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Ab str a c t . This paper considers the Schwarz problem th a t consists in finding a J-analytic function 
by its real part on the boundary. The Fredholm solvability of this problem is proved. The integral 
representation of J-analytic functions by Cauchy-type integrals w ith real density is obtained.

The classical Schwarz problem [1] consists in finding an analytic function by its real part given on 
the boundary of the dom ain considered. In this work, we consider an analogous problem for Douglis 
analytic functions. The la tte r are solutions <fi = , <fii) of the first-order elliptic system

J g C m  (1)
oy ox

where the eigenvalues v  of the m atrix  J  lie in the upper half-plane Imz/ >  0. This system was 
considered in [2] in detail, and its solutions are briefly called the J-analy tic  functions or the Douglis 
analytic functions.

Let a dom ain D  be bounded by a sm ooth contour T composed of connected components T i , . . . ,  Ym . 
The dom ain D  can be finite, as well as infinite; we distinguish these cases by using the characteristic 
k d  th a t assumes the values 1 and 0. For k d  =  1, we agree to  assume th a t contour Ym contains all 
other components Tj. As was mentioned above, the Schwarz problem (Problem  S  in short) is defined 
by the boundary condition

_  R e0+ =  /
and is considered in the Holder classes C ^(D ),  0 <  n  < 1, and H ardy classes H P(D), 1 <  p <  oo, which 
are introduced in [3]. For k d  =  0, the definition of these classes includes the condition <j>(oo) =  0.

Let the contour T be positively oriented w ith respect to  D  (i.e., the dom ain remains to  the left with 
respect to  this orientation), and let e{t) = e\(t)  = ie2 (t) be the unit tangent vector to  the contour at 
the point t  directed according to  this orientation. By definition, T e  0 if e € C ^+£{T) w ith a 
certain e >  0. To Problem  S, we put in correspondence the adjoint Problem  S,  which is considered 
in the corresponding adjoint classes C ^(D ) ,H q(D), 1/q =  1 — 1/p, for J T-analytic functions and is 
defined by the boundary condition

Re e j t  <j)+ = / ,  
where ejT =  e\ ■ 1 +  e2 J T ■ By using the bilinear form

( f ,9 )  = J  f(t)g(t)\d t\ ,  
r

where \dt\ is the arc length element, the connection between these problems is the identity

(</>+, e jT ^ + ) =  0.

Problem  S' is a particular case of the R iem ann-H ilbert problem considered in [4], and the results 
corresponding to  it can be form ulated as follows.

T h eorem  1. Under the condition T e  C l '^+0, Problem S  is Fredholm in each of the classes C ^(D )  
and H P(D), and its index is In d S  =  1(2md — m). The inhomogeneous Problem S  is solvable i f f  the 
orthogonality conditions ( / ,  ImejT( />+ ) =  0 to all solutions <f) of the homogeneous adjoint problem hold.



Moreover, any solution (f) £ H p of Problem S  with right-hand side f  £ C^(T) belongs to the class 
C ^(D ). Analogously, f  £  C 1,M(r )  implies (f) £ C 1,/J,(D). In  particular, solutions of the homogeneous 
Problem S  belong to the class C 1,tJ,+0(D). Analogous assertions also hold for Problem S  with the only 
difference being that their indices are opposite.

According to  this theorem, the finite-dimensional kernel of the Schwarz problem is contained in the 
class C 1,tJ/+0(D). This kernel contains functions whose real parts are identically equal to  zero. The 
following lemma shows th a t the functions of such a type are polynomials.

L e m m a  1. I f  the real part o f  a J-analytic function (f) is identically equal to zero in a neighborhood of
a certain point z q , then (j) is a polynomial.

Proof. Let the above neighborhood be a disk Do . In C l, let us consider the sequence of subspaces 
Xq  5  X \  5  • • •, which is inductively defined by the conditions Xo =  Cl and X k  = {rj £ X k - i ,  Re Jr? = 
0 } .  Let r] £  X k  and u(z) =  Re(z — z q ) j T}. Then

d^u
——r— -— =  Re J sri =  0, 0 < s < k,
d x k~sd y s 1 ~  ~

so th a t the function u (x ,y )  is a polynomial of degree k. Since this function has a zero of order k  at
the point zo, it follows th a t u = 0. Therefore, Re(z — zo)jr] = 0 for r] £ X ^ .

Now let us write the Taylor series expansion of the function <f):
o°

~  Zo) jr?fc’ %  =  ^
k=0

By assum ption,

Re
CO

E
k=0

(z -  z0)jVk = 0

in the disk Do. Sequentially differentiating this relation and passing to  the limit as z —> zo, we conclude 
th a t r]k £ X k  for all k. The converse is also true: if series (2) uniformly converges in the disk D  and 
the coefficients %  £ X k  for all k, then R e ^  =  0. Therefore, it remains to  verify th a t starting  from a 
certain  number, all X k  = 0.

Assume the contrary, so th a t all X k  contain a certain subspace X .  Then the class of functions (2) 
with coefficients rjk £ X  is infinite-dimensional, which contradicts the fact th a t the whole kernel of 
Problem  S  in the disk Do is finite-dimensional. □

The proof of Theorem  1 is based on the reduction of the problem to an equivalent system of singular 
integral equations on the boundary T by using the representation of the function (f) by the Cauchy-type 
integrals

(Ij<p)(z) = ^ ~  j \ t -  z ) jd t j ip ( t) , z £ D,
r

with real density (p = (if i , . . . ,  <pi). More precisely, the following theorem , which was proved in [5], 
holds.

T h eorem  2. Let the domain D  be bounded by the contour T £ C 1,tJ,+0, and let the matrix J  be 
triangular. Then any function (f) £ H P(D), 1 <  p < oo, is uniquely represented in the form

<p =  iLp +  i^, £  £  x D R l,

where the real l-vector-valued function (p £ LP(T) satisfies the conditions

/  Lp(t)\dt\ = 0 ,  1 < j  < m  — Mr,-



I f  4> £ C ^(D ) in this representation, then <p £ C^fT). Analogously, (f) £ C 1,̂ (D) implies <p £
C ^ r ) .

In a num ber of cases, it is desirable to  have an analogous result not imposing the additional tr i
angular condition on the m atrix  J . The general situation of such a type is considered in [4] for the 
Cauchy-type integrals with density of the form G ~ l <p, where the vector-valued function tp is real and 
the m atrix  function G £  C'M+0( r )  is invertible. Modifying the proof of the corresponding result of [4] 
on the representation of J-analy tic  functions by integrals of this type applied to  the case G =  1, we 
obtain the following result.

Consider an open set D' =  C \  D  consisting of domains D'j, 1 <  j  < rri. Let us agree to  choose the 
enum eration of these components in such a way th a t dD'- = Tj. If the dom ain D  is finite, then  by the 
above convention, the contour T m contains Tj, j  < m,  and is the boundary of the infinite dom ain D'm . 
If the dom ain D  is infinite, then  all components D'j are of equal rights. Let R^fT) denote the class 
of real-valued /-vector-valued functions th a t are constant on T. The notation C l (D') has the same 
meaning for complex /-vector-valued functions th a t are constant in domains D'-.

In the open set D ' , let us consider the Schwarz problem S '  defined by the boundary condition 
ReV’-  =  / .  Here, we take into account th a t the contour T is negatively oriented w ith respect to  D', 
and in accordance with this, the boundary value of the function ip defined in D' is denoted by . By 
Theorem  1, any solution of this problem with right-hand side /  £ R^fT) belongs to  the class C 1,,x+0 
(more precisely, to  the class C 1,tl+Q{D'-)) in each connected component D'j, 1 <  j  < m, of the open 
set D '. Obviously, any function (f) £  C l (D') such th a t it vanishes in the dom ain D'm for k d  = 1 is a 
solution of this problem. Therefore, the space

Y  = {ImV’“ , R e ^ “ G Rz(r)}

contains the subspace
i ' ( r )  =  { 3 G R l( r ) ,  x Dg{r m) =  0}

of dimension l (m  — Hp).

T h eorem  3. Let the domain D  be bounded by the contour T £ c 1,lx+0, and let the finite-dimensional 
space Y  consist of functions  Im -0- , where tp £ C ^ (D r) and Re-0-  £  Rz( r ) .  Then there exists a 
finite-dimensional space X  C C 1,̂ +0(D) of dimension

d im X  =  dim Y  — l(m  — k d ) (3)

such that any function (f) £ H P(D), 1 <  p < oo, is uniquely represented in the form

(/> =  /<£> + (/>o +  i£, <fio £ X ,  £ £ xjjM.1 ,

where the real-valued l-vector-valued function p  £ LP(T) satisfies the conditions

(<P,ff) = 0, g £ Y .  (4)

I f  £ C ^(D ) in this representation, then p  £ Analogously, (f) £ C l '^(D) implies p  £

Let us show th a t Theorem  2 is a particular case of Theorem  3. As was noted above, Y  5  Mz(r) , 
and, therefore, Y  can be decomposed into the direct sum Yq © R z( r ) .  Then, in accordance w ith (3), 
the dimensions of the spaces X  and Yq coincide, and the orthogonality conditions (4) can be rew ritten 
in the form

J  <p(t)g(t)\dt\ = 0, g £ Yq\ J  <p(t)\dt\ = 0, 1 < j < m - x D. 

r  r,-
It remains to  verify th a t in the case where the m atrix  J  is triangular, the subspace Yo = 0. This fact 
follows from the following lemma.



L em m a 2. Let the domain D  (finite or infinite) be bounded by a simple Lyapunov contour T, and 
let the matrix J  be triangular. Let a J-analytic function (f) e  C^ ( D)  be such that R e^+ is constant 
on T. Then (f) is constant in the domain D, and, in particular, it is equal to 0 in the case where the 
domain D  is infinite.

We first perform the proof in the scalar case 1 = 1, when J  = v  e  C and <fi is a solution of the 
equation

Under the affine transform ation z = x  + iy —> x  + vy, th is equation passes to  the Cauchy-Riem ann 
equation, which defines analytic functions, so th a t the assertion of the lemma is obvious in this case.

Let us tu rn  to  the general case I > 1. For definiteness, let the m atrix  J  be upper-triangular, i.e., 
its entries Jo- =  0 for i > k. Then, in the coordinate writing, system  (1) takes the form

dtftj dtftk , ,
=  l ^ k ^ L

y k=j
In particular, the la tte r equation contains only the function and coincides with (5) for v  =  Ju.  

Note th a t the spectrum  a( J)  of the triangular m atrix  J  consists of its diagonal entries. By w hat was 
already proved, the la tte r equation of this system implies th a t the function is constant. Hence the 
(I — l ) th  equation of this system passes to  (5) w ith respect to  and v  =  Jl  — 1, 1 — 1. Therefore, for 
the same reasons, the function <^_i is constant. Repeating these argum ents, as a result, we conclude 
th a t all functions (/>& are constant.

A ck n ow led gm en t. This work was supported by the Russian Foundation for Basic Research and 
Chinese S tate Foundation for N atural Sciences, G rant No. 08-01-92208-SFNS.

R E F E R E N C E S

1. N. I. Muskhelishvili, Singular Integral Equations [in Russian], Nauka, Moscow (1968).
2. A. P. Soldatov, “H yperanalytic functions and their applications,” Sovrem. Mat. Prilozh., 15, 

142-199 (2004).
3. A. P. Soldatov, “H ardy space of solutions of first-order elliptic system s,” Dokl. Ross. Akad. Nauk, 

416, No. 1, 26-30 (2007).
4. A. P. Soldatov, “Integral representation of Douglis analytic functions,” Vestn. SamGlJ. Est- 

Nauch. Ser., No. 8/1(67), 225-234 (2008).
5. A. P. Soldatov, “Function theory m ethod in boundary-value problems on the plane. I. Smooth 

case,” Izv. Akad. Nauk SSSR, Ser. Mat., 55, No. 5, 1070-1100 (1991).

A. P. Soldatov
Belgorod State University, Belgorod, Russia 
E-mail: soldatov@bsu.edu.ru, soldatov48@mail.ru

mailto:soldatov@bsu.edu.ru
mailto:soldatov48@mail.ru

