin single crystal target to analyze the beam 
divergence. We assume that under these conditions, the PXR contribution to coherent radiation is negligibly small; 
therefore, we will neglect it. 

1. GEOMETRY OF THE RADIATIVE PROCESS 

Let us consider a beam of relativistic electrons traversing a crystal plate (Fig. 1). The interaction of each 
electron in the beam with the target is considered to be independent; therefore, the spectral-angular density of radiation 
generated by the electron beam can be obtained by averaging of the expression for the spectral-angular density of 
radiation generated by a single electron of the beam over all possible electron trajectories in the target. 

For this purpose, we have introduced the angular variable ψ  that relates the electron velocity vector V  

(expressed in units of the velocity of light in free space) to the unit vector of the 1e  axis of the electron beam into the 

formula for the spectral-angular DTR density [11]. We have also introduced the angular variable 0θ  relating the unit 

vector in the direction of the incident pseudo-photon n  of the Coulomb electron field to the vector 1e  and the angular 

variable θ  relating the unit vector in the direction of photon diffraction gn  to the unit vector 2e  (defined by the Bragg 

ratios 1 0 0e θ  and 1 2 Bcos 2 e e ). These relationships for ultrarelativistic electrons and small values of the angular 

variables, describing the angular distributions of electrons and photons, have the following forms [11]  

 2 2
1

1 1
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2 2
       
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1

2g
     
 

n e θ , 2 0e θ ,   (1)  

where 21/ 1 V    is the Lorentz factor of the particle and B  is Bragg’s scattering angle. The angular vector 

variables have components in the parallel and perpendicular planes: ||  θ θ θ , 0 0|| 0 θ θ θ , ||  ψ ψ ψ  (see 

Fig. 1).  

2. SPECTRAL-ANGULAR DTR DENSITY IN A THIN SINGLE-CRYSTAL PLATE 

We take advantage of the formula obtained in [11] to describe the spectral-angular density of DTR emitted by 
a relativistic electron in a single crystal of arbitrary thickness L : 

 

2
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( )( )2DTR
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   

 
    
                      

, (2a) 

 

Fig. 1. Geometry of the radiative process. The solid angle of DTR photon 

recording is  4 c c    , where c   and c  are the maximum 

collimator angles with respect to the collimator center located on the 2e  axis 

(see the integration limits in formula (11)). 
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where 
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Bcos2C   , d d d      , (3) 

' ''
g g gi      is the coefficient of the Fourier series expansion of the dielectric susceptibility vector of the crystal in 

the reciprocal lattice vectors g , and ' ''
0 0 0i      is the average dielectric susceptibility. We here used the 

Heaviside–Lorentz system of units. 
At 1s  , Eq. (2) describes  -polarized waves, and at 2s  , it describes  -polarized waves. Equation (2) 

describes the spectral-angular density of DTR of a relativistic electron traversing the single crystal plate and considers 
the angular deviation of the electron velocity vector (of the angle ( , ) ψ  ) from the electron beam axis 1e . This 

expression was derived within the limits of the two-wave approach of dynamical diffraction theory for the general case 
of asymmetric reflection of radiation waves. The asymmetry of the reflection for the fixed Bragg scattering angle is 
determined by the angle between the reflecting system of parallel atomic crystal planes and the target surface (by the 
angle  ). The parameter   determines the degree of asymmetry of reflection of the Coulomb fields of the electron with 

respect to the target surface. We note that the angle ( B   ) of the electron beam incidence on the target surface 

decreases with increasing parameter  . The parameter ( )sb  is equal to half the electron path length in the target 

B/ sin( )eL L    , expressed in terms of the extinction length ( ) ( )
ext 1/s sL C  g . 

We consider radiation excited by the relativistic electron beam in the thin non-absorbing single crystal plate, 
that is, when the maximum path length of the photon diffracted in the plate B/ sin( )fL L     is much shorter than 

the absorption length abs 01/L    of x-ray waves in the crystal: 

 
( ) ( )
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2 1
s s

fLb

L


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
.  (4) 

It can be easily demonstrated that in this case, Eq. (2b) can be reduced to the form 
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It can also be noted that the parameter ( )sb  can take values ( ) 1sb   even when inequality (4) is satisfied. To obtain 

the angular DTR density, we integrate Eq. (2) over the frequency   using the formula 

( )
( )

2
B2sin

s
s

Cd
d


 

 
g

 that 

follows from the expression for the function  ( )s   in Eqs. (3). In this case, the angular DTR density assumes the 

following form: 
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which can be re-written as 
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. (6)  

For a very thin target, we assume that ( )sb   . Using the formula 
2

2

sin ( )x
dx

x




  , integral (6) with the 

spectral function ( )
DTR

sR  given by Eq. (5) can be approximated as follows: ( ) ( ) ( )
DTR ( ) 4s s sR d b




    . In this case, 

formula (6) for the angular DTR density assumes the form 
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If relativistic electrons have huge energy 
0

1 
  
  

 and the modulus of the electron deviation angle in the beam 

( , ) ψ   is less than or of the order of the characteristic angle corresponding to the maximum of the distribution 

DTR( 1 ), that is, if 2 2 2
0( ) ( )

             , Eq. (7) assumes the form 
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d 
 
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            

g

 

.  (8) 

Formula (8) that describes the angular density of DTR generated by a high-energy electron in a thin single-crystal target 
is kinematic in character. This is indicated by the direct proportionality of the dependence of the angular density on the 

thickness L  of the single-crystal target. The condition ( )sb    implies that the electron path length is much shorter 

than the extinction length of the x-ray waves in the crystal, which excludes the energy transfer from the incident wave 
to the diffracted wave. In this case, DTR is mainly formed when the electron approaches the target boundary in vacuum. 
In this case, electrons in the medium near the boundary are set into vibrational motion and emit electromagnetic waves 
that are constructively summed up in the direction of Bragg’s scattering. Under these conditions, the dynamic reflection 
of transitive radiation from the system of parallel atomic planes of the crystal is absent. 
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3. INFLUENCE OF THE ELECTRON BEAM DIVERGENCE ON THE DTR YIELD 

Since DTR of ultrahigh-energy electrons has narrow angular distribution, it is expedient to consider the 
application of the dependence of the DTR photon yield normalized to one electron within a given solid angle near the 
direction of Bragg’s scattering on the initial electron beam divergence. For this purpose, we performed averaging of the 
expressions for the number of emitted photons over all possible rectilinear trajectories of electrons in the beam. As 
an example, we performed the DTR averaging for the electron beam with Gaussian angular distribution:  

 

2

2
0

2
0

1
(ψ)f e






,  (9)  

where we call the parameter 0  the emitted electron beam divergence (see Fig. 1). The angle 0  defines the cone that 

covers the part of the electron beam out of which the electron flux density decreased more than e times compared to the 
density on the beam axis. 

For the number of DTR photons DTRN  emitted into the solid angle  4 c c  , we take advantage of the 

expression 
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This expression contains summation of the angular DTR density over two projections of photon polarization, 
integration over all photon emission angles, and averaging over angular electron distribution (9) in the beam. Based on 

Eq. (8) for the angular DTR density, we derive the corresponding expression for the number of DTR photons DTRN  

emitted by the ultrarelativistic electron beam from the thin single-crystal target into a preset angle near the direction of 
Bragg’s scattering: 
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Figure 2 shows the dependence of the average number of the DTR photons (normalized to one incident photon) in the 
rectangular collimator with collimation angles 2 c  and 2 c   emitted in the Bragg direction (axis 2e ) on the 

divergence 0  of the electron beam incident on the crystal (see Fig. 1). The curves are shown for the indicated values 

of the solid angles of recording at c c    . Calculations were performed for the (111)-oriented thin diamond target. 

The discrepancy between the solid curves and the curves shown by bold points reflects the violation of the condition 
2 2( )

      + 2
0( )        in the case of application of Eq. (11) for angles in the range 3 /c c     . 

From Fig. 2 it can be seen that the total DTR yield is practically independent of the beam divergence for a sufficiently 
large collimation angle. The optimal collimation should provide a maximгь dependence of the DTR yield on the 

divergence that corresponds to the maximum derivative DTR 0dN d . Figure 3 shows curves 1–4 from Fig. 2 in 

an enlarged scale. 
The influence of the DTR collimation on the resolution of measurements of the electron beam divergence is 

illustrated by Fig. 4 that shows the calculated dependence of the DTR photon yield derivative with respect to the beam 



 1016 

divergence DTR 0dN d . The family of curves in Fig. 4 illustrates the influence of the DTR collimation on the 

resolution of the measured electron beam divergence. The angular distributions of the DTR density for the indicated 

divergence 2 2
0 0 0      are shown in Fig. 5 for 0 0    . 

 

 

Fig. 2. Dependence of the DTR photon yield phN  on the electron beam 

divergence 0  calculated using exact formula (10) with the angular density 

given by Eq. (6) (the solid curves) and formula (11) (bold points) for the 
Lorentz factor of the electron  = 104 and the solid angle of recording 

4( )c c    : 10.5c c


     (curve )1 , 1  (curve )2 , 11.5   

(curve )3 , 12   (curve )4 , 13   (curve )5 , 15   (curve )6 , 110   

(curve )7 , and 1100   (curve )8 . 

 

Fig. 3. Same as in Fig. 2, but in the enlarged scale. 
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Fig. 4. Dependence of the DTR photon yield derivative ph 0/dN d  on the 

electron beam divergence ( = 104) for collimation angles 
1 0.5c c


     (curve )1 , 11  (curve )2 , 11.5  (curve )3 , 12 

(curve )4 , 13  (curve )5 , and 15  (curve )6 . 

 

Fig. 5. Angular distribution of the DTR density for the indicated values of the 
electron beam divergence. 

 
 
Thus, we can conclude that the yield of DTR photons emitted by the ultrahigh-energy electron beam traversing 

the thin single crystal target into a preset solid angle can be used for indicating the beam divergence. For example, from 
Fig. 4 it can be seen that for the divergence parameter lying in the range 01 10 /     , the collimation angle 

 5/c c      can be used effectively without changing. At the second step, to refine the obtained divergence 

parameters, the collimation angle should be changed to a more optimal angle, and calculations should be repeated. The 
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two-parametrical angular distributions with 0 0    can be indicated using different collimation angles c c    

and a two-dimensional Gaussian function for averaging of the angular DTR density:  

 

22

2 2
0 0

0 0

1
(ψ)f e





   
   



 






.   (12) 

To obtain an unambiguous solution of this problem, at least two independent measurements of the DTR photon yield 
must be performed, for example, using two slit collimators located perpendicularly each other.  

In this case, two photon yields should be calculated for indicating the divergence parameters 0  and 0  : 

    
22

2 2
0 0

( )2
DTR

DTR 0 0
10 0

1
, , , ,

c

c

s

c s

dN
N e d d d d

d








         
        

          
  

   




    


, 

    
22
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0 0

( )2
DTR

DTR 0 0
10 0

1
, , , ,

c

c

s

c s

dN
N e d d d d

d





         
    

   

 
               

   








     
. (13) 

The goal function can be constructed in the form 

       
22

measured measured
0 0 DTR 0 0 DTR DTR 0 0 DTR, , ,c c

c c
F N N N N   

           
    

.  (14)  

The electron beam divergence parameters *
0  and *

0   are determined from the condition of minimization of the goal 

function     * *
0 0 0 0, min ,F F        using one of the existing methods of minimization of a two-dimensional 

function. The plot of the goal function is shown in Fig. 6. The characteristic width of the angular DTR distribution 
generated by a single electron is equal to DTR 1   , where   is the relativistic factor of the emitting electron. 

To obtain the resolution of the beam divergence close to the optimal one, the angular width of the slit 
collimator must be chosen of the order of 1c c      for 0 0 1     , of the order of 0c     for 

0 1   , and 0c     for 0 1   . The accuracy of the solution depends on the statistical error 

measure measure
ph phN t N   of measuring the number of photons measure

phN , where the coefficient t defines the confidence 

interval (we used 3t   for a probability of 99.73%). For example, if we require that the accuracy (the relative error) 

was 0.01N  , then the number of the recorded photons must be 
2

measure 4
ph 2

9
9 10

0.0001N

t
N    


, which is quite 

real for the ILC accelerator under development in which 132.6 10  electrons will be used in one acceleration cycle. 
Indeed, as can be seen from Fig. 2, the number of DTR photons emitted by a single electron for the examined target will 

be of the order of 81 10 , and the corresponding number of photons emitted by the electron beam and equal to 
13 8 52.6 10 10 2.6 10     will be sufficient for measuring the DTR photon yield with a required accuracy. The DTR 

intensity can be increased by increasing the thickness of the crystal target in the range satisfying to the conditions of 
minimal influence of the measurement process on the measured parameters of the electron beam and by increasing the 
asymmetry parameter   (see formula (11)). 
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Fig. 6. Goal function (14) for determining the divergence parameters 0



and 0
   from the “measured” numbers of DTR photons 

measured 9
DTR 6.942 10cN 

    and measured 9
DTR 9.932 10cN    (preliminary 

calculated from formulas (13) for 0 1    and 0 2   ). The 

parameters 0 and 0   are expressed in units of 1/   rad. The minimum 

value of the goal function was (1/ ,2 / ) 0F    . 

 
Among other parameters used as experimental data containing errors are the photon collimator angles 

andc c   . Thus, the accuracy of determining the electron beam divergence can be expressed in terms of the 

accuracy of the parameters ,c c   , and ph
measuredN . We assume that calculation errors are absent. The errors of the 

absolute differences between the calculated and measured numbers of photons in the first and second terms of the goal 
function given by Eq. (14) can be written as follows:  

      
22

2 2
0 0

( )2
measured DTR

0 0 DTR
10 0

1
, , , , 2

,

s

c c c c
s

dN
N N e d d d

d





         
    



            
  

  




      



, (15a) 

      
22

2 2
0 0

( )2
measured DTR

0 0 DTR
10 0

1
, , , , 2

,

s

c c c c
s

dN
N N e d d d

d





         
      



            
  

  




    



, (15b) 

where the second term on the right-hand side of each of these expressions describes the contribution of errors of the 

parameter c   or c . The errors of the calculated divergence parameters *
0  and *

0   are written in terms of 

differences between the results of solving the minimization problem for function (14) for the measured numbers of 

photons measured
DTR cN  , measured

DTR cN   and  measured
DTR 0 0,c cN N       ,  measured

DTR 0 0,c cN N       . 

Our estimates showed that the relative errors of the parameters ,c c   , and measured
phN  introduced the relative 

errors of the same order of magnitude in the calculated parameters *
0  and *

0  . The parameters of the electron beam 

divergence calculated by minimization of goal function (14) by the Hooke–Jeeves method are given in Table 1. The 
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form of goal function (14) used to simulate the process of indicating the electron beam divergence parameters is shown 
in Fig. 6. The clearly pronounced minimum corresponding to the sought-after divergence parameters can be seen. 

For the same conditions as in Table 1, except the parameter measured
DTR cN   whose value was increased by 1%, we 

obtained *
0 1.0144531   , that is, by 1.4% more than in Table 1 ( 0 1.000195   ), and *

0 1.97109  , that 

is, by 1.4% less than in Table 1 ( 0 1.999219   ). 

4. GOAL FUNCTION BASED ON THE MEASURED ANGULAR DTR DISTRIBUTION 

Virtual collimators formed for the measured angular distribution of DTR photons can be used as slit collimators 
to measure the parameters of electron beam divergence. This case can be realized with a two-dimensional matrix of 
photodetectors used to record the distribution. Then one measurement ensures two values of the DTR photon yield. The 
feasibility of application of the angular DTR photon distribution in calculations allows the goal function to be optimized 
by organization of virtual collimators within the limits of the recorded angular radiation distribution. The virtual slit 
collimators based on the matrix of the measured angular DTR distribution will contain a certain common area of their 
crossing that can be excluded from consideration, thereby increasing the sensitivity of the method of minimization of 
goal function (14). In particular, calculations of the photon yields indicating the divergence parameters 0  and 0   

can be performed using modified expressions (13) and (14), respectively:  

TABLE 1. Values of the Divergence Parameters 0  and 0   

“Experimental” values of the electron beam divergence parameters 
(exp) 6
0 5 10 rad 1
      

(exp) 5
0 1 10 2      

measured 9
DTR 6.942 10cN 

    
measured 9
DTR 9.932 10cN    

Calculated values 

Iteration number (i) ( )
0

i
   

( )
0

i    ( )
0

i
   

( )
0

i    

0 0.1 0.1 0.4 0.4 
5 0.9 1.7 0.1 0.05 

10 1.05 1.875 6.2510–3 0.0125 

15 1.00625 1.9 75 3.12510–3 6.2510–3 
20 1.0015625 1.996875 3.906310–4 1.562510–3 
25 1.0001953 1.9992187 9.765610–5 1.95312510–4 
Note. Here the quantities calculated in the process of fitting to their “experimental” values are 

designated as follows:  (exp)
0 1    and  (exp)

0 2    are calculated using the computational 

program for finding a minimum of the goal function by the Hook–Jeeves minimization method; 
(0) (0)

0 0 0.1       is the initial value of the parameters; (0) (0)
0 0 0.2 /      is the initial 

increment of the parameters  0 0max( , )     ;  410 1    is the required accuracy of the 

approximation  0 0max( , )     ;  0 0,F     is the goal function; 52 10    is the 

relativistic factor of electron. The target represented (111)-oriented single-crystal diamond with the 

thickness 55 10 cmtL   . 



 1021

    
22

2 2
0 0

( )2
DTR

DTR 0 0
10 0

1
1 , , , ,

c

c c

s

c s

dN
N e d d d d

d








         
         

           
  

   







    


, 

    
22

2 2
0 0

( )2
DTR

DTR 0 0
10 0

1
1 , , , ,

c

c c

s

c s

dN
N e d d d d

d





         
    

  
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               
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
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. 

(16) 

The corresponding goal function can be constructed in the form 

       
22

measured measured
0 0 DTR 0 0 DTR DTR 0 0 DTR1 , 1 , 1 ,c c

c c
F N N N N   

           
    

. (17)  

The scheme of the collimator formed in accordance with the integral limits in Eq. (16) is shown in Fig. 7. 
Figure 8 shows the goal function based on the expression for the photon yield determined by the slit 

“collimators” with excluded common area around the 2e  axis (see Fig. 1). It can be seen that the goal function 

   

 Fig. 7 Fig. 8 

Fig. 7. Formation of the virtual slit collimators c  and c   on the matrix of the recorded 

angular DTR distribution by summation over the pixel values and comparison (using the 
goal function F1) with the calculated photon numbers. 

Fig. 8. Goal function (17) for determining the electron beam divergence parameters 0

  

and 0
   from the “measured” numbers of DTR photons measured 9

DTR 1.559 10cN 
    and 

measured 9
DTR 3.054 10cN    (preliminary calculated by Eq. (16) for 0 1    and 

0 2   ). The parameters 0  and 0   are expressed in units of 1/ rad. The value of 

the minimum goal function was 1(1/ ,2 / ) 0F    .  
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 0 01 ,F     has a more clearly pronounced minimum corresponding to the sought-after electron beam divergence 

parameters. 
Results illustrating fitting to the sought-after values of the divergence parameters obtained with the goal 

function in the form  0 01 ,F     are presented in Table 2. 

An important point of the proposed method is the application of the slit collimators with the parameters 

0c     and 0 0     close to optimal ones that ensures the high resolution of the method of determining the 

electron beam divergence. It can be seen that under these conditions, the collimator parameters are expressed through 
unknown values of the divergence parameters of “measured” DTR. In this regard, instead of the “measured” values 

measured
DTR cN   and measured

DTR cN   presented below, we must use the new goal function based on the functions 

 measured
DTR 0 0,cN      and  measured

DTR 0 0,cN    : 

 

      

    

2
measured

0 0 DTR 0 0 DTR 0 0

2
measured

DTR 0 0 DTR 0 0

2 , 2 , ,

2 , , ,

cc

cc

F N N

N N

   

 

       

     

  

  

  (18) 

where 

TABLE 2. Results of Fitting to Sought-after Values of the Divergence Parameters of the Goal Function 

 0 01 ,F     

“Experimental” values of the electron beam divergence parameters 
(exp) 6
0 5 10 rad 1
      

(exp) 5
0 1 10 2      

measured 9
DTR 1.559 10cN 

    
measured 9
DTR 3.054 10cN    

Calculated values 

Iteration number (i) ( )
0

i
   

( )
0

i    ( )
0

i
   

( )
0

i    

0 0.1 0.1 0.1 0.1 
5 0.9 1.1 0.1 0.1 

10 1.1 1.9 6.2510–3 0.05 
11 1.05 2 6.24510–3 0.05 
12 1.05 2 3.12510–3 0.025 
13 1.05 1.95 3.12510–3 0.025 
14 1.0375 2 3.12510–3 0.025 
15 1.01875 1.95 3.12510–3 0.025 
25 0.999999 2 1.90710–7 3.81510–7 

Note. The same as in Table 1, but for the goal function  0 01 ,F    . Here the accuracy 

parameter  710 1    and the initial increment of the parameters (0) (0)
0 0 0.1/     ; 

52 10    is the Lorentz factor of relativistic electron. The target represented the (111)-oriented single 

crystal of diamond with the thickness 55 10 cmtL   . 
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    DTR 0 0 DTR 0 0 0 02 , , , ,
c c

N N   
         , 

    DTR 0 0 DTR 0 0 0 02 , , , ,
c c

N N           
,  

(19) 

    measured measured measured
DTR 0 0 DTR 0 0 0 0, , , ,

c c
N N   

         , 

    measured measured measured
DTR 0 0 DTR 0 0 0 0, , , ,

c c
N N           

,  
(20) 
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. (22) 

It is obvious that in practice, the electron beam divergence parameters will be determined for a discrete 
distribution of the angular DTR density over pixels of the recording matrix. In this case, the measured collimated DTR 

yield can be represented in terms of the goal function  0 02 ,F     using interpolated functions. On the other hand, 

it is possible to use a simpler method of minimization of the goal function, since the number of pixels for the angular 
DTR distribution will be limited. The independence of the total DTR yield on the electron beam divergence (see curve 8 
in Fig. 2) can be used to solve the problem of indicating the divergence of the measured collimated DTR yield 
normalized by the electron beam intensity. 

5. ASSESSMENT OF A REAL SITUATION 

At the beginning, we estimate the conditions of experimental implementation of the proposed methods of 
indicating the electron beam divergence based on consideration of the typical beam parameters of the ILC collider: the 

electron energy of 250 GeV; the electron beam cross section 2
beam 5 100 nmS  ; and the beam divergence 

0 1  . To evaluate the feasibility of measuring the angular DTR distribution, we must know the actual parameters 

of the existing x-ray detector matrices. If the spatial resolution of the matrix does not exceed 5 m and the number of 

pixels is about 10000, the transverse size of the recorded DTR flux will be 
ph

310 mLD  . For the parameters of the 

electron beam divergence 0 0 1    , the distance from the target to the detector can be defined as 

ph ph

2
ph 0 5 10 mL LL D D      . This is the quite real distance for the x-ray propagation without losses through 

the photon channel in vacuum 610P   Torr.  
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CONCLUSIONS 

Diffracted transition radiation emitted by the relativistic electron beam traversing a thin single-crystal plate in 
the Laue scattering geometry has been studied. For the first time, the expression describing the angular density of DTR 
generated when the electron path length in the target is significantly shorter than the extinction length has been derived. 
The structure of the given expression shows the kinematic character of the DTR process under these conditions. The 
expression describing the average number of DTR photons emitted by the diverging beam of relativistic electrons with 
ultrahigh energies traversing a thin single-crystal plate within a given solid angle in the direction of Bragg’s scattering 
was obtained. The numerical calculations were performed demonstrating the dependence of the collimated DTR photon 
yield on the beam divergence. 

To determine the divergence parameters of the electron beam with the angular distribution described by a two-
dimensional normal distribution with different variances along the coordinates, we used expressions for the DTR 
photon yields for the slit collimators located perpendicularly each other. The goal function used for calculation of the 
divergence parameters of the electron beam was constructed and the expression for estimation of the error in 
determining the beam divergence parameters was derived. Model calculations of the divergence parameters of the 
electron beam based on the “measured” yield of DTR photons for the slit collimators were carried out. The efficiency of 
the algorithm for estimation of the beam divergence parameters based on the Hook-Jeeves minimization method was 
demonstrated. The expressions obtained can be successfully used as a basis for the development of methods of 
measuring the beam divergence of ultrahigh-energy relativistic electrons based on the angular DTR distribution. 
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