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Abstract—Integral representations of solutions of one differential equation with singularities in the
coefficients, containing the Bessel operator perturbed by some potential, are considered. The exis-
tence of integral representations of a certain type for such solutions is proved by the method of succes-
sive approximations using transform operators. Potentials with strong singularities at the origin are
allowed. As compared with the known results, the Riemann function is expressed not via the general
hypergeometric function, but, more specifically, via the Legendre function, which helps to avoid
unknown constants in the estimates.
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1. INTRODUCTION. FORMULATION OF THE PROBLEM
Consider the problem of constructing an integral representation of a certain kind for solutions of the

differential equation

(1)

where  is the Bessel operator of the form

(2)

This problem is solved by the method of transform operators. For this, it suffices to construct a Poisson-
type transform operator  of the form

(3)

with some kernel  that interwines the operators  and  according to the formula

(4)

on functions . As a result, we obtain a formula expressing the solutions of Eq. (1) with a spec-
tral parameter, which has the form

via the solutions of the unperturbed equation, i.e., via Bessel functions. In this case, the spectral parameter
 does not affect the form of linear transform operators whose kernels do not depend on it. This approach

reflects one of the main applications of transform operators: the expression of solutions of more complex
differential equations via similar simpler ones.

The theory of transform operators is an important branch of modern mathematics, which has numer-
ous applications (see [1–6]). The possibility of representation (3) with a sufficiently “good” kernel  for
a wide class of potentials  underlies the classical methods for solving inverse problems in the quantum
scattering theory [7, 8]. For Sturm–Liouville equations, transform operators of form (3) were first con-
structed by B.Ya. Levin (see [1–6]).
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1382 SITNIK
The transform operators for the Bessel operator of the Sonin and Poisson’s type were introduced by
Delsart; for the first time, the theory of them was presented in Russian and developed in the famous work
by Levitan [9]. Later, in a number of works, transform operators with property (4) for variable potentials
were also considered, simultaneously with Sonin-type transform operators  inverse of (3), satisfying the
intertwining relation

on appropriate functions.
An original technique for constructing transform operators for a perturbed Bessel equation on the half-

axis was developed by Stashevskaya [10], which allowed her to include into consideration singular poten-
tials with an estimate at zero , ; for integer , this technique was subsequently widely
developed. The case of continuous , , was thoroughly considered by Sokhin [11, 12], as well as other
authors (for details, see [5, 6]). Transform operators with “bad” potentials: distributions from a certain class,
were considered in [8]. V.V. Kravchenko developed a special method for representing the kernels of transform
operators in the form of series: Spectral Parameter Power Series (SPPS) method [13, 14]; this method proved
to be well suited for numerical solution of applied problems and computer modeling, including solving direct
and inverse spectral problems [15, 16]. The author’s results for some special cases of the considered problem
of constructing transform operators (3) and (4) were previously published in [17, 18].

In many mathematical and physical problems, it is necessary to consider strongly singular potentials,
e.g., admitting an arbitrary power singularity at zero. In this paper, the results on the integral representa-
tion of solutions of equations with such singular potentials are formulated. From the potential it is only
required that the potential be majorized by a certain function summable at infinity. In particular, in this
paper, the class of admissible potentials includes the singular potential , the strongly singular
potential with a power singularity , , Yukawa-type potentials , Bargman and Bat-
man–Chadan potentials [7], and others. No additional conditions are imposed on the function , such
as fast oscillations at the origin or sign constancy, which makes it possible to study attractive and repulsive
potentials using the same method. The absence of limiting conditions at zero is the advantage of consid-
eration of Levin-type transform operators (3).

The main objective of this article is to study the integral equation for the kernel of transform operator (3).
After reducing the problem to an integral equation, the existence and uniqueness of the solution, as well
as its necessary smoothness, are proved. Estimates of the solution are obtained in terms of the parameter
and the potential of the original equation (1), which are expressed via Legendre functions. Simpler esti-
mates are obtained for a special class of power-law potentials. This work uses a technique based on the
application of the Riemann function to the Euler–Poisson–Darboux equation, estimates of integrals
using the Mellin transform, and the Slater–Marichev theorem.

It should be noted that, in this work, transform operators of a special type, differing from previously
known in some details, are constructed. For this, only the cases of equal limits (of types  or ) in
the main integral equation for the kernel of the transform operator were considered. In this paper, it is
shown that the cases of different limits in the main integral equation can also be considered. It is precisely
this arrangement of limits that made it possible to cover a wider class of potentials with singularities at zero.
In addition, in comparison with reasoning by analogy with the classical work of Levitan [9], we supple-
ment and improve this scheme by considering a modified integral equation for the kernel of the transform
operator. As it turned out, the Riemann function used in the proof can be expressed not only via the gen-
eral Gauss hypergeometric function with three parameters, but also, more specifically, via the Legendre
function with two parameters, which allows one to get rid of the indefinite constants in the estimates from
previous works.

2. SOLUTION OF THE MAIN INTEGRAL EQUATION FOR THE KERNEL
OF A TRANSFORM OPERATOR

Let us introduce new variables and functions using the formulas:

(5)
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ON ONE INTEGRAL EQUATION 1383
Let . Thus, to justify representation (3) of the solution of Eq. (1), it suffices to determine the
function . It is known [17, 18] that, if there exists a twice continuously differentiable solution 
of the integral equation

under the conditions , then the sought-for function  is determined by formulas (5)
via this solution . The function  is the Riemann function, which occurs when solving a cer-
tain Goursat problem for a singular inhomogeneous hyperbolic equation of the form (one of the forms of
the Euler–Poisson–Darboux equation)

which, in our case, can be transformed to

This Riemann function is known explicitly (see [9, 19]); it is expressed in terms of the Gauss hypergeo-
metric function  by the formula

(6)

This expression is simplified in [17], and it is shown that the Riemann function in this case is expressed in
terms of the Legendre function by the formula

(7)

The main result of this article is the following theorem.

Theorem 1. Let a function  satisfy the condition

(8)

Then, there exists an integral representation of the form (3), whose kernel satisfies the estimate

In this case, the kernel  of the transform operator, as well as the solution of Eq. (1), are twice continuously
differentiable with respect to their arguments separately on the corresponding domains of definition.

Proof. The proof of the main Theorem 1 is divided into a series of lemmas.
Let us introduce the notation
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1384 SITNIK
We will prove the uniform convergence of the operator Neumann series

(10)

and the possibility of its double differentiation.
Lemma 1. The following estimate is true:

The proof immediately follows from definition (9).
Lemma 2. Let . Then, we have the inequality

(11)

Proof. By the assumption, . Let us then show that

Indeed, this inequality is equivalent to

which is obvious, since each of the factors on the left does not exceed the corresponding factor on the
right. Next, consider the function at :

Therefore, this function increases in . Therefore,

The Legendre function  with  monotonically increases on the interval  and .
Therefore,

This inequality can be written as

Note that we have actually proved the inequality for the Riemann function,

(12)
under conditions .

From the above calculations, we obtain the estimate
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ON ONE INTEGRAL EQUATION 1385
Replacing the lower limit of integration  with , we can only increase the value of the integral, since
the Riemann function is positive, . As a result, we arrive at estimate (11).

The lemma is proved.
Lemma 3. The th term of Neumann series (10) is estimated as

(13)

Proof. The lemma is proved by induction. For , inequality (13) reduces to the already proved
inequality from Lemma 1. Let (13) hold for some . Then, for the next term of the Neumann series,
we obtain

Repeating the reasoning from the proof of the previous lemma, we obtain

(14)
since

and the maximum of  with respect to  is achieved at . Given inequality (14) and the assumed
inequality (13), we arrive at the estimate

We consider potentials satisfying the inequality , . We finally have

which proves estimate (13) for all .
The lemma is proved.
Now let us complete the proof of Theorem 1. Summing up all estimates (13), we find that the Neumann

series converges uniformly in the domain  and its sum is a continuous function satisfying the
inequality

(15)

It follows from (15) that we could prove the convergence of series (10) for a summable potential  that can
be approximated by continuous potentials.

Returning to the functions  and , we obtain the inequalities
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1386 SITNIK
Thus, we arrive at estimate (9).
To complete the proof of Theorem 1, it only remains to justify the existence of second continuous

derivatives of the function  with respect to the variables  under the condition .
Obviously, it is equivalent to the existence of second continuous derivatives of the function  with
respect to the variables , . The last statement is proved using the technique presented above, by the
method of successive approximations, and completely repeats the corresponding fragment of the proof
from [17].

The theorem is proved.
Let us list the classes of potentials for which conditions (8) are satisfied. If  decreases monotoni-

cally, we can accept . For potentials with an arbitrary singularity at the origin and increasing

at  (e.g., the Coulomb potentials ), which are truncated by zero at infinity, ,

, we can accept , , , . Condition (8) will also be satisfied by
potentials with an estimate . The possibility of such strengthening of Theorem 1
was noted by V.V. Katrakhov.

In particular, the above conditions are satisfied by the following potentials, occurring in applications:
a strongly singular potential with a power singularity of the form , various Bargman potentials:

and Yukawa potentials:

(see, e.g., [7]).
Remark. In fact, the proof of the above theorem does not employ the explicit form of the Riemann

function (7). We only use the existence of the Riemann function, its positivity, and some special property
of monotonicity (14). These facts are rather general; therefore, the results can be extended to a fairly wide
class of differential equations.

The estimate from Theorem 1 for potentials of a general form can be transformed into a less accurate,
but more conceivable estimate.

Theorem 2. Let the conditions of Theorem 1 be satisfied. Then, the kernel  of a transform operator
satisfies the estimate

Note that, as , the kernel of the integral representation can have an exponential singularity.

3. ESTIMATES FOR THE CASE OF A POTENTIAL WITH A POWER SINGULARITY AT ZERO
For the class of potentials with a power singularity of the form

(16)

estimates obtained above can be simplified without reducing their accuracy. The restriction on  is caused
by the condition of summability at infinity.

Theorem 3. Consider a potential of the form (16). Then, Theorem 1 holds with the estimate

where  is the Legendre function [20], the quantity  is determined from (16), and  is determined from (2)
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Before starting the proof, it should be noted that this estimate is obtained after rather tedious calcula-
tions using the famous Slater–Marichev theorem [21], which helps to calculate the necessary integrals in
terms of hypergeometric functions after reducing them the Mellin convolution.

Proof. For this class of potentials, we will simplify estimate (15), which constitutes the content of The-
orem 1, without reducing its accuracy. To that end, we will calculate explicitly the quantity  entering into
estimate (15). The proof of Theorem 3 is divided into two lemmas.

Lemma 4. For a potential of the form (16), we have the relationship

(17)

where  is the Legendre function and .
Proof. Consider the quantity

Perform the change of variables, denoting the argument of the Legendre function by :

With this replacement, the new limits of integration are the numbers

and the variable  is calculated by the formula

This leads us to the following expression for :

In the last integral, we perform another change of variable by the formula

As a result, we have
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The lemma is proved.
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1388 SITNIK
Proof. The proof uses the notation and a technique based on the Slater–Marichev theorem [21].
Making the change of variables  in the integral in (18), we obtain

where the truncated power function is denoted as . We apply to the function  the Mellin transform
with respect to the variable . Using the Mellin convolution theorem [21], we obtain:

Using successively relationships 6 (1), (4), and 2 (4) from [21], we arrive at the expression

where the Slater designation is used for the ratio of the products of gamma functions. In the notation of
the Slater–Marichev theorem, we have

Applying the Slater–Marichev theorem, we obtain formulas for at :
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We see from (19) that we have obtained the desired formula (18); however, its derivation is not com-
pletely rigorous, since we did not check the admissibility of applying the Mellin transform and the condi-
tions of the Slater–Marichev theorem (in our case, rather complicated). However, now we can apply the
Mellin transform to both sides of the formal equality (18) obtained. As a result, we prove that, for 
and , relationship (18) is an identity.

The lemma is proved.
As an implication, we now obtain the necessary estimate for Theorem 3.
The theorem is proved.
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1
2 1
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 Γ ν + Γ −νπν= − Γ β α −ν, −β − ν;− ν;−π Γ + β + ν α
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The simplest similar estimate was obtained in [17] for the potential , for which .

As follows from [20], in this case, the Legendre function  can be expressed via elementary func-
tions. Therefore, the corresponding estimate can be expressed in terms of elementary functions, too.

Another potential for which the estimate obtained can be simplified even more and expressed in terms
of elementary functions is a potential of the form  when the parameters are related as

.
Corollary. Let the parameters be related as . Then, the estimate from Theorem 3 takes the form

(20)

Proof. In this case, we transform the estimate from Theorem 3 to

(21)

using in the transformation the formula (see [20])

Therefore, the inequality for the kernel for  takes the form (20).
The corollary is proved.
Note that, for  in formulas (1) and (2), Theorem 1 reduces to the well-known estimates for the

kernel of the Levin-type integral representation for the Sturm–Liouville equation.
The technique presented above can be fully transferred to the problem of constructing non-classical

generalized shift operators. This problem is essentially equivalent to expressing solutions to the equation

(22)

via the solutions of the unperturbed Euler–Poisson–Darboux equation with Bessel operators in each vari-
able (in the non-singular case, the wave equation) with additional conditions ensuring well-posedness.
Such representations are obtained from the mere fact of the existence of transform operators and were
studied for the non-singular case ( ) in [22, 23] as an implication of the theory of generalized
shift. An interesting original technique for obtaining such representations, also in a non-singular case, was
developed by Borovskikh [24]. The results of the present work imply integral representations of a certain
subclass of solutions of Eq. (22) in the general singular case for quite arbitrary potentials with singularities
at the origin. Moreover, the estimates for the solutions do not contain any indefinite constants and, for
the kernels of integral representations, integral equations satisfied by them are written out explicitly.

4. ASYMPTOTICALLY EXACT INEQUALITIES FOR THE LEGENDRE FUNCTIONS
In conclusion, let us show how one can use formula (18) obtained when deriving Lemma 5 to establish

an asymptotically exact lower bound for the Legendre functions. In the author’s opinion, this estimate is
of independent interest.

Consider the obvious inequalities ( )

−= 2( )q x cx β = 1
2

−
ν

1/2( )P z

− β+= (2 1)( )q x x
β = α − 1

β = α − 1
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1 2 2 2 2 2 2

2 2 2
2 2

2 1

2 2( ) exp
2 2 2
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4 2 2

t t x t x t xP x t
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txx
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ββ β
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/221 12 2 2 2

2 2 2 2
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2 /22( ) ( 1) 1
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α, β,, − , = ,( ) ( ) ( ) ( )x yB u x y q x u x y B u x y

α = β = 0

α > 0
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ν ν ν+ α − ≤ + α − ≤ + α − .  

1 1 1
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0 0 0
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COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 60  No. 8  2020



1390 SITNIK
The first integral is obtained from formula (18) for ; it was calculated in Lemma 5. The second inte-
gral is known, and, as follows, e.g., from [35], is calculated by the formula

Therefore, we have the inequality

Expressing the Legendre function in terms of elementary functions, we finally obtain

The inequality just proved gives correct asymptotics for all parameters entering into it, as follows from the
asymptotic formula presented in [26]:

The second of the integral inequalities considered also leads to an interesting estimate

In connection with the last inequalities presented, it should be noted that the Legendre functions are
related to the complete and incomplete elliptic Legendre integrals of three kinds; these two classes of spe-
cial functions are expressed, at certain values, via each other. On the other hand, the Legendre functions
are special cases of the Gauss hypergeometric function. Various inequalities for the Legendre elliptic inte-
grals are considered in the author’s joint works [27, 28], and inequalities for hypergeometric functions,
in [29, 30].
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