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Abstract. In this paper we consider interpolation problem connected with series by integer
shifts of Gaussians. Known approaches for these problems met numerical difficulties. Due to
it another method is considered based on finite–rank approximations by linear systems. The
main result for this approach is to establish correctness of the finite–rank linear system under
consideration. And the main result of the paper is to prove correctness of the finite–rank linear
system approximation. For that an explicit formula for the main determinant of the linear
system is derived to demonstrate that it is non–zero.

1. Introduction and problem statement
For a long period the main instrument for approximations was based on expansions by complete
orthogonal systems. But nowadays in different fields of mathematics and applications occurred
more and more problems solutions of which needs expansions by incomplete, overdetermined
or non-orthogonal systems. Such problems are widely considered for electric or optic signals,
filtration, holography, tomography and medicine. We have such examples of overdetermined
systems as frames, and non-orthogonal as wavelets, Gabor systems and coherent states,
Rvachev’s systems and so on.

Consider a problem of approximation for arbitrary function defined by its values at integer
points. And stress once more that functions considered are really arbitrary as we work only
with function values at integer points. Let consider approximations by special type series in
integer shifts of Gaussians (quadratic exponents with parameters). This system is incomplete in
standard spaces but all the same very effective. For the history of this class of approximations,
basic results and multiple applications see [3–8].

Exactly we will study the next main
Interpolation problem: consider arbitrary function f(x) defined on the line x ∈ R, and a

parameter σ > 0, which in probabilistic applications means the standard deviation. We seek for
an interpolating function f̃(x) also defined on the line x ∈ R in the form of the series by integer
shifts of Gaussian

f̃ (x) ∼
∞∑

k=−∞
fke

− (x−k)2

2σ2 (1)
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which coincides with f(x) at integer points

f (m) = f̃ (m) , m ∈ Z. (2)

Some approaches to this problem were studied. In [3] the solution is derived with using
special functions, exactly Jacobi theta–functions. But as it was demonstrated in [2–8] in spite
of theoretical value such approach has not computational perspectives as it involves division
on very small denominators which leads to large numerical errors. Another approach based
on discreet Fourier transform (DFT) is effective but for very small range of parameters [8].
To overcome these difficulties in [4] another approach was considered based on a reduction to
finite–rank linear system solution. A serious obstacle for this last approach was that it was
not grounded as a correctness of this method was not established. In this paper we eliminate
this gap by proving that a finite–rank linear system is correctly solved. We prove that in a
direct and clear way by calculating explicitly the main system determinant and show that it is
non–zero. This result is a necessary theoretical ground for a development of numerical methods
and algorithms and also rid of difficulties with special functions and DFT.

2. Reducing to an infinite system of linear equations
Let introduce a convenient notation

e (σ, x, k) = e−
(x−k)2

2σ2 (3)

Solving of the problem formulated is reduced to determination of a sequence of unknown
coefficients fk from (1). For this following the standard way for interpolation problems we need
to find nod functions for every interpolation integer nods x = m, m ∈ Z. For our case we have
to find a single basic node function for the node x = 0 which we will seek in the form

G (σ, x) =
∞∑

k=−∞
gk e(σ, x, k). (4)

We shortly consider steps to derive an infinite linear system for finding coefficients of the
basic node function (4), cf. [2–8].

It follows from (2) that this basic node function satisfies for all m ∈ Z:

G (σ,m) =

∞∑
k=−∞

gk e(σ,m, k) = σm0, (5)

where σm0 is the Kroneker symbol

σm0 =

{
1, m = 0
0, m ̸= 0.

If such a function G (σ, x) obeying a condition (5) is found then it is easy to find a formal solution
of the problem considered. In fact the function

Gl (σ, x) = G (σ, x− l)

is the node function for the node x = l as for all m

Gl (σ,m) = G (σ,m− l) = σml.
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Then one solution of the interpolating problem considered will be a function

f̃ (x) =

∞∑
l=−∞

f (l)Gl (σ, x) , (6)

because for x = m in the sum (6) only one term is non–zero:

f (m)Gm (σ,m) = f (m) · 1 = f (m) .

To move from solution representation (6) to the one we seek in the form (1) do a necessary
substitution. By it we derive using (4):

f̃ (x) =

∞∑
l=−∞

f (l)Gl (σ, x) =

=
∞∑

l=−∞
f (l)G (σ, x− l) =

∞∑
l=−∞

f (l)
∞∑

l=−∞
gk e (σ, x− l, k)

Let introduce a new summation index j = l+ k instead of l = j − k and formally change the
order of summation. We derive

f̃(x) =
∞∑

j=−∞

∞∑
k=−∞

f(j − k)gk e(σ, x− j, k) =

=
∞∑

l=−∞

{
∞∑

l=−∞
f (j − k) gk

}
e (σ, x− j, k) =

∞∑
j=−∞

fj e (σ, x, j) ,

(7)

where coefficients to find are represented in the form (after index change j � k) to agree with
(1)

fk =
∞∑

j=−∞
f (k − j) gj , (8)

and f(m) are values of the given function at integer points, and gj are coefficients of the basic
node function series (4).

Now transform the system of equations:

∞∑
k=−∞

gke (σ,m, k) = σm0, m ∈ Z.

For that let introduce a new variable q = e−
1

2σ2 . And after that we derive

∞∑
k=−∞

gkq
(m−k)2 = σm0, m ∈ Z. (9)

The next important step is to consider and study finite–rank cuts of this infinite system of
equations (9).
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3. Reducing to a finite–rank system of linear equations
As it was considered before the key moment in the interpolation approach is to define the
node function. Now we pass to study finite–rank approximations of the initial problem. These
approximations are naturally finite–rank cuts of infinite system of equations (9). This direct
approach was studied in [4, 5]. Being in some way restrictive this approach allows to avoid
difficulties from other approaches in [2,3,8]. And the most important is that our method allows
to construct effective numerical calculations based on it, cf. [4, 5].

So let us seek for node function (4) G (σ, x) approximations of the form H (σ, x) as finite
sums

H (n, x, σ) =

n∑
k=−n

dk · q(x−k)2 , q = exp

(
− 1

2σ2

)
, 0 < q < 1, (10)

after that an infinite system (9) is reduced to a finite one, and number of equations may be
greater than a number of unknown quantities.

H(n,m, j, σ) = δ0j , j = −m, . . . , 0, . . .m, m ≥ n. (11)

The system of linear equations which follows from conditions (10)–(11) there are 2m + 1
equations and dk, −n ≤ k ≤ n unknown numbers.

Transform the system following from (10)–(11) in the matrix form

A · d = y, (12)

with matrix and vector elements

aij = q(i−j)2 , yj = δ0j , i = −n, . . . , 0, . . . , n, j = −m, . . . , 0, . . . ,m.

For considered for m = n coefficients dk of approximate node function we denote as H(n, x, σ),
and for m > n as H(n,m, x, σ).

Let introduce some notation. Vandermond determinant n × n we denote as W (x1, . . . , xn),
this determinant without line l and column k as Wl, k (x1, . . . , xn). For illustrating further
considerations let use n = 5 as examples of arbitrary dimensions, e.g.

W (x1, x2, x3, x4, x5) =

∣∣∣∣∣∣∣∣∣∣
1 x1 x21 x31 x41
1 x2 x22 x32 x42
1 x3 x23 x33 x43
1 x4 x24 x34 x44
1 x5 x25 x35 x45

∣∣∣∣∣∣∣∣∣∣
,

W3, 2 (x1, x2, x3, x4, x5) =

∣∣∣∣∣∣∣∣
1 x21 x31 x41
1 x22 x32 x42
1 x24 x34 x44
1 x25 x35 x45

∣∣∣∣∣∣∣∣ .
It is known that

Wl, k (x1, . . . , xn) =
∑

xα1xα2 . . . xαn−k
·

∏
n≥i>j≥1, i ̸=l,j ̸=l

(xi − xj) , (13)

with summation by all sets of n− k numbers α1, α2, . . . , αn−k from 1, 2, . . . , n.
We have also to mention that considered problems are deeply connected with the third Jacobi

Theta–function [7]

ϑ3 (z, q) = 1 + 2
∞∑
k=1

qk
2
cos (2kz) ,
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and Jacobi–Poisson transformation formula

+∞∑
k=−∞

e−a(t+πk)2 =
1√
πa

+∞∑
k=−∞

e−
k2

a ei2kt. (14)

For these connections see [3–8].

4. A main case then number of equations equals to a number of unknown
coefficients
4.1. A correct solvability and formula for the determinant for the n× n system
Now the main object of our study is a finite system of linear equations (12) with square matrices.
We use notation introduced in (10)–(12).

Let prove our main result of correctness of system solution for square matrix. From it follows
that the system is always uniquely solved.

Theorem 1. The matrix A for m = n is non–degenerate and its determinant equals to

|A| = q
2n(n+1)(2n+1)

3 ·W
(
q−2n, . . . 1, . . . , q2n

)
. (15)

The proof.

|A| =

∣∣∣∣∣∣∣∣∣∣
1 q q4 q9 q16

q 1 q q4 q9

q4 q 1 q q4

q9 q4 q 1 q
q16 q9 q4 q 1

∣∣∣∣∣∣∣∣∣∣
Elements of this determinant is possible to factorize

aij = q(i−j)2 = qi
2 · q−2ij · qj2 .

Consequently it is possible to factor out from i–th line a value qi
2
and from j–th column — qj

2
.

Repeat this operation for all lines and columns

|A| = q4 · q · 1 · q · q4 ·

∣∣∣∣∣∣∣∣∣∣
q−4 q−3 1 q5 q12

1 q−1 1 q3 q8

q4 q 1 q q4

q8 q3 1 q−1 1
q12 q5 1 q−3 q−4

∣∣∣∣∣∣∣∣∣∣
= q20 ·

∣∣∣∣∣∣∣∣∣∣
q−8 q−4 1 q4 q8

q−4 q−2 1 q2 q4

1 1 1 1 1
q4 q2 1 q−2 q−4

q8 q4 1 q−4 q−8

∣∣∣∣∣∣∣∣∣∣
.

Now elements of intermediate determinant are q−2ij , further factor out from i–th lines
multiplicators q2ni, i = −2n, . . . , 2n with a unit product:

q20 ·

∣∣∣∣∣∣∣∣∣∣
q−8 q−4 1 q4 q8

q−4 q−2 1 q2 q4

1 1 1 1 1
q4 q2 1 q−2 q−4

q8 q4 1 q−4 q−8

∣∣∣∣∣∣∣∣∣∣
= q20 ·

∣∣∣∣∣∣∣∣∣∣
1 q4 q8 q12 q16

1 q2 q4 q6 q8

1 1 1 1 1
1 q−2 q−4 q−6 q−8

1 q−4 q−8 q−12 q−16

∣∣∣∣∣∣∣∣∣∣
=

= q20 ·

∣∣∣∣∣∣∣∣∣∣∣

1 q4
(
q4
)2 (

q4
)3 (

q4
)4

1 q2
(
q2
)2 (

q2
)3 (

q2
)4

1 1 1 1 1

1 q−2
(
q−2
)2 (

q−2
)3 (

q−2
)4

1 q−4
(
q−4
)2 (

q−4
)3 (

q−4
)4

∣∣∣∣∣∣∣∣∣∣∣
.
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In the general case the result is:

detA =

(
n∏

i=−n

qi
2

)2

·

 n∏
j=−n

qj
2

2

·
n∏

i=−n

q2ni ·W
(
q−2n, . . . 1, . . . , q2n

)
=

= q
2n(n+1)(2n+1)

3 ·W
(
q−2n, . . . 1, . . . , q2n

)
= q

2n(n+1)(2n+1)
3 ·

n∏
i,j=−n,i ̸=j

(
q−2i − q−2j

)
.

Now it is obvious that the main system determinant is non–zero due to inequalities under
considered restrictions 0 < q < 1, because of the obvious fact all multipliers in the last formula
for the determinant are non–zeros.

Theorem 1 is completely proved.
Remark. The problem to prove correctness of the finite linear system (12) and so to ground

strictly the method of interpolation by shifted Gaussian was first formulated by L. A. Minin and
S. M. Sitnik. After rather a time on the basis of numerical computations the formula for the
determinant (15) was found by A. S. Timashov. The strict proof was found by S. N. Ushakov.
After that the correctness of the finite linear system (12) was established and it is a basis for
numerical computer methods and algorithms.

4.2. Further properties in case of n× n system: palindromes, symmetry and dimension
reduction
To formulate further results we define the notion of vector palindrome , this notion is connected
with vector components symmetry with respect to its ”middle” components.

Definition. The vector x in n dimensions is called a palindrome if the next relation for its
components is fulfilled

xi = xn+1−i, i = 1, . . . , n.

Theorem 2. Let consider the next linear system of equations

A · x = b, (16)

where A is a non–degenerate matrix n× n and for its elements the next relation is valid

ai,j = an+1−i,n+1−j ∀i, j = 1, . . . , n,

and vector b is a palindrome. Then the system solution x is also a palindrome.
In fact the condition from theorem 2 means that every matrix A line and column are also

palindromes.
The proof.
As the matrix A is non–degenerate then the unique solution x exists. Every i–th system line

may be written as
n∑

j=1

ai,j · xj = bi.

Let us prove that a vector y = (xn, xn−1 . . . , x1) is also a solution to (16), and from it due to
uniqueness property the statement of the theorem 2 follows.

Really for the i–th line

n∑
j=1

ai,j · yj =
n∑

j=1

an+1−i,n+1−j · yj =
n∑

j=1

an+1−i,j · xj = bn+1−i = bi.
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And from it the theorem 2 follows.
Now let us demonstrate the importance of the palindrome property. Using it and symmetry

of the system it is possible to decrease a number of calculations essentially, approximately twice.
It leads to more effective and robust numerical algorithms.

Corollary. For the system (12) the solution is symmetrical, namely dk = d−k.
Really let us note that for the system (12) conditions of the theorem 2 is valid:

aij = q(i−j)2 = q(n+1−i−(n+1−j))2 = an+1−i,n+1−j .

It follows that dk = d−k.
This corollary leads to a very important conclusion. Due to it we can reduce a number of

equations to solve numerically in fact twice, and it also reduce gaps in values of coefficients.
Because of that the numerical difficulties of the problem and computational time are reduced
essentially. It permits to solve twice larger systems for the same time as systems without using
palindrome symmetry.

Another important fact for the system analysis is that we can find coefficients for
approximations of the node function dk explicitly, they are defined by (10) and are solutions to
the system (11)–(12).

Theorem 3 For coefficients dk the next formula is valid:

dk = (−1)kq−k2 Wk, n+1

(
q−2n, . . . , q0, . . . , q2n

)
W (q−2n, . . . , q0, . . . , q2n)

. (17)

The proof.
Really by Cramer’s rule

dk =
∆k

|A|
.

Manipulating with ∆k in the same way as in the proof of the theorem 1 we derive

∆k = (−1)n+1+k+1+nq−k2q
2n(n+1)(2n+1)

3 Wk

(
q−2n, . . . , q0, . . . , q2n

)
,

So

dk = (−1)kq−k2 Wk

(
q−2n, . . . , q0, . . . , q2n

)
W (q−2n, . . . , q0, . . . , q2n)

.

The theorem 3 is proved.
For example let illustrate the determinant formula (17) by determinants 5 × 5 as we do in

this paper for clarity and reader’s convenience.

∆1 =

∣∣∣∣∣∣∣∣∣∣
1 q q4 0 q16

q 1 q 0 q9

q4 q 1 1 q4

q9 q4 q 0 q
q16 q9 q4 0 1

∣∣∣∣∣∣∣∣∣∣
= q20 ·

∣∣∣∣∣∣∣∣∣∣
q−8 q−4 1 0 q8

q−4 q−2 1 0 q4

1 1 1 q−1 1
q4 q2 1 0 q−4

q8 q4 1 0 q−8

∣∣∣∣∣∣∣∣∣∣
=

= q20 · q−1 ·

∣∣∣∣∣∣∣∣∣∣
q−8 q−4 1 0 q8

q−4 q−2 1 0 q4

1 1 1 1 1
q4 q2 1 0 q−4

q8 q4 1 0 q−8

∣∣∣∣∣∣∣∣∣∣
= q20 · q−1 ·

∣∣∣∣∣∣∣∣∣∣
q−8 q−4 1 0 q8

q−4 q−2 1 0 q4

1 1 1 1 1
q4 q2 1 0 q−4

q8 q4 1 0 q−8

∣∣∣∣∣∣∣∣∣∣
=
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= −q20 · q−1 ·

∣∣∣∣∣∣∣∣∣
1 q4

(
q4
)2 (

q4
)4

1 q2
(
q2
)2 (

q2
)4

1 q−2
(
q−2
)2 (

q−2
)4

1 q−4
(
q−4
)2 (

q−4
)4
∣∣∣∣∣∣∣∣∣ .

And finally let us mention that to problems considered in this paper the method of
transmutations may be applied [1, 6]. An idea of applying transmutations is to represent a
set of Gauss functions as transmuted ones from a set of more standard functions, e.g. linear
exponentials. It means that for some transmutation operator T it is valid that

exp(−(x− k)2) = T (exp(−(x− k))), k ∈ Z. (18)

So the series in shifted Gaussians may be transformed to series in shifted linear exponents. Such
transmutation operators T may be found explicitly but are rather complicated.

5. Final conclusions and short paper resume
In this paper we consider interpolation problem connected with series by integer shifts of
Gaussians. Known approaches for these problems met numerical difficulties. Due to it the direct
method is considered based on finite–rank approximations by linear systems. The main result of
the paper (theorem 1) is to prove correctness of the finite–rank linear system approximation. For
that an explicit formula for the main determinant of the linear system is derived to demonstrate
that it is non–zero. More we consider symmetry properties of the system based on the palindrome
notion. It leads to the reduction of the considered system essentially, almost twice in dimension
(theorem 2). And at last we derive an explicit formula for the system solution as a ratio of two
Vandermond determinants (theorem 3).
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