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Abstract. The microstructure and mechanical properties of a Cu-0.25%Mg alloy subjected to 

either equal channel angular pressing (ECAP) or combined cold working, including ECAP 

followed by rolling and then drawing at room temperature, were investigated. ECAP led to the 

formation of strain-induced boundaries and the development of ultrafine equiaxed grains with 

an average size of about 0.6 μm after 4 passes. The microstructure after the combined cold 

working included fibrous grains elongated in the rolling/drawing direction with a sharp texture 

containing <001> and <111> fibers. The transversal grain size after combined cold working to a 

total strain of 5.7 achieved 0.43 μm. The yield strength and ultimate tensile strength after ECAP 

to a total strain of 9.6 were 570 and 600 MPa; whereas those after combined cold working to a 

total strain of 8.7 were 745 and 780 MPa, respectively. The reason of the difference in 

mechanical properties was discussed. 

1.  Introduction 

Cu-Mg alloys are widely used materials for electrical application due to their high electrical 

conductivity and significant work hardening [1-2]. Adaptation of severe plastic deformation (SPD) 

techniques as appropriate treatment can improve the combination of strength and electrical conductivity 

[3-5]. SPD techniques, for example, equal channel angular pressing (ECAP), high pressure torsion, 

multiple forging, etc. lead to an increase in the dislocation density, the formation of new strain-induced 

grain and subgrain boundaries [6-7]. The grain refinement and high dislocation density caused by SPD 

should improve strength without reduction of electrical conductivity in Cu-Mg alloys. Therefore, the 

combination of the SPD technique with common deformation methods such as rolling or drawing could 

be of practical significance and deserves special scientific investigation. The aim of the present work is 

to study the microstructure and mechanical properties of a Cu-Mg alloy after ECAP or combined cold 

working including ECAP followed by cold rolling and cold drawing.  

 

2.  Experiment 

A Cu-0.25%Mg alloy was investigated. Original ingots were forged at 800 °C to a total strain of 1.4 

and rolled at 450 °C to a total strain of 1. Then, a part of the samples was subjected to ECAP at room 

temperature to 1, 2, 4 and 8 passes via route BC with an intersection angle of the matrix channels 90°. 
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The total strain after 1 ECAP pass was about 1.2. The other  part of the samples was cold worked by 1 

pass of ECAP followed by cold rolling (CR) to a total strain of 1.5 and then cold drawing (CD) to total 

strains of 1.5-5.8.  

Microstructure investigations were carried out using a Nova NanoSEM 450 scanning electron 

microscope equipped with an electron backscattered diffraction (EBSD) device. The samples for EBSD 

analysis were electro-polished in 25% HNO3 and 75% CH3OH electrolyte at a temperature of -20 °C 

and a voltage of 10 V using a Tenupol 5 equipment. The average grain and subgrain size, fraction of 

high-angle boundaries (HAB), ultrafine grained structure (grain size below 2 micron), average 

misorientation angle, dislocation density, Kernel average misorientation (for scan step of 200 nm) were 

calculated using OIM Software. The mechanical properties were studied using an Instron 5882 machine 

with specimens having the following relationship between the gauge length l vs cross-section area F: 

l=5.65F0.5. The initial strain rate was 2x10-3 c-1.  

3.  Results and discussion 

Microstructure evolution 

The original microstructure of the copper alloy after forging at 800 °C and rolling at 450 C consisted 

of equiaxed grains with a size of about 3.3 μm and numerous annealing twins. The HAB fraction was 

about 0.32. 1 pass of ECAP at room temperature led to the formation of new strain induced low-angle 

boundaries (LAB) and to the elongation of initial grains (Figure 1). Naew ultrafine equiaxed grains 

appeared, forming chains along initial grain boundaries. Further ECAP resulted in transformation of 

LAB into HAB and promoted the development of an ultrafine grained microstructure. A homogeneous 

microstructure with a large HAB fraction and a crystallite size of about 0.5 μm was formed after 4 ECAP 

passes. The Taylor factor distribution was characterized by two maximums, i.e., relatively small 

maximum for 2.5 and huge one for 3.3, which did not change significantly with increasing the number 

of ECAP passes. 

 
 

Figure 1. Microstructure evolution during 1 (a), 2 (b) and 4 (c) ECAP passes and combined cold 

working by 1 pass of ECAP with cold rolling (CR) to total strain of 1.5 (d) and cold drawing (CD) 

to total strains of 1.5 (e) and 3 (f) of the Cu-Mg alloy. Black and white lines represent HAB and 
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LAB, respectively. Colors indicate the crystallographic direction along the drawing direction (DD) 

or transversal direction (TD). 

Cold rolling after 1 ECAP pass lengthened the grains along the rolling direction and flattened them 

in the normal one. Further cold drawing was accompanied by a decrease in the transversal grain size and 

an increase in the HAB fraction. A sharp crystallographic texture contained <001> and <111> fibers 

was observed. A fibrous microstructure with a transversal grain size of about 0.3 μm was formed after 

cold drawing to a strain of 3.0. Distribution of Taylor factor after cold rolling had a huge maximum for 

3.2-3.5, which increased with drawing. Bimodal distribution of Taylor factor with maximums at 2.4-2.5 

and 3.6 was observed after drawing to a strain of 3.0. Grains with strong fibers of <001> and <111> 

corresponded to Taylor factors of 2.4-2.5 and 3.6, respectively. 

 

 

Plastic deformation refined the microstructure (Figure 2). The difference between grain size and 

subgrain size decreased with strain. The grain and subgrain sizes were almost the same regardless of the 

deformation methods after total strains of about 4. The average grain size after ECAP (0.6 μm) was 

larger than after drawing (0.43 μm). Probably this difference was associated with the smaller total strain 

for ECAP as compared to combined cold working. The HAB fraction decreased after 1 ECAP pass to 

0.21 and then increased with ECAP to 0.5-0.66. Drawing promoted a quick increase in the HAB fraction 

and average boundary misorientation angles. The dislocation density increased with strain during ECAP 

from 7x1014 m-2 to 11x1014 m-2 and almost unchanged during drawing (7-9)x1014 m-2). The average 

Taylor factor increased after 1-2 ECAP passes to 3.1 and then decreased to 3.05 as in the initial state 

after 4 ECAP passes. The combined cold working was accompanied by a gradual increase in Taylor 

factor with straining that attained 3.26 after a total strain of 5.7. 

Mechanical properties after deformation 

The microstructure refinement improved substantially the strength properties. After cold deformation 

the yield strength (YS) tended to approach the ultimate tensile strength (UTS) irrespective of the 

processing technique. ECAP was accompanied by gradual strengthening of about 20-30 MPa per unit 

strain, while drawing provided strengthening of about 40-60 MPa for the same strain increment. So, the 

difference in UTS after a total strain of about 8 for ECAP and drawing was almost 180 MPa. The 

maximum YS/UTS of ECAPed and drawn samples achieved 570/600 MPa and 745/780 MPa, 

respectively. Elongation dramatically decreased with strain to 1% and 5 % for drawing and ECAP, 

respectively.  

The difference in strength after ECAP and drawing could be attributed to different deformation 

microstructures. A fibrous microstructure with small transverse grain size and sharp texture provided 

high strength. The strength () should correlate with the grain size (D) according to the Hall-Petch 

relationship [8]: 

 
Figure 2. Effect of strain on the average (Dav) and transversal (Dtr) grain size, subgrain size (d) (a), 

fraction of HAB (FHAB), average boundary misorientation angle (θav) (b), dislocation density (ρ) and 

Taylor factor (M) (c) of the Cu-Mg alloy. 



ASYS 2020
IOP Conf. Series: Materials Science and Engineering 1014  (2021) 012030

IOP Publishing
doi:10.1088/1757-899X/1014/1/012030

4

 

 

 

 

 

 

5.0

0

−+= Dky
 
(1) 

where σ0 and ky are constants of material. The texture should lead to strengthening due to the change 

of the Taylor factor (M) in dislocation strengthening by the Taylor equation [9]: 
5.0

0  MGb+=
 (2) 

where G is Gibson modules, b is Burger vector, ρ is dislocation density. The grain reorientation with 

<111> along the drawing direction corresponded to an increase in the Taylor factor and was 

accompanied by drastic strengthening. Figure 3 shows that both grain refinement and texture 

amplification resulted in high strength of the Cu-Mg alloy after drawing. 

 

 
Figure 3. Effect of total strain on the yield strength (YS), ultimate tensile strength (UTS) (a), and 

elongation (δ) (b) of the Cu-Mg alloys along with relationships between UTS and D or M (c). 
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