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Abstract. Samples of independent identically distributed random non-negative values
r̃1, ..., r̃N with a finite size N ≥ 2 are studied. It is posed the problem to find the sufficient
conditions for their common probability distribution Q(x) = Pr{r̃j < x}, j = 1 ÷ N

which guarantee the unimodality of the probability distributions F
(+)
N (x) = Pr{r̃+ < x} and

F
(−)
N (x) = Pr{r̃− < x} which correspond to the maximum r̃+ = max{r̃j ; j = 1 ÷ N} and to

the minimum r̃− = max{r̃j ; j = 1 ÷ N} of the sample, respectively. It is proved that if the
distribution Q is determined by a continuously differentiable Erlang probability density q of an
arbitrary order n ∈ N then distributions F

(±)
N are unimodal.

1. Introduction
Historically, the theory of probability distributions of extremes of random variables samples and
the theory of the probability distributions of extreme values of trajectories of stationary random
processes which is connected with it have arisen on the basis of the necessity to find some answers
of quite practical questions. Now, this theory has extracted into a separate direction of research
in the probability theory. In the framework of this scientific direction, the theory of probability
distributions of extremes of independent random variables sequences occupies a special place [1].
One can be seen a detailed overview of the current state of this theory in [2].

Many authors became to interest the problems of mathematical modeling associated with the
study of statistics of extremes of sequences of independent random variables at the beginning of
the 20th century in connection with the request for this kind of research of the rapidly developing
industry in European countries (see [3–7]). The statistical characteristics of extremes of
independent random variables were studied in these works, where some probability distributions
were chosen for them which were already widely used in probability theory. In contrary to such
investigations, in the works of M. Frechet [8] and R. A. Fisher with L. Tippett [9], apparently,
the problem of calculating of probability distribution of extreme values has been posed and has
been solved for the first time on the basis of a priori reasonable assumptions from the point of
view of applications.

In the first of these works, the distribution of the maximum of a sequence of independent
identically distributed random variables was investigated, and in the second one, it was studied
the problem of the probability distribution of the minimum of such a random positive variables
set. Significantly, the latter work arose as a result of Leonard Tippett’s statistical analysis of
thread breakage in textile production. Thus, already at the initial stage of development of the
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theory, it has been appeared the fact that the theory of extreme values of independent random
variables is closely related to the solution of problems about the reliability of certain technical
elements (see [10, 11]).

The limit theorems for probability distributions of extreme values are the main object of
study in the theory of probability distributions of extremes of sequences {r̃1, r̃2, ..., r̃N} of
random variables. Here and later, we note random variables by means of the tilde sign.Limiting
distributions can be observed statistically due to appropriate circumstances of the experiment
organization. The works [12–14] are classical of this direction.In these works it has been given
the final solution of the questions which have been put at the first stage of theory development.
Their results are summarized in the monograph [15]. Now, the subject of research related to
the limiting behavior of probability distributions of extremums of random variables sequences
is currently far from exhausted, that one may see due to the emergence of some works in this
direction (see, for example, [16–21]).

Note that the application of limit theorems is useful in practice in the case when there is a
minimal a priori information about the probability distribution Q of a typical random variable
of the sample. In this case, the appropriate processing of a large number N of statistical data
allows to establish some, quite rough, characteristics of the distribution Q.

At the same time, in some problems of mathematical modeling, when constructing the
corresponding stochastic models is done, it is possible a situation when the model formulated in
terms of the extremes of the sample of random variables is such that one cannot consider it as
large. Therefore, the use of limit theorems for the analysis of this model becomes inadequate.
But, it is possible to choose the distribution Q in essentially their more wide class when the
model constructing. In this case we must base only on some a priori considerations regarding
to nature of the random variable. Such a situation takes place , for example, in problems of
equilibrium statistical physics. It becomes possible to do the mathematical analysis of such a
model and the obtained results can have predictive cense. The adequacy verification of such
models is connected with the solution of inverse problem of the distribution theory of extremes of
random variables sequences for a small number of N components. One the basis of such solutions
it becomes possible to restore the distribution Q using the empirical distribution function FN ,
found by processing a large number of series of similar experiments connected with samples of
small size.

On the basis of solutions of inverse problems it is possible to study the relationship of
qualitative properties of probability distributions Q(x) = Pr{r̃j < x}, j = 1÷N with qualitative

properties of probability distributions F
(±)
N (x) = Pr{r̃± < x} where r̃+ = max{r̃j ; j = 1 ÷N},

r̃− = min{r̃j ; j = 1 ÷ N} which are revealed at the analysis of statistical data and which
constitute a significant predictive value.

One of the most important qualitative properties of one-dimensional probability distributions,
which is quite easily identified during statistical data processing, is the number of their modes.
In particular, the distributions used in mathematical statistics (e.g. Pearson distributions [22])
are unimodal. The unimodality problem of one-dimensional probability distributions was given
much attention in the scientific literature of probability theory (see, for example, [23]). From
the physical point of view, the violation of the distribution unimodality means the presence of
some specific physical mechanism that leads to the appearance of this effect. Its manifestation
at statistical data processing can be quite an unexpected surprise and, therefore, it is subject
to theoretical understanding. Therefore, the mathematical interest consists of determining such
cases when, despite the unimodality of the ”origin” distribution Q, the probability distributions
of random variables r̃± are still unimodal.

This paper is devoted to proving the unimodality of distributions F
(±)
N (x) in the case when

Q(x) is represented by the Erlang distribution of arbitrary order. In spite of the fact that this
two-parameter class of distributions is rather special, the solution of such a problem nevertheless
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seems actual, since there are no proofs of statements of any general character in scientific

literature which concern the unimodality of functions F
(±)
N (x) at finite N . Moreover, there

are no effective methods for studying the unimodality of such functions that do not use the
explicit form of the distribution Q(x). This is due to the fact that methods for analyzing the
unimodality of one-dimensional distributions are usually focused on the distribution functions
of sums of independent random variables, which are obtained by convolution of distributions. In
this regard, specific effective methods related to the theory of characteristic functions are used
to analyze the unimodality of such distributions. These methods are based on the representation
of the characteristic function of each studied distribution as a product of suitable characteristic
functions. For example, it is a method based on the concept of strictly unimodal distribution [28]
(see also, [23, P. 127]) and also it is a method based on the Khinchin criterion (see [23, P. 118,
29]).

The problem solved in this paper was initiated by connection with identifying the physical

reasons which that lead to the loss of unimodality of the distribution function F
(+)
N (x) that

arises in the study of the probabilistic model of the electrical strength of polymer enamel-lacquer
coatings [30]. In this model, the random variables r̃j , j = 1 ÷ N represent some random sizes
of air inclusions in the material. These inclusions arise as a result of the technological process
of creating a coating. In this model, the local electrical strength is a decreasing function of the
maximum r̃+ = max{r̃j ; j = 1÷N} of random radii of air bubbles.

Thus, it is necessary to study the probability distribution of a random variable r̃+ when r̃j ,
j = 1 ÷N are statistically independent and equivalently distributed random positive variables
with a distribution function Q(x). In this case, the sample size N ≥ 2. It is equal to the number
of air inclusions per 1cm2 of the coverage area. Due to the relatively small value of the number
N, it is not possible to use limit theorems for the probability distribution of sample maxima at
the analysis of the model. In conditions of great uncertainty of choice of the function Q(x) for
the purpose of mathematical modeling, it is necessary to study the function FN (x)(+) at very
broad assumptions about the probability distribution of the random size of air pores.

2. Problem statement
The probability distribution G(x) = Pr{ξ̃ < x} of a random variable ξ̃ is named the unimodal
one (see, for example, [23, P. 118]), if there is at least one such number a ∈ R that G(x) is
concave at x > a and it is convex at x < a where the value x = a is called the top of the
distribution G(x).

If G(x) is an absolutely continuous function, that is, it has almost everywhere on R the
density g(x) = dG(x)/dx, then the unimodality of such a function consists of the existence such
a number a that g(x) does not increase at x > a and it does not decrease at x < a.

Let Q(x), x > 0 be the common probability distribution of random variables r̃1, ..., r̃N and let

the random variables r̃1, ..., r̃N are statistically independent and nonnegative, then F
(+)
N (x) =

N∏
j=1

Pr{r̃j < x} = [Q(x)]N . We will assume that Q(x) has the density q(x) = dQ(x)/dx > 0 on

[0,∞). In this case, the distribution function F
(+)
N (x) also has the density f

(+)
N (x) at x > 0,

which is determined by the following formula

f
(+)
N (x) = Nq(x)QN−1(x) = Nq(x)

( ∫ x

0
q(y)dy

)N−1
, N ≥ 2 . (1)

In general case, the inverse problem in the distribution theory of the sampling maximum of
independent equally distributed random variables consists of the calculation of the distribution

density q on the basis of the integral equation (1), considering the density f
(+)
N as the given
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one. The latter is found as a result of processing of experimental data. The solution of this

equation is easily found on the basis of the formula F
(+)
N (x) = [Q(x)]N , since it follows by means

of differentiation that Q(x) = [F
(+)
N ]1/N and, therefore,

q(x) =
1

N
f
(+)
N (x)[F

(+)
N ]1/N−1(x) =

1

N
f
(+)
N (x)

( ∫ x

0
f
(+)
N (y)dy

)(1−N)/N
.

For statistically independent nonnegative equally distributed random variables ⟨rj ; j = 1÷N⟩
the distribution function F

(−)
N of the minimum r̃− of their values is given by the formula

F
(−)
N (x) =

N∏
j=1

Pr{r̃j ≥ x} = 1− [1−Q(x)]N .

Just as above, in the case when the probability distribution Q has density q, the function

F
(−)
N also has density f

(−)
N which is given by the formula

f
(−)
N (x) = Nq(x)[1−Q(x)]N−1(x) = Nq(x)

( ∫ ∞

x
q(y)dy

)N−1
, N ≥ 2. (2)

Then, the inverse problem in the distribution theory of the sampling minimum of independent
equally distributed random variables, in general case, consists of the calculation of the

distribution density q on the basis of the integral equation (2) with the given density f
(−)
N .

The solution of this equation is written on the basis of the same argues as above. From the

formula F
(−)
N (x) = 1− [1−Q(x)]N it follows that Q(x) = 1− [1− F

(−)
N (x)]1/N , and so we have

q(x) =
1

N
f
(−)
N (x)

( ∫ ∞

x
f
(−)
N (y)dy

)(1−N)/N
.

Basing on integral equations (1), (2), the unimodality problem of distribution functions F (±)

is to find effective sufficient conditions for the density q that would guarantee the presence of

a unique top a of each densities f
(±)
N . In the special case, when solving such problems, we can

assume that the density q corresponds to the unimodal probability distribution.
Further, we will assume that the density q is continuously differentiable on (0,∞). Then,

according to (1), the density f
(+)
N (x) is also continuously differentiable and its derivative is given

by the formula

ḟ
(+)
N (x) = NQN−2(x)(q̇(x)Q(x) + (N − 1)q2(x)) , N ≥ 2.

In this case, the problem of determining the number of maxima at the density f
(+)
N is reduced

to the definition of the number of values x > 0, which are solutions of the equation

q̇(x)

x∫
0

q(y)dy + (N − 1)q2(x) = 0 , x > 0 , (3)

which defines all extremum points of the density f
(+)
N excepting may be the point x = 0.

From this equation, it immediately follows that the extremum points of the density f
(+)
N are on

the decreasing interval of the density q.
Similarly, under the assumption of continuous differentiability of the density q on (0,∞), the

density f
(−)
N (x) is also continuously differentiable according to (2). Its derivative is given by the

formula
ḟ
(−)
N (x) = N [1−Q(x)]N−2(q̇(x)(1−Q(x))− (N − 1)q2(x)) , N ≥ 2.
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Then, the problem of determining the number of maxima of the density f
(−)
N reduces to

determining the number of values x > 0 which satisfy the equation

q̇(x)

∞∫
x

q(y)dy − (N − 1)q2(x) = 0 , x > 0 , x > 0 . (4)

Thus, in contrast with the density f
(+)
N , the extremum point of the density f

(−)
N are on the

interval where the density q increases.
At the end of the section, we prove the following simple statement.
Theorem 1. Equations (3) and (4) are equivalent to the corresponding equations which are

obtained to each of them by replacing the density q(x) to the density µq(µx) where µ > 0 is an
arbitrary positive value.

Proof. The derivative q̇(x) is changed to µ2q̇(µx) when replacing q(x) to µq(µx) and hence
the equations (3), (4) transform to the following ones

µ3q̇(µx) ·
x∫

0

q(µy)dy ± (N − 1)µ2q2(µx) = 0

or, after replacing the integration variable µy ⇒ y, we have

q̇(µx) ·
µx∫
0

q(y)dy + (N − 1)q2(µx) = 0 .

The change µx ⇒ x in these equations translates them into the original equations (3) and
(4). End of proof.

In the following sections, we establish the unimodality of densities f
(±)
N in the case when q

belongs to the class of the Erlang distribution densities, that is, it is represented by the formula

q(x) =
λnxn

n!
exp(−λx) ,

where the number n ∈ N+ is the distribution order, and λ > 0 is a physically dimensional
parameter that determines the statistical characteristics of random variables r̃j , j = 1 ÷ N .
The above-proved statement allows us to solve this problem only for the particular value λ = 1,
replacing the density q by the density λ−1q(x/λ) in the equations (3), (6). Thus, we put further
that

q(x) =
xn

n!
exp(−x) . (5)

It is easily verified that the Erlang distribution is unimodal. Since, q̇(x) = (nx− 1)q(x)/x, then
there is unique top with a = 1/n at n ∈ N, and the top is in x = 0 at n = 0.

3. The unimodality of the function F
(+)
N

Let us note that it was made the division by the expression (
∫ x
0 q(y)dy)N−2 at the obtaining

of the equation (3). This expression is zero at x = 0 if N > 2. For this reason, the equation

may not contain a zero solution that corresponds to minimum of the density f
(+)
N (x) minimum.

Consider first the following case which is a special one according to the above.
Example 1. Let n = 0, that is q(x) = e−x, q̇(x) = −e−x. It leads to the equality

(1− e−x) = (N − 1)e−x ,
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after the substitution the explicit form of the density q(x) into the equation (2). Such an
equality is only possible when 1 = Ne−x, that is, there is a unique solution a = lnN which is

the maximum point. The point of the minimum x = 0 of the density f
(+)
0 dropped out of our

consideration. In the general case, it is fair

Theorem 2. Probability distribution F
(+)
N (x) = Pr{r̃+ < x} = QN (x) of the

sample maximum is unimodal at any N > 2 in the case when the sample consists of
N independent equally distributed and nonnegative variables r̃1, ..., r̃N and their common
probability distribution Q(x), x > 0 is determined by the Erlang density with arbitrary λ > 0
and n ∈ N.

Proof. It is sufficient to give a proof for λ = 1. We assume that N ≥ 2 and n ≥ 2, since its
proof for n = 0 is given by the example 1 considered above.

Note that Q(0) = 0 for n > 1, and therefore it should be the equality q(0) = 0 , i.e. the
equation (3) always has a solution x = 0. At this x- point, the minimum of the nonnegative
density fN (x) is realized. Thus, it is necessary to find positive solutions of the equation (3)
which must exist in view of nonnegativity fN (x). The smallest of these solutions obviously
corresponds to the maximum of the density fN (x).

For the density (5) it is fulfilled

x∫
0

q(y)dy =
1

(n− 1)!

x∫
0

yne−ydy = 1− e−x
n∑

l=0

xl

l!
.

Substitution this expression into the equation (3) gives

xn−1(n− x)e−xn!
(
1− e−x

n∑
l=0

xl

l!

)
+ (N − 1)x2ne−2x = 0

or, after obvious algebraic transformations without taking into account the root x = 0 of the
equation,

(n− x)
(
1− e−x

n∑
l=0

xl

l!

)
+ (N − 1)

xn+1

n!
e−x = 0 .

Separating the terms which are proportional e−x, we write down this equation in the following
form

(n− x) = e−x
(
n+

n−1∑
l=1

xl

(l − 1)!

[n
l
− 1

]
− Nxn+1

n!

)
. (6)

Let us introduce the function g(x) = e−xP (x) where the polynomial P (x) is represented by the
formula

P (x) = n+
n−1∑
l=1

xl

(l − 1)!

[n
l
− 1

]
− Nxn+1

n!
(7)

at n ≥ 2. Thus, the solutions of the equation (6) are determined by the intersection points of
schedules of the functions n− x and g(x). The graphs obviously are intersected at x = 0, since
g(0) = n. According to the above, it is necessary to find positive solutions. Further,

ġ(x) = e−x(Ṗ (x)− P (x))

where

Ṗ (x) =
n−1∑
l=1

lxl−1

(l − 1)!

[n
l
− 1

]
− (n+ 1)Nxn

n!
.
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Due to this formula and the formula (7)

Ṗ (x)− P (x) =

= −1 +
n−2∑
l=1

xl

(l − 1)!

( l + 1

l

[ n

l + 1
− 1

]
−

[n
l
− 1

])
− xn−1

(n− 1)!
+

Nxn

n!
(x− n− 1) =

= −1−
n−1∑
l=1

xl

l!
+

Nxn

n!
(x− n− 1) . (8)

Therefore, ġ(0) = Ṗ (0) − P (0) = −1, that is the schedule g(x) touches the graph n − x at the
point x = 0. The second derivative of the function g(x) is equal

g̈(x) = e−x(P (x)− 2Ṗ (x) + P̈ (x)) . (9)

Since, on the basis of (8),

P̈ (x)− Ṗ (x) = −1−
n−2∑
l=1

xl

l!
+

Nxn−1

n!
(n+ 1)(x− n) ,

then

P (x)− 2Ṗ (x) + P̈ (x) =
{
− 1−

n−2∑
l=1

xl

l!
+

Nxn−1

n!
(n+ 1)(x− n)

}
−

−
{
− 1−

n−1∑
l=1

xl

l!
+

Nxn

n!
(x− n− 1)

}
=

=
xn−1

(n− 1)!
− Nxn−1

n!

[
x2 − 2x(n+ 1) + n(n+ 1)

]
. (10)

It follows that g̈(0) = 0 at the point x = 0. However, g̈(x) < 0 in any sufficiently small
neighborhood of this point, that is the function g(x) is concave in this neighborhood. In addition,
g(x) has one inflection point x∗ > 0 where g̈(x∗) = 0, since it satisfies the quadratic equation

x2 − 2x(n+ 1) + n(n+ 1)− n

N
= 0 ,

which has one positive solution x∗ = n+ 1 +
√
n+ 1 + n/N .

According to (9), (10), the function g is concave at x ∈ (0, x∗). By virtue of its due to
concavity and its touching with a straight line n−x at the point x = 0, the inequality g(x) < n−x
should take place everywhere on the semi-interval (0, x∗], particularly it is fulfilled g(x∗) < n−x∗.
Therefore, the equation g(x) = n−x has no roots on the semi-interval (0, x∗]. We prove that the
equation has exactly one root x+ on the semi-interval [x∗∞) where the function g(x) is convex.

Firstly, because of the convexity g(x), the schedule of the function g has no more than two
intersections with the line n−x, that is, the equation g(x) = n−x has no more than two roots.
Secondly, in the case of no roots or the presence of exactly two roots, in view of the inequality
g(x∗) < n− x∗, such an inequality g(x) < n− x must be satisfied for all sufficiently large values
of x. However, the function g(x) tends to zero and n − x tends to −∞ when x → ∞. Hence,
there is the single root x+ of the equation g(x) = n− x.

The unique positive root x+ of the equation n− x = g(x) corresponds to the position of the
unique maximum of the density q. End of proof.
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4. Unimodality of the function F
(−)
N

First of all, we note that the density f
(−)
N has the view f

(−)
N (x) = λNe−λN for exponential

density q(x) = λe−λx (the case n = 0) according to (2). Hence, in this case, there is only one
top a = 0.

In general case, i.e. for an arbitrary n ∈ N, the unimodality of the distribution F
(−)
N is

established by Theorem 3, formulated below. To prove it, we need the following lemmas.
Lemma 1. Let the functions f(x) and g(x) satisfy the conditions f(a) ≤ g(a) and

f ′(a) ≤ g′(a) on the segment [a, b] and the equation f ′(x) = g′(x) has no more than one
solution on [a, b]. Then the equation f(x) = g(x) has no more than one solution on [a, b].

Proof. Let there be at least two solutions x1 and x2, x1 < x2 where x1 ∈ [a, b] is the minimum
among all possible solutions on the segment [a, b], and x2 is the solution following after it in
ascending order. Then, the equalities f(x1) = g(x1) and f ′(x1) ≥ g′(x1) take place. In view of
the fact that f(a) ≤ g(a), the unique solution of the equation f ′(x) = g′(x) is in the segment
[a, x1]. (This does not exclude the case of x1 = a.) Therefore, due to following equalities

f(x2) = f(x1) +

x2∫
x1

f ′(y)dy ; g(x1) +

x2∫
x1

g′(y)dy = g(x2) ,

f(x1) = g(x1) and due to the inequality f ′(y) > g′(y) when y ∈ (x1, x2), the inequality
f(x2) > g(x2) holds. The resulting contradiction proves the statement of the theorem. End
of proof.

From the proved lemma it follows
Lemma 2. If the polynomial takes the form

Pn+1(x) = xn+1 −
n∑

l=0

alx
l , al ≥ 0

and a0 > 0, then it has exactly one positive root.
Proof. We differentiate m times the polynomial. In a result, we have

P
(m)
n+1(x) =

(n+ 1)!

(n+ 1−m)!
xn+1−m −m!am ,

where m = max{l ∈ {0, 1, ..., n} ; al > 0}. Then P
(m)
n+1(0) = −m!am < 0, since n + 1 − m > 0.

We put g′(x) = m!am with g(x) = m!amx+ (m− 1)!am−1 and

f ′(x) =
(n+ 1)!

(n+ 1−m)!
xn+1−m , f(x) =

(n+ 1)!

(n+ 2−m)!
xn+2−m

so that f(0) = 0 ≤ am−1 = g(0). In this case, the equation f ′(x) = g′(x) which has the form

(n+ 1)!

(n+ 1−m)!
xn+1−m = amm! .

It is obviously has no more one root in the segment [0, b] at any value b. Then the equation
f(x) = g(x) has no more than one root in [0, b].

Next, putting

fk(x) =
d

dxm−k
xn+1 =

(n+ 1)!

(n+ 1 + k −m)!
xn+1+k−m ,
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gk(x) =
d

dxm−k

∑
l=0

alx
l =

m∑
l=m−k

l!

(l −m+ k)!
alx

l−m+k , k = 1÷m,

we argue by induction on k = 1, ...,m.
For each of the values k = 1, ...,m − 1 it is fulfilled fk(0) = 0, gk(0) = am−k ≥ 0, that is

fk(0) ≤ gk(0) and the equalities

dfk+1

dx
= fk ,

dgk+1

dx
= gk

take place.
When k = 1, the equation f1 = g1 has no more than one solution in any segment [0, b],

since f1 = f , g1 = g. Then, assuming that the equation fk = gk at the k-th induction step
has no more than one solution in [0, b], we obtain on the basis of Lemma 1, that the equation
fk+1 = gk+1 has no more than one solution on this segment. Therefore, at the m-th induction
step, we conclude that the equation fm = gm has at most one solution in [0, b].

Since the equations fk = gk present the equalities P
(m−k)
n+1 (x) = 0, then we obtain at k = m

that the equation fm = gm we may rewrite in the form Pn+1(x) = 0. It has no more than one
solution on the segment [0, b] at any b > 0. So as under this sircumstance, it is fulfilled

lim
x→∞

fm(x)

gm(x)
= ∞ ,

then last equation necessarily has a root in [0, b] at all sufficiently large values b > 0. End of
proof.

Now we are able to prove the following statement.

Theorem 3. Probability distribution F
(−)
N (x) = Pr{r̃− < x} = 1 − (1 − Q(x))N of the

sample minimum of N independent identically distributed nonnegative variables r̃1, ..., r̃N with
their common probability distribution Q(x), x > 0 is unimodal at any N ∈ N in the case when
Q(x) is defined by the Erlang density with any λ > 0 and any n ∈ N+.

Proof. By virtue of theorem 1, it is sufficient to give a proof in the case of λ = 1. We assume
that N ≥ 2 and n ∈ N, since in the cases N = 1 and n = 0 the statement is trivial. At n ∈ N
we have q̇(x) = (n− x)q(x)/x,

1

n!

∞∫
x

q(y)dy = e−x
n∑

l=0

xl

l!
.

The use of these expressions results when the equation (6) is converted at x > 0 into the equation

(n− x)e−x
n∑

l=0

xl

l!
= (N − 1)xq(x) .

As a result of obvious algebraic transformations, we obtain

n+
n∑

l=1

n
xl

l!
=

n∑
l=1

xl

(l − 1)!
+N

xn+1

n!
,

g(x) ≡ n+
n−1∑
l=1

xl

(l − 1)!

(n
l
− 1

)
= N

xn+1

n!
≡ f(x) ,

where functions f and g are defined when x > 0. We put Pn(x) = n![f(x) − g(x)]/N . This
polynomial, has the form specified in the condition of Lemma 2. Hence, it has one positive root.
End of proof.
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5. Conclusions
In conclusion, we note that despite the fact that Erlang’s distributions constitute a two-
parameter class of distributions of mathematical statistics and they have applications in various
applications of probability theory, it is desirable to extend the obtained result to a much wider
set of distributions. Its characteristic must be qualitative, rather than purely analytical, and
they could be justified as natural from the point of view of those applications where sample
extremums of independent positive random variables r̃1, ..., r̃N are used and where the the fact
of unimodality of probability distributions r̃± is essential.

6. References
[1] Galambos J, Lechner J and Simiu E 1994 Extreme Value Theory and Applications Proc., Conf. IGaitherburg,

May 1993. (Dordrecht: Kluwer).
[2] Galambos J 1994 The development of the mathematical theory of extremes in the past half century Prob.

theory and its applications 39 234–248.
[3] von Bortkiewicz L 1922 Variationsbreite und mittlerer Fehler Sitzungsberichte der Berliner mathematischen

Gesellschaft 2I 3.
[4] von Bortkiewicz L 1922 Die Variationsbreite beim Gauss’schen Fehlergesetz Nordisk Statistisk Tidskrift

(Stockholm)I 1; II 2–12.
[5] Dodd E L 1923 The greatest and the least variate under general laws of error Transactions of the American

Mathematical Society 25 525.
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