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1 Introduction
In this paper we deal with mixed hyperbolic Riesz B-potentials which are fractional powers of the operator

∂2

∂t2
− ∆ν , where ∆ν =

n
∑
i=1
(Bνi )xi , (1.1)

with
(Bνi )xi =

∂2

∂x2i
+
νi
xi

∂
∂xi

being the singular differential Bessel operator, and ν1 > 0, . . . , νn > 0.
The potential theory comes from mathematical physics. The most well-known areas of its applications

are electrostatic and gravitational theory, probability theory, scattering theory, biological systems, among
others. The Newton potential can be interpreted as the negative power of the Laplace operator. Marcell Riesz
was the first mathematician who considered fractional negative powers of the Laplace operator, which are
now called Riesz potentials (see [8, 9]). Riesz also introduced potentials with Lorentz distances, which are
the fractional negative powers of the D’Alembert operator. Further studies, properties, and applications of
classical Riesz potentials can be found in the books [11, pp. 49, 263], [16, p. 117], [1, p. 131], [10, pp. 483,
554], among others.

In this paper we prove semigroup properties for the mixed Riesz hyperbolic B-potential, find its analytic
continuation and describe the space of images of mixed hyperbolic Riesz B-potentials. This potential is the
negative real power of the hyperbolic operator (1.1). Such operator is closely related to the the problem of the
inversion of the weighted Radon transform over Lorentzian manifolds; for the non-weighted case, see [2].
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1.1 Basic definitions

In this subsection we give a summary of the basic notation, the terminology and some results which will be
used in this article.

Suppose thatℝn is the n-dimensional Euclidean space,

ℝn+ = {(x = (x1, . . . , xn) ∈ ℝn , x1 > 0, . . . , xn > 0},

ν = (ν1, . . . , νn) is a multiindex consisting of positive real numbers νi, i = 1, . . . , n, and |ν| = ν1 + ⋅ ⋅ ⋅ + νn.
Let Ω be a finite or infinite open set in ℝn+1, symmetric with respect to each hyperplane xi = 0, i = 1, . . . , n,
and let Ω+ = Ω ∩ (ℝ ×ℝn+) and Ω+ = Ω ∩ (ℝ ×ℝ

n
+), where ℝ

n
+ = {x = (x1, . . . , xn) ∈ ℝn , x1 ≥ 0, . . . , xn ≥ 0}.

We deal with the class Cm(Ω+), consisting of m times differentiable functions on Ω+, and denote by Cm(Ω+)
the subset of functions from Cm(Ω+) such that all existing derivatives of these functions with respect to xi,
for any i = 1, . . . , n, are continuous up to xi = 0, and all existing derivatives with respect to t are continuous
for t ∈ R. The class Cmev(Ω+) consists of all functions from Cm(Ω+) such that

∂2k+1f
∂x2k+1i

x=0
= 0

for all nonnegative integers k ≤ m−12 and for i = 1, . . . , n (see [17] and [3, p. 21]). In the following, we will
denote Cmev(ℝ ×ℝ

n
+) by Cmev. We set

C∞ev(Ω+) =⋂ Cmev(Ω+),

with intersection taken for all finite m. Let C∞ev(ℝ ×ℝ
n
+) = C∞ev . Let

∘
C∞ev(Ω+) be the space of all functions

f ∈ C∞ev(Ω+) with compact support. We will use the notations
∘
C∞ev(Ω+) = D+(Ω+) and

∘
C∞ev(ℝ ×ℝ

n
+) = D+.

Let Lνp(Ω+), 1 ≤ p <∞, be the space of all measurable functions in Ω+ such that

∫
Ω+

|f(t, x)|pxν dt dx <∞, where xν =
n
∏
i=1
xνii .

For a real number p ≥ 1, the Lνp(Ω+)-norm of f = f(t, x) is defined by

‖f ‖Lνp(Ω+) = ( ∫
Ω+

|f(t, x)|pxν dt dx)
1/p

.

The weighted measure of Ω+ is denoted by mesν(Ω+) and is defined by the formula

mesν(Ω+) = ∫
Ω+

xν dt dx.

For every measurable function f(t, x), defined for t ∈ ℝ, x ∈ ℝn+, we consider

μν(f, σ) = mesν{t ∈ ℝ, x ∈ ℝn+ : |f(t, x)| > σ} = ∫
{(t,x):|f(t,x)|>σ}+

xν dt dx,

where {(t, x) : |f(t, x)| > σ}+ = {t ∈ ℝ, x ∈ ℝn+ : |f(t, x)| > σ}. We will call the function μν = μν(f, σ) a weighted
distribution function |f(t, x)|.

Let Lν∞(Ω+) be the set of measurable functions f(t, x) on Ω+ such that

‖f ‖Lν∞(Ω+) = ess supν
(t,x)∈Ω+

|f(t, x)| = inf
σ∈Ω+
{μν(f, σ) = 0} <∞.

For1 ≤ p ≤∞, the Lνp,loc(Ω+) is the set of functions u, defined almost everywhere inΩ+, such that uf ∈ Lνp(Ω+)
for any f ∈ D+(Ω+).
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LetD+(Ω+) be the set of continuous linear functionals on Ω+. Each function u ∈ Lν1,loc(Ω+) will be iden-
tified with the functional u ∈ D+(Ω+) acting according to the formula

(u, f )ν = ∫
Ω+

u(t, x)f(t, x)xν dt dx, f ∈ D+(Ω+). (1.2)

The functionals u ∈ D+(Ω+) acting as in formula (1.2) will be called regular weighted functionals. All other
continuous linear functionals u ∈ D+(Ω+) will be called singular weighted functionals. We will use the nota-
tion D+ = D+(ℝ ×ℝ

n
+).

The generalized function δν is defined, analogously as in [3, p. 12], by

(δν , φ)ν = φ(0), φ ∈ D+(Ω+).

We will use the generalized convolution product defined by the formula

(f ∗ g)ν = ∫
ℝn+1+

f(τ, y)(νTyxg)(t − τ, x)yν dτ dy, (1.3)

where νTyx is the multidimensional generalized translation

(νTyx f )(t, x) = (ν1T
y1
x1 ⋅ ⋅ ⋅

νnTynxn f )(t, x).

Each of the one-dimensional generalized translations νiTyixi is defined, for i = 1, . . . , n, by (see [4, p. 122,
formula (5.19)])

(νiTyixi f )(t, x) =
Γ( νi+12 )
Γ( νi2 )Γ(

1
2 )

π

∫
0

sinνi−1 φi × f(t, x1, . . . , xi−1,√x2i + y
2
i − 2xiyi cosφi , xi+1, . . . , xn) dφi .

Based on the multidimensional generalized translation νTyx, the weighted spherical mean Mν
r [f(t, x)] of

a suitable function, acting only by the variables x1, . . . , xn, is constructed by the formula

(Mν
r )x[f(t, x)] =

1
|S+1(n)|ν

ν

∫
S+1 (n)

Trθx f(t, x)θν dS, (1.4)

where

θν =
n
∏
i=1
θνii , S+1(n) = {θ : |θ| = 1, θ ∈ ℝ

n
+} and |S+1(n)|ν =

∏ni=1 Γ(
νi+1
2 )

2n−1Γ( n+|ν|2 )
.

The weighted spherical meanMν
r [f(t, x)] is the transmutation operator intertwining (∆ν)x and (Bn+|ν|−1)t

for f ∈ C2ev (see [15]):
(Bn+|ν|−1)rMν

r [f(t, x)] = Mν
r [(∆ν)x f(t, x)].

As the space of basic functions, we will use the subspace of rapidly decreasing functions

Sev(ℝ ×ℝ
n
+) = Sev = {f ∈ C∞ev : sup

t∈ℝ,x∈ℝn+
|tα0xαDβ f(t, x)| <∞},

where α = (α1, . . . , αn), β = (β0, β1, . . . , βn),with α0, α1, . . . , αn , β0, β1, . . . , βn being arbitrary integer non-
negative numbers, and

xα = xα11 x
α2
2 ⋅ ⋅ ⋅ x

αn
n , Dβ = Dβ0t D

β1
x1 ⋅ ⋅ ⋅D

βn
xn , Dt =

∂
∂t
, Dxj =

∂
∂xj

, j = 1, . . . , n.

In the same way as forD+, we introduce the space Sev. In fact, we identify Sev with a subspace ofD+, since
D+ is dense in Sev.
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Definition 1.1. The Fourier–Bessel transform of a function f ∈ Lν1(ℝ ×ℝ
n
+), f = f(t, x), t ∈ ℝ, x ∈ ℝn+, is

expressed by

Fν[f ](τ, ξ ) = Fν[f(t, x)](τ, ξ ) = f̂ (τ, ξ ) =
∞

∫
−∞

eitτdt ∫
ℝn+

f(t, x) jν(x; ξ )xν dx,

with
jν(x; ξ ) =

n
∏
i=1
j νi−1

2
(xiξi), ν1 > 0, . . . , νn > 0,

where the symbol jν is used for the normalized Bessel function

jν(r) =
2νΓ(ν + 1)

rν
Jν(r)

and Jν(r) is the Bessel function of the first kind of order ν.
For f ∈ Sev, the inverse Hankel transform is defined by

F−1ν [f̂ (τ, ξ )](t, x) = f(t, x) =
2n−|ν|−1

π∏nj=1 Γ2(
νj+1
2 )

∞

∫
−∞

e−itτ dτ ∫
ℝn+

jν(x, ξ )f̂ (τ, ξ )ξ ν dξ.

Let
Ψν,V = {ψ ∈ Sev : (Dkψ)(x) = 0, x ∈ V, |k| = 0, 1, 2, . . . }

and
Φν,V = {φ : Fνφ ∈ Ψν,V}.

2 Mixed hyperbolic Riesz B-potential and its properties

2.1 Preliminary information on mixed hyperbolic Riesz B-potential

In this subsection we define a mixed hyperbolic Riesz B-potential, prove a theorem on its absolute conver-
gence, obtain its representation using the transmutation operator (1.4), and give some examples and prop-
erties concerning boundedness and the application of the Fourier–Bessel transform to a mixed hyperbolic
Riesz B-potential.

Let
|x| = √x21 + ⋅ ⋅ ⋅ + x

2
n .

First, for t ∈ ℝ, x ∈ ℝn+, λ ∈ C, we define

sλ(t, x) =
{
{
{

(t2−|x|2)λ
N(α,ν,n) when |x|2 ≤ t2 and t ≥ 0,
0 when t2 < |x|2 or t < 0,

(2.1)

where
N(α, ν, n) = 2

α−n−1

√π

n
∏
i=1

Γ( νi + 12 )Γ(
α − n − |ν| + 1

2 )Γ(α2).

The regular weighted generalized function corresponding to (2.1) will be denoted by sλ+.
We introduce themixed hyperbolic Riesz B-potential Iαs,ν of order α > 0 as a generalized convolution prod-

uct (1.3) with a weighted generalized function s(α−n−|ν|−1)/2+ and f ∈ Sev:

(Iαs,ν f )(t, x) = (s
α−n−|ν|−1

2
+ ∗ f )ν(t, x). (2.2)

The explicit definition of the constant N(α, ν, n) allows to obtain the semigroup property or index low of the
potential (2.2).
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We can rewrite formula (2.2) as

(Iαs,ν f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

s(α−n−|ν|−1)/2+ (τ, y)(νTyx)f(t − τ, x)yν dy) dτ. (2.3)

Theorem 2.1. Let f ∈ Sev and n + |ν| − 1 < α. Then (Iαs,ν f )(t, x) converges absolutely for t ∈ ℝ, x ∈ ℝn+.

Proof. Passing to spherical coordinates, (τ, y) = ρσ, ρ = √τ2 + |y|2, σ = (σ1, . . . , σn+1), in (2.3), we get

(Iαs,ν f )(t, x) =
1

N(α, ν, n)

∞

∫
0

ρα−1 dρ ∫
S+1 (n),|σ|<σ1

(σ21 − |σ
|2)

α−n−|ν|−1
2 (νTρσ



x f )(t − ρσ1, x)(σ)ν dS,

where σ = (σ2, . . . , σn+1), (σ)ν = ∏ni=1 σ
νi
i+1.

Using the fact that νTyx f(t, x) = νTxy f(t, y), property 6 of generalized translation from [4, p. 124], in the
form

|νTyx f(t, x)| ≤ sup
x∈ℝn+
|f(t, x)|,

and taking into account that f ∈ Sev, we obtain

(Iαs,ν f )(t, x) =
1

N(α, ν, n)

∞

∫
0

ρα−1

(1 + ρ2) α+12
dρ ∫

S+1 (n),|σ|<σ1

(σ21 − |σ
|2)

α−n−|ν|−1
2 (σ)ν dS.

It is easy to see that for α > n + |ν| − 1, the integral (Iαs,ν f )(t, x) converges absolutely.

Lemma 2.2. The following representation of the mixed hyperbolic Riesz B-potential is valid:

(Iαs,ν f )(t, x) =
22−α√π

Γ( n+|ν|2 )Γ(
α−n−|ν|+1

2 )Γ(
α
2 )

∞

∫
0

(
τ

∫
0

(Mν
r )x f(t − τ, x)(τ2 − r2)

α−n−|ν|−1
2 rn+|ν|−1 dr) dτ, (2.4)

where Mν
r is the transmutation operator (1.4).

Proof. We have

(Iαs,ν f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

s
α−n−|ν|−1

2
+ (τ, y)(νTyx)f(t − τ, x)yν dy) dτ

=
1

N(α, ν, n)

∞

∫
0

dτ ∫
|y|2<τ2

(τ2 − |y|2)
α−n−|ν|−1

2 (νTyx)f(t − τ, x)yν dy

= {y = rθ} = 1
N(α, ν, n)

∞

∫
0

dτ
τ

∫
0

(τ2 − r2)
α−n−|ν|−1

2 rn+|ν|−1 dr ∫
S+1 (n)

(νTrθx )f(t − τ, x)θν dS.

Using the transmutation operator (1.4), we obtain (2.4).

Example. Let f(t, x) = λ(t)jν(x; b), b ∈ ℝn+. Using the formula (see [5])

Mν
r jν(x; b) = jν(x; b)j n+|ν|2 −1

(r|b|),

we obtain

(Iαs,ν f )(t, x) =
22−α√π jν(x; b)

Γ( n+|ν|2 )Γ(
α−n−|ν|+1

2 )Γ(
α
2 )

∞

∫
0

λ(t − τ) dτ(
τ

∫
0

j n+|ν|
2 −1
(r|b|)(τ2 − r2)

α−n−|ν|−1
2 rn+|ν|−1 dr)

=
2
n+|ν|
2 +1−α√π jν(x; b)

|b|
n+|ν|
2 −1Γ( α−n−|ν|+12 )Γ(

α
2 )

∞

∫
0

λ(t − τ) dτ(
τ

∫
0

J n+|ν|
2 −1
(r|b|)(τ2 − r2)

α−n−|ν|−1
2 r

n+|ν|
2 dr).
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Using [7, formula (2.12.4.6)] in the form
a

∫
0

xν+1(a2 − x2)β−1Jν(cx)dx =
2β−1aβ+ν

cβ
Γ(β)Jβ+ν(ac), a, Re β > 0, Re ν > −1,

we get
τ

∫
0

J n+|ν|
2 −1
(r|b|)(τ2 − r2)

α−n−|ν|−1
2 r

n+|ν|
2 dr = 2

α−n−|ν|−1
2 τ α−1

2

|b|
α−n−|ν|+1

2
Γ(α − n − |ν| + 12 )J α−1

2
(τ|b|)

and

Iαs,νλ(t)jν(x; b) =
√π jν(x; b)
(2|b|) α−12 Γ( α2 )

∞

∫
0

λ(t − τ)τ
α−1
2 J α−1

2
(|b|τ) dτ.

If we take λ(t) = θ(t), where θ is the Heaviside step function, for t > 0, we get

Iαs,νθ(t)jν(x; b) =
√π jν(x; b)
(2|b|) α−12 Γ( α2 )

t

∫
0

τ
α−1
2 J α−1

2
(|b|τ) dτ =

√πtαjν(x; b)
2α 1F2(

α
2 ;
α + 1
2 , α + 22 ;− |b|

2t2

4 ).

Assuming λ(t) = θ(t)tβ−1, β > 0, and using [7, formula (2.12.3.1)] in the form
a

∫
0

xα−1(a − x)β−1Jν(cx) dx

= aα+β+ν−1( c2)
ν Γ(β)Γ(α + ν)
Γ(ν + 1)Γ(α + β + ν)2F3(

α + ν
2 , α + ν + 12 ; ν + 1, α + β + ν2 , α + β + ν + 12 ;−a

2c2

4 ),

where a, Re β, Re(α + ν) > 0, we get

Iαs,νθ(t)tβ−1jν(x; b) =
√π jν(x; b)
(2|b|) α−12 Γ( α2 )

t

∫
0

(t − τ)β−1τ
α−1
2 J α−1

2
(|b|τ) dτ

=
√π jν(x; b)
(2|b|) α−12 Γ( α2 )

⋅ tα+β−1( |b|2 )
α−1
2 Γ(β)Γ(α)
Γ( α+12 )Γ(α + β)

× 2F3(
α
2 ,
α + 1
2 ; α + 12 , α + β2 , α + β + 12 ;− t

2|b|2

4 )

=
√πΓ(β)Γ(α)tα+β−1jν(x; b)
2α−1Γ( α2 )Γ(

α+1
2 )Γ(α + β)

1F2(
α
2 ;
α + β
2 , α + β + 12 ;− t

2|b|2

4 ).

Theorem 2.3. Let n + |ν| − 1 < α < n + |ν| + 1, 1 ≤ p < n+|ν|+1α . For the estimate

‖Iαs,ν f ‖q,ν ≤ M‖f ‖p,ν , f ∈ Sev, (2.5)

to be valid, it is necessary and sufficient that q = (n+|ν|+1)pn+|ν|+1−αp . The constant M does not depend on f .

Remark. By virtue of (2.5), there is a unique extension of Iαs,ν, to all Lνp for 1 < p <
n+|ν|+1

α , preserving bound-
edness when n + |ν| − 1 < α < n + |ν|. It follows that this extension is represented by the integral in (2.3), due
to its absolute convergence. The boundedness of Iαs,ν was proved in [14].

Theorem 2.4. For f ∈ Sev, the Fourier–Bessel transform of the mixed hyperbolic Riesz potential Iαs,ν f is defined
by

Fν[Iαs,ν f ](τ, ξ ) = q|τ2 − |ξ |2|−
α
2 ⋅ Fν[f(t, x)](τ, ξ ), (2.6)

where

q =
{{{
{{{
{

1, |ξ |2 ≥ τ2,
e− απ2 i , |ξ |2 < τ2, τ ≥ 0,
e απ

2 i , |ξ |2 < τ2, τ < 0.

Theorem 2.4 was proved in [14].
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2.2 Semigroup properties of the mixed hyperbolic Riesz B-potential

In this subsection we prove semigroup properties of the mixed hyperbolic Riesz B-potential and obtain for-
mulas for ( ∂2∂t2 − ∆ν)

k Iα+2ks,ν f and Iα+2ks,ν ( ∂
2

∂t2 − ∆ν)
k, where k ∈ ℕ.

Theorem 2.5. The mixed hyperbolic Riesz potential for f ∈ Sev satisfies

Iβs,ν Iαs,ν f = I
α+β
s,ν f, n + |ν| − 1 < α, n + |ν| − 1 < β. (2.7)

Proof. Consider first ΦV , where V = {τ ∈ ℝ, ξ ∈ ℝn+ : τ2 − |ξ |2 = 0}. Using (2.6), we obtain

Fν[I
β
s,ν Iαs,ν f ](τ, ξ ) = qβ|τ2 − |ξ |2|−

β
2 ⋅ Fν[Iαs,ν f(t, x)](τ, ξ ) = qαqβ|τ2 − |ξ |2|−

α+β
2 ⋅ Fν[f(t, x)](τ, ξ ),

where

qα =
{{{
{{{
{

1, |ξ |2 ≥ τ2,
e− απ2 i , |ξ |2 < τ2, τ ≥ 0,
e απ

2 i , |ξ |2 < τ2, τ < 0,
qβ =
{{{
{{{
{

1, |ξ |2 ≥ τ2,
e−

βπ
2 i , |ξ |2 < τ2, τ ≥ 0,

e
βπ
2 i , |ξ |2 < τ2, τ < 0.

(2.8)

We have
Fν[I

β
s,ν Iαs,ν f ](τ, ξ ) = qα+β|τ2 − |ξ |2|−

α+β
2 ⋅ Fν[f(t, x)](τ, ξ ) = Fν[I

α+β
s,ν f ](τ, ξ ),

since from (2.8) it is clear that qαqβ = qα+β. Applying the inverse Fourier–Bessel transform,we get (2.7). Since
Φν,V is dense in Sev, we get the statement of the theorem.

Theorem 2.6. For f ∈ Sev, 1 < p < n+|ν|+1α , n + |ν| − 1 < α and k ∈ ℕ, the following formula is valid:

(
∂2

∂t2
− ∆ν)

k
Iα+2ks,ν f = Iαs,ν f. (2.9)

Proof. Using the property of generalized translation in the form (see [4])

∫
ℝn+

νTyx f(x)g(y)yν dy = ∫
ℝn+

f(y)νTyxg(x)yν dy

and [3, formula (1.8.3)] in the form νiTyixi (Bνi )xi = (Bνi )
νi
xiT

yi
xi , we obtain

(
∂2

∂t2
− ∆ν)

k
(Iα+2ks,ν f )(t, x) =

∞

∫
−∞

( ∫
ℝn+

(νTyx)(
∂2

∂t2
− (∆ν)x)

k
s
α−n−|ν|−1

2 +k
+ (t − τ, x)f(τ, y)yν dy) dτ.

Since

(
∂2

∂t2
− (∆ν)x)

k
(t2 − |x2)

α−n−|ν|−1
2 +k = 22k

Γ( α−n−|ν|+12 + k)
Γ( α−n−|ν|+12 )

Γ( α2 + k)
Γ( α2 )
(t2 − |x|2)

α−n−|ν|−1
2

and

22k
Γ( α−n−|ν|+12 + k)
Γ( α−n−|ν|+12 )

Γ( α2 + k)
Γ( α2 )
⋅

1
N(α + 2k, ν, n) =

1
N(α, ν, n) ,

we get

(
∂2

∂t2
− ∆ν)

k
(Iα+2ks,ν f )(t, x) =

∞

∫
−∞

( ∫
ℝn+

(νTyx)s
α−n−|ν|−1

2
+ (t − τ, x)f(τ, y)yν dy) dτ

=
∞

∫
−∞

( ∫
ℝn+

s
α−n−|ν|−1

2
+ (τ, x)(νTyx)f(t − τ, y)yν dy) dτ

= (Iαs,ν f )(t, x).

This completes the proof
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Theorem 2.7. For f ∈ Sev, 1 < p < n+|ν|+1α , n + |ν| − 1 < α and k ∈ ℕ, the formula

Iα+2ks,ν (
∂2

∂t2
− ∆ν)

k
f = Iαs,ν f (2.10)

is valid if the function f = f(t, x) is such that

∂m f
∂tm
t=0,x=0

= 0, ∂m f
∂xmi

t=0,x=0
= 0 for all m = 0, . . . , 2k. (2.11)

Proof. Using [3, formula (1.8.3)] in the form νiTyixi (Bνi )xi = (Bνi )
νi
xiT

yi
xi , integrating byparts and applying (2.11),

we obtain

(Iα+2ks,ν )(
∂2

∂t2
− ∆ν)

k
f(t, x) =

∞

∫
−∞

( ∫
ℝn+

(νTyx)(
∂2

∂t2
− (∆ν)x)

k
s
α−n−|ν|−1

2 +k
+ (t − τ, x)f(τ, y)yν dy) dτ

= (Iαs,ν)f(t, x).

The proof is complete.

If an analytic continuation of Iαs,ν for the values 0 < α exists and for this analytic continuation it is true that
limα→0(Iαs,νu)(t, x) = u(t, x), then from formulas (2.9) and (2.10), it follows that mixed hyperbolic Riesz B-
potentials can be used for finding solutions to iterated nonhomogeneous Euler–Poisson–Darboux equations

(
∂2

∂t2
− ∆ν)

k
u(t, x) = f(t, x), (2.12)

under conditions (2.11). Namely, applying formally Iαs,ν to (2.12), we get

(Iαs,νu)(t, x) = (Iα+2ks,ν f )(t, x).

Furthermore, passing to the limit as α → 0, formally, we obtain the solution to the problem in the form
u(t, x) = (I2ks,ν f )(t, x). However, the integral Iαs,ν f converges absolutely only for α > n + |ν| − 1 (see Theo-
rem 2.1), therefore it is necessary to construct an analytic continuation of these operators by extending the
range of order α.

3 Analytic continuation of mixed hyperbolic Riesz B-potentials
Here first we write a convenient representation for Iαs,ν, and then, using this representation, we obtain an
analytic continuation of Iαs,ν.

Lemma 3.1. For n + |ν| − 1 < α, the following representation of Iαs,ν is valid:

(Iαs,ν f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

τα−n−|ν|

√|y|2 + τ2

ν

Tyx f (t −√|y|2 + τ2, x)yν dy) dτ. (3.1)

Proof. We have

(Iαs,ν f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

s
α−n−|ν|−1

2
+ (τ, y)(νTyx)f(t − τ, x)yν dy) dτ

=
∞

∫
0

dτ( ∫
{|y|2<τ2}+

(τ2 − |y|2)
α−n−|ν|−1

2 (νTyx)f(t − τ, x)yν dy)
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= C(ν)
∞

∫
0

dτ ∫
{|y|2<τ2}+

(τ2 − |y|2)
α−n−|ν|−1

2 yν dy

×
π

∫
0

⋅ ⋅ ⋅
π

∫
0

f(t − τ,√(y1 cosφ1 + x1)2 + y21 sin
2 φ1, . . . ,√(yn cosφn + xn)2 + y2n sin2 φn)

×
n
∏
i=1

sinνi−1 φi dφi .

Introducing the new variables

z1 = y1 cosφ1, z2 = y1 sinφ1, . . . , z2n−1 = yn cosφn , z2n = yn sinφn , 0 ≤ φi ≤ π, i = 1, . . . , n, (3.2)

we obtain

(Iαs,ν f )(t, x) = C(ν)
∞

∫
0

dτ ∫
{|z|2<τ2}+

(τ2 − |z|2)
α−n−|ν|−1

2

× f(t − τ,√(z1 + x1)2 + z22, . . . ,√(z2n−1 + xn)2 + z
2
2n)

n
∏
i=1
zνi−12i dz,

where
{|z|2 < τ2}+ = {z2i−1 ∈ ℝ, z2i ∈ ℝ+, i = 1, . . . , n − 1 : |z|2 < τ2}.

Changing variables by using the formula (z2i−1 + xi+1)→ z2i−1, i = 1, . . . , n, and using the designation

|z̃| = √(z1 − x1)2 + z22 + ⋅ ⋅ ⋅ + (z2n−1 − xn)2 + z
2
2n ,

we can write

(Iαs,ν f )(t, x) = C(ν)
∞

∫
0

dτ ∫
{|z̃|2<τ2}+

(τ2 − |z̃|2)
α−n−|ν|−1

2 f(t − τ,√z21 + z
2
2, . . . ,√z

2
2n−1 + z

2
2n)

n
∏
i=1
zνi−12i dz.

Let us consider the part of the sphere |z̃|2 + ξ2 = τ2 in a space of dimension 2n + 1 for points (z1, . . . , z2n , ξ ),
with center at the origin and of radius τ. The projection of this part of the sphere onto the plane ξ = 0 is
|z̃|2 ≤ τ2 and dS = τξ dz, hence the integral can be rewritten in the form

(Iαs,ν f )(t, x) = C(ν)
∞

∫
0

dτ
τ ∫
{|z̃|2+ξ2=τ2}+

ξ α−n−|ν|f(t − τ,√z21 + z
2
2, . . . ,√z

2
2n−1 + z

2
2n)

n
∏
i=1
zνi−12i dS

= C(ν)
∞

∫
0

dτ
τ ∫
{|z|2+ξ2=τ2}+

ξ α−n−|ν|f(t − τ,√(z1 − x1)2 + z22, . . . ,√(z2n−1 − xn)2 + z
2
2n)

n
∏
i=1
zνi−12i dS

= C(ν) ∫
ℝ2n+1+

ξ α−n−|ν|

√|z|2 + ξ2
f(t −√|z|2 + ξ2,√(z1 − x1)2 + z22, . . . ,√(z2n−1 − xn)2 + z

2
2n)

n
∏
i=1
zνi−12i dz dξ.

Returning to the variables y1, . . . , yn, φ1, . . . , φn, by formulas (3.2), we get

(Iαs,ν f )(t, x) = ∫
ℝn+1+

ξ α−n−|ν|

√|y|2 + ξ2
νTyx f(t −√|y|2 + ξ2, x)yν dy dξ.

Renaming the variable ξ through τ, we get (3.1).

Using representation (3.1), we extend Iαs,ν f , f ∈ Sev for values α > n + |ν| − 3.
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Theorem 3.2. For f ∈ Sev, the analytical continuation of Iαs,ν f for n > 2 and α ∈ (n + |ν| − 3, n + |ν| − 1] is given
by the formula

(Iαs,ν f )(t, x) = C(ν) ∫
ℝn+

n
∏
i=1
zνi−12i dz

∞

∫
0

ρα−|ν|

√ρ2 + |z|2
dρ

×
π

∫
0

⋅ ⋅ ⋅
π

∫
0

sinn−2 φ2 ⋅ ⋅ ⋅ sinφn−1 dφ2 ⋅ ⋅ ⋅ dφn−1
2π

∫
0

dφn
π/2

∫
0

cosα−n−|ν| φ1 sinn−1 φ1F dφ1

=
1

n + |ν| − α − 1

π/2

∫
0

cosα−n−|ν|+2 φ1[(n − 2) sinn−3 φ1F + sinn−2 φ1G(ρ, φ)] dφ1, (3.3)

where z = (z2, . . . , z2n),

F = f(t −√ρ2 + |z|2,√(ρσ1 − x1)2 + z22, . . . ,√(ρσn − xn)2 + z
2
2n),

and

G(ρ, φ) = ρ ⋅ (F2
ρσ2 − x2

√(ρσ2 − x2)2 + z22
cosφ2 + ⋅ ⋅ ⋅ + Fn

ρσn − xn
√(ρσn − xn)2 − z22n

sinφ2 ⋅ ⋅ ⋅ sinφn−1 sinφn).

Proof. Let us consider representation (3.1) of Iαs,ν f , i.e.,

(Iαs,ν f )(t, x) = ∫
ℝn+1+

τα−n−|ν|

√|y|2 + τ2

ν

Tyx f(t −√|y|2 + τ2, x)yν dy dτ

= C(ν) ∫
ℝ2n+1+

ξ α−n−|ν|

√|z|2 + ξ2
f(t −√|z|2 + ξ2,√(z1 − x1)2 + z22, . . . ,√(z2n−1 − xn)2 + z

2
2n)

×
n
∏
i=1
zνi−12i dz dξ.

Passing to spherical coordinates only with respect to the variables ξ , z1, . . . , z2n−1, by the formulas

ξ = ρ cosφ1,
z1 = ρ sinφ1 cosφ2 = ρσ1,
z3 = ρ sinφ1 sinφ2 cosφ3 = ρσ2,

...
z2n−3 = ρ sinφ1 ⋅ ⋅ ⋅ sinφn−1 cosφn = ρσn−1,
z2n−1 = ρ sinφ1 ⋅ ⋅ ⋅ sinφn−1 sinφn = ρσn ,

where ρ = √ξ2 + z21 + ⋅ ⋅ ⋅ + z
2
2n−1 > 0, 0 < φ1 < π/2, 0 < φ2 < π, . . . , 0 < φn−1 < π and 0 < φn < 2π, with

Jacobian
J = ρn sinn−1 φ1 sinn−2 φ2 ⋅ ⋅ ⋅ sinφn−1,

we obtain

(Iαs,ν f )(t, x) = C(ν) ∫
ℝn+

n
∏
i=1
zνi−12i dz

∞

∫
0

ρα−|ν|

√ρ2 + |z|2
dρ

π

∫
0

⋅ ⋅ ⋅
π

∫
0

sinn−2 φ2 ⋅ ⋅ ⋅ sinφn−1 dφ2 ⋅ ⋅ ⋅ dφn−1
2π

∫
0

dφn

×
π/2

∫
0

cosα−n−|ν| φ1 sinn−1 φ1F dφ1, (3.4)
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where

F = f(t −√ρ2 + |z|2,√(ρσ1 − x1)2 + z22, . . . ,√(ρσn − xn)2 + z
2
2n), z = (z2, . . . , z2n).

By integrating the integral
π/2

∫
0

cosα−n−|ν| φ1 sinn−1 φ1Fdφ1

by parts, putting

v = −cos
α−n−|ν|+1 φ1

α − n − |ν| + 1 , dv = cosα−n−|ν| φ1 sinφ1dφ1,

u = sinn−2 φ1F, du = ∂
∂φ1
(sinn−2 φ1F) dφ1 for n > 2, n + |ν| − 1 < α,

we get

π/2

∫
0

cosα−n−|ν| φ1 sinn−1 φ1F dφ1 = −
1

α − n − |ν| + 1

π/2

∫
0

cosα−n−|ν|+1 φ1
∂
∂φ1
(sinn−2 φ1F) dφ1.

The resulting integral converges already for n + |ν| − 3 < α, since

∂
∂φ1
(sinn−2 φ1F) = (n − 2) sinn−3 φ1 cosφ1F + sinn−2 φ1F


φ1

= cosφ1[(n − 2) sinn−3 φ1F + sinn−2 φ1G(ρ, φ)],
Fφ1 = cosφ1G(ρ, φ),

G(ρ, φ) = ρ ⋅ (F2
ρσ2 − x2

√(ρσ2 − x2)2 + z22
cosφ2 + ⋅ ⋅ ⋅ + Fn

ρσn − xn
√(ρσn − xn)2 − z22n

sinφ2 ⋅ ⋅ ⋅ sinφn−1 sinφn)

and
π/2

∫
0

cosα−n−|ν| φ1 sinn−1 φ1Fdφ1

=
1

n + |ν| − α − 1

π/2

∫
0

cosα−n−|ν|+2 φ1[(n − 2) sinn−3 φ1F + sinn−2 φ1G(ρ, φ)] dφ1.

Substituting the resulting integral into (3.4), we obtain the formula for Iαs,ν f , for α > n + |ν| − 3.

Remark. Further integration by parts of the integral (3.3) with respect to φ1 will allow us to construct an
analytic continuation for α ∈ (n + |ν| − 5, n + |ν| − 3] etc. The cases n = 1 and n = 2 are treated similarly.

4 Image spaces for a mixed hyperbolic Riesz B-potentials
In this section we first give theorems related to the inversion of the operator Iαs,ν, and then, by using these
theorems, we describe the space of images for mixed hyperbolic Riesz B-potentials.

As for the inversion of potential (2.2), an approach based on the idea of approximative inverse operators
was used in [6]. This method gives an inverse operator as a limit of regularized operators. Namely, taking into
account formula (2.6), we will construct the inverse operator for potential (2.2) in the form

(Iαs,ν)−1f = limε→0(F
−1
ν (q|τ2 − |ξ |2|

α
2 e−ε|τ|−ε|ξ |) ∗ f)

ν
,

where the limit is understood in the norm Lνp or almost everywhere.

Brought to you by | University of Exeter
Authenticated

Download Date | 1/27/20 4:15 AM



182 | I. P. Polovinkin et al., Space of images of the mixed Riesz hyperbolic B-potential

Let
gα,ν,ε(t, x) = F−1ν (q−1|τ2 − |ξ |2|

α
2 e−ε|τ|−ε|ξ |)(t, x).

Then

((Iαs,ν)−1ε f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

(νTyx)gα,ν,ε(t − τ, x) ⋅ f(τ, y)yν dy) dτ.

Now we introduce the homogenizing kernel Nν(t, x, ε), which is defined as follows:

Nν(t, x, ε) =
C(n, ν, ε)

(t2 + ε2)(|x|2 + ε2)
n+|ν|
2
,

where x = (x1, . . . , xn)ℝn+, t ∈ ℝ, ε > 0, and

C(n, ν, ε) =
2nε2Γ( n+1+|ν|2 )

π 3
2 ∏ni=1 Γ(

νi+1
2 )

.

We give some properties for the function Nν(t, x, ε), proved in [12] for a more general case.

Theorem 4.1. The homogenizing kernel Nν(t, x, ε) has the properties
(i) Fν[Nν(t, x, ε)](ξ ) = e−ετ−ε|ξ |,
(ii) ∫∞−∞(∫ℝn+ Nν(t, x, ε)x

ν dx) dt = ∫∞−∞(∫ℝn+ Nν(t, x, 1)x
ν dx) dt = 1,

(iii) Nν(t, x, ε) ∈ Lνp, 1 ≤ p ≤∞.

Theorem 4.2. Let f ∈ Lνp and

(Nν,ε f )(τ, y) =
∞

∫
−∞

( ∫
ℝn+

Nν(t, x, ε)T
y
x f(τ − t, x)xν dx) dt.

Then
lim
ε→0
(Nν,ε f )(τ, y) = f(τ, y) a.e.

Theorem 4.3. Let n + |ν| − 1 < α < n + 1 + |ν|, 1 < p < n+1+|ν|α , with the additional restriction

p < 2(n + 1 + |ν|)(n + |ν|)
n + |ν| + 3α(n + |ν|) when n + |ν| − 1 < α < n + |ν| and n is odd.

Then
((Iαs,ν)−1ε Iαs,ν f )(t, x) = (Nν,ε f )(t, x), f(x) ∈ Lνp ,

where
(Iαs,ν)−1ε f = (F−1ν (q|τ2 − |ξ |2|

α
2 e−ε|τ|−ε|ξ |) ∗ f )ν .

Theorem 4.4. Let n + |ν| − 1 < α < n + 1 + |ν|, 1 < p < n+1+|ν|α , with the additional restriction

p < 2(n + 1 + |ν|)(n + |ν|)
n + 1 + |ν| + 2α(n + |ν|) when n + |ν| − 1 < α < n + |ν| and n is odd.

Then
((Iαs,ν)−1Iαs,ν f )(t, x) = f(t, x), f(t, x) ∈ Lνp ,

where
(Iαs,ν)−1f = limε→0(I

α
s,ν)
−1
ε f.

Theorems 4.3–4.4 were proved in [13].
Let Iαs,ν(Lνp) be the images of potentials (2.3), i.e.,

Iαs,ν(Lνp) = {f(t, x) : f(t, x) = (Iαs,νφ)(t, x), φ(t, x) ∈ Lνp},

1 < p < n+1+|ν|α , n + |ν| − 1 < α < n + |ν| + 1. Assume

‖f ‖Iαs,ν(Lpν) = ‖φ‖p,ν ,

where (Iαs,νφ)(t, x) = f(t, x).
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Theorem 4.5. Let n + |ν| − 1 < α < n + 1 + |ν|, 1 < p < n+1+|ν|α , with the additional restriction

p < 2(n + 1 + |ν|)(n + |ν|)
n + 1 + |ν| + 2α(n + |ν|) when n + |ν| − 1 < α < n + |ν| and n + |ν| is odd.

Then, in order that f ∈ Iαs,ν(Lνp), it is necessary and sufficient that f ∈ Lνr , r =
(n+1+|ν|)p
n+1+|ν|−αp and the limit

lim
ε→0
(Iαs,ν)−1ε f = (Iαs,ν)−1f

exists in the Lνp-sense. Whence
‖f ‖Iαs,ν(Lpν) = ‖(I

α
s,ν)
−1f ‖p,ν . (4.1)

Proof. The necessity follows from Theorems 2.3 and 4.4.
Let us show sufficiency. We should demonstrate that for almost all t ∈ ℝ, x ∈ ℝn+, we have

f(t, x) = (Iαs,ν(Iαs,ν)−1f )(t, x). (4.2)

From (4.2) will follow that f ∈ Iαs,ν(Lνp) and (4.1). Let us establish equality (4.2) first in the sense of ΦV ,
where V = {τ ∈ ℝ, ξ ∈ ℝn+ : τ2 − |ξ |2 = 0}, and then we will proceed to the equality almost everywhere. For
any ω(t, x) ∈

∘
C∞ev , we choose a sequence ωN(t, x) ∈ ΦV approximating ω(t, x) by norm in Lνr , r

 = r
r−1 . Then

(Iαs,ν(Iαs,ν)−1f, ωN)ν = ((I
α
s,ν)
−1f, Iαs,νωN)ν ,

where

(Iαs,ν f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

s
α−n−|ν|−1

2
+ (τ, y)(νTyx)f(t − τ, x)yν dy) dτ

and

sλ(t, x) =
{
{
{

(t2−|x|2)λ
N(α,ν,n) when t2 ≥ |x|2 and t ≤ 0,
0 when t2 < |x|2 or t > 0.

We obtain

((Iαs,ν)−1f, I
α
s,νωN)ν = ( limε→0(I

α
s,ν,ε)
−1f, Iαs,νωN)ν = limε→0((I

α
s,ν,ε)
−1f, Iαs,νωN)ν

= lim
ε→0
((f, (Iαs,ν,ε)−1I

α
s,νωN)ν = limε→0(f, NεωN)ν = limε→0(Nε f, ωN)ν ,

where

(Iαs,ν,ε)−1f )(t, x) =
∞

∫
−∞

( ∫
ℝn+

(νTyx)gα,ν,ε(τ − t, x) ⋅ f(τ, y)yν dy) dτ.

Taking into account that limε→0(Nν,ε f )(τ, y) = f(τ, y) in Lνp (see Theorem 4.2), we obtain

(Iαs,ν(Iαs,ν)−1f, ωN)ν = (f, ωN)ν , ωN(t, x) ∈ ΦV .

Passing to the limit as N tends to∞ in the last equality, we obtain

(Iαs,ν(Iαs,ν)−1f, ω)ν = (f, ω)ν for all ω ∈
∘
C∞ev ,

whence (4.2) follows.
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