ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«БЕЛГОРОДСКИЙ ГОСУДАРСТВЕННЫЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ»

(НИУ «БелГУ»)

ИНСТИТУТ ИНЖЕНЕРНЫХ ТЕХНОЛОГИЙ И ЕСТЕСТВЕННЫХ НАУК КАФЕДРА ОБЩЕЙ ХИМИИ

СИНТЕЗ ИНДОЛ-3-ИЛ-АМИДИНОВ

Выпускная квалификационная работа обучающегося по направлению подготовки 04.03.01 Химия очной формы обучения, группы 07001417 Сташевич Алексея Андреевича

Научный руководитель: к.х.н., доцент Симаков С. В.

ОГЛАВЛЕНИЕ

ВЕДЕНИЕ	3
1 ЛИТЕРАТУРНЫЙ ОБЗОР	4
1.1 Синтезы амидинов	4
1.2 Синтезы алифатических амидинов	5
1.3 Синтезы ароматических амидинов	7
1.4 Синтезы гетероциклических амидинов	10
1.5 Одностадийный метод синтеза амидинов	21
2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ	24
2.1 Общая методика синтезаиндол-3-карбальдегидов	24
2.1.1 Получение комплекса Вильсмейера	24
2.1.2 Синтез индол-3-карбальдегидов	24
2.2 Общая методика синтеза индол-3-нитрилов	25
2.3 Общая методика синтеза индол-3-иминоэфиров	26
2.4 Общая методика синтеза индол-3-амидинов	27
3 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ	29
ВЫВОДЫ	31
СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ	32

ВЕДЕНИЕ

Соединение содержащие в формуле индольный фрагмент имеют высокую биологическую активность. Они находят своё применение как лекарственные средства, например, диазолин [1], серотонин [2], арбидол [3] и другие. Работы по поиску новых лекарственных препаратов, содержащие индольный фрагмент, продолжаются и в настоящие время. Поэтому актуальным представляется изучение возможных методов синтеза новых индольных производных, как аналогов известных лекарственных средств.

Для синтеза ранее неизвестных производных необходимы синтоны — исходные вещества, имеющие в своей структуре фрагмент индола и какуюлибо легко трансформируемую функциональную группу. Таким синтоном может служить индол-3-ил-амидин.

Амидины предполагается использовать для синтеза разнообразных производных втом числе и гетероциклических.

Поэтому разработка методов синтеза исходных индол-3-амидинов представляется актуальной задачей.

Цель работы – разработка наиболее удобного в синтетическом плане способа получения индол-3-амидинов.

Задачи:

- 1. На основе анализа литературных данных выбрать оптимальный для наших условий способ синтеза индол-3-амидинов.
- 2. Осуществить экспериментальную проверку выбранного метода.
- 3. Осуществить синтезы индол-3-амидинов, содержащие заместители в бензольном фрагменте молекулы индола в необходимых количествах.

1 ЛИТЕРАТУРНЫЙ ОБЗОР

1.1 Синтезы амидинов

Наиболее общий подход к синтезу амидинов (3) — взаимодействие иминосоединений (1) — производных карбоновых кислот, содержащих уходящую группу X, с аминами (2) [4] (рис.1.1.).

Рис.1.1. Общая схема синтеза амидина

где X = Hal (имидоилхлориды)

X = OR (иминоэфиры)

Незамещенные по атомам азота амидины получают общим методом синтеза из нитрилов соответствующего строения [4].

R-CN + EtOH
$$\xrightarrow{\text{HCI}}$$
 R *HCI $\xrightarrow{\text{5a-d}}$ OC₂H₅

NH *HCI $\xrightarrow{\text{NH}_3/\text{C}_2\text{H}_5\text{OH}}$ R *HCI $\xrightarrow{\text{NH}_2}$ R-CN *HCI $\xrightarrow{\text{NH}_2}$

Рис.1.2. Схема синтеза амидинов из нитрилов

гдеR:
$$4a = CH_3$$
 $5a = CH_3$ $6a = CH_3$ $4b = C_6H_5$ $5b = C_6H_5$ $6b = C_6H_5$ $4c = C_6H_4CH_3$ $5c = C_6H_4CH_3$ $6c = C_6H_4CH_3$ $4d = C_6H_4C1$ $5d = C_6H_4C1$ $6d = C_6H_4C1$

Исходные нитрилы (4a-d) растворяют в безводном бензоле, добавляют абсолютный спирт и через реакционную массу при охлаждении пропускают сухой HCl. Полученные иминоэфиры (5a-d) перемешивают со спиртовым

раствором аммиака, после чего растворитель упаривают досуха и получают соответственный амидин (6a-d) (рис.1.2.).

Ароматические амидины, а также N-арилзамещенные амидины гораздо более устойчивы и существуют в свободном состоянии. N-арилзамещенные амидины (9а-е), получают взаимодействием замещенных анилинов (8а-е) с бензонитрилом (7) в присутствии катализатора безводного хлористого алюминия [5] (рис.1.3.).

$$CN$$
 + R NH_2 $AICI_3$ R R R R R R

Рис.1.3. Схема получения N-арилзамещенных амидинов

где
$$R$$
: $8a = H$ $9a = H$
 $8b = Br$ $9b = Br$
 $8c = NO$ $9c = NO$
 $8d = CH_3$ $9d = CH_3$
 $8e = OCH_3$ $9e = OCH_3$

1.2 Синтезы алифатических амидинов

На рис.1.4. представлен вариант синтеза, предложенный В. Доксом [6] и проверенный К. Уитмором [7], в котором сухой хлористый водород пропускают через раствор ацетонитрила (10) в этиловом спирте. Затем к ацетимидоэфиру (11) приливают раствор аммиака в этиловом спирте (не менее 9 весовых процентов аммиака, так как более слабый раствор аммиака приводит к уменьшению выхода) получают ацетамидин (12) [8].

Рис.1.4. Синтез ацетамидина

В работах [9,10,11] описан синтез лекарственного препарата дистамицина А (рис.1.5).

Рис.1.5. Синтез дистамицина А

По данной схеме из 2-(1-метил-4-(1-метил-4-(1-метил-4-нитрофирол-2-карбоксамидо)-пиррол-2-карбоксамидо)-пиррол-2-карбоксамидо)-пропионитрила (13) в две стадии синтезируют дистамицин А (14) [11].

1.3 Синтезы ароматических амидинов

(15) и [11] 3-бром-4-гидроксибензонитрил 1.3-ИЗ дибромпропан (16) в соотношении 2:1, затем после добавления растворов соляной кислоты И аммиака В ЭТИЛОВОМ спирте был получен дибромпропамидин (17) (рис.1.6.).

$$\begin{array}{c} \operatorname{NH_3} / \operatorname{C_2H_5OH} \\ \operatorname{HCI} / \operatorname{C_2H_5OH} \\ \operatorname{NH_2} \end{array} \\ \begin{array}{c} \operatorname{Br} \\ \operatorname{O} \\ \operatorname{NH_2} \end{array}$$

Рис.1.6. Схема получения дибромпропамидина

На рисунке 1.7. представлена схема получения лекарственного препарата проксазола, где α-этилфенил-ацетамидин (20) выступает в виде промежуточного соединения. Для синтеза α-этилфенила-цетамидина (20) использовали α-этилфенил-ацетонитрил (18), который превращали соответствующий имидоэфир (19).Из полученного α-этилфенилацетамидина (20) взаимодействием c гидроксиламином получают α-(21),3этилфенил-ацетамидоксим после чего реакцией хлорпропионилхлоридом в присутствии диэтиламина получают проксазол (22)[11,12].

Рис.1.7. Схема получения проксазола

Для синтеза биологически активных химических соединений, которые могут найти применение в фармации и в медицине, был получен N-4-нитрофенилбензамидин (25) (рис.1.8.).

$$CN$$
 $+$
 O_2N
 $AICI_3$
 NH_2
 NO_2
 NO_2

Рис.1.8. Синтез N-4-нитрофенилбензамидина

Синтез был осуществлён взаимодействием бензонитрила (23) с 4нитроанилином (24) в присутствии катализатора безводного хлорида алюминия при мольном соотношении равном 1:1:1 соответственно, причем катализатор добавляют порциями по мере достижения однородности смеси [13].

При взаимодействии ортоэфиров (26) с ароматическими аминамина первой стадии реакции образуются имидоэфиры (27), которые при взаимодействии с избытком амина переходят в амидины (28) (рис.1.9) [14].

Рис.1.9. Схема получения амидинов из ортоэфиров

На рис.1.10. представлен путь получения новых фтородиазиринов (31). Арилнитрилы (29а) были переведены в соответствующие гидрохлориды ариламидинов (29) по методу Шефера и Петерса [15]. Этот способ дает низкие выходы (20-30%). По реакции Грэма [16] амидины (29) превращают в (30).3-бром-3-арилдиазирины Из бромдиазиринов (30)получают (31)фтороазирины взаимодействием расплавленным фторидом тетрабутиламмония (32) [17].

Ar—CN
$$\frac{\text{CH}_3\text{ONa}}{\text{CH}_3\text{OH}}$$
 $\frac{\text{NH}_4\text{CI}}{\text{CH}_3\text{OH}}$ $\frac{\text{NH} *\text{HCI}}{\text{Ar} \text{NH}_2}$ $\frac{\text{NaOBr}}{\text{Me}_2\text{SO LiBr}}$ 29

Рис.1.10 Схема получения фтородиазирина

Метод синтеза 2-(n-метоксибензил)-4,6-диоксипиримидина предложен А. А. Ароян [18] и проверен: Т. Р. Овсепян [19]. Согласно этому методу, сначала из смеси n-метоксифенил-ацетонитрила (32) и бутилового спирта при пропусканиии сухого хлористого водорода до насыщения получают хлоргидрат бутилового имидоэфира n-метоксифенилуксусной кислоты (33), затем получают хлоргидрат n-метоксифенил-ацетамидина (34) добавлением к иминоэфиру (33) бутилового спирта и пропуская аммиак до полного растворения осадка.

Для синтеза 2-(n-метоксибензил)-4,6-диоксипиримидина (35), готовят алкоголят, к которому прибавляют малоновый эфир и хлоргидрат n-метоксифенил-ацетамидин (34) (рис.1.11.) [20].

$$CH_{3}O \longrightarrow CH_{2}CN + C_{4}H_{9}OH \longrightarrow CH_{3}O \longrightarrow C_{H_{2}}OC_{4}H_{2}OC_{4}H_{$$

Рис.1.11. Схема получения 2-(п-метоксибензил)-4,6-диоксипиримидин

1.4 Синтезы гетероциклических амидинов

Для получения амидинов, амидразонов и амидоксимов индол-3карбоновых кислот в качестве исходных соединений использовались этиловые иминоэфиры (37a,b) этих кислот или их гидрохлориды (рис.1.12.).

Рис.1.12. Схема получения амидинов и амидразонов индол-3карбоновых кислот

гдеК':

$$37a = H$$
 $37b = CH_3$
 $38a = H$ $38b = CH_3$

$$39a = H$$
 $39b = CH_3$

$$36a,c,e = H \quad 36d,f = CH_3$$

R":

 $36a,b = C_6H_5$

 $36c,d = CH_3CO$

 $36e, f = C_6H_5CO$

Гидрохлориды амидинов индол-3-карбоновых кислот (38a,b) были получены обработкой растворов иминоэфиров (37a,b) в эквивалентном количеством NH₄Cl или при обработке гидрохлоридов иминоэфиров (37a,b) раствором аммиака в абсолютном метаноле. Иминоэфиры (37a,b) вступают в реакцию с анилином, образовывая N-фениламидины (39a,b) [21].

При взаимодействии иминоэфиров (37a,b) с фенилгидразином или N-ацилгидразинами в абсолютном этаноле с хорошими выходами были получены N-замещённые амидразоныиндол-3-карбоновых кислот (36a-f).

Авторами работ [21], амидоксимы (40a,b) были получены при нагревании тиоамидов 1-R'-индол-3-карбоновых кислот (41a,b) с эквивалентными количествами гидрохлорида гидроксиамина и K_2CO_3 в водном спирте или диоксане. Наиболее приемлемым для получения амидоксимов (40a,b) взаимодействие иминоэфиров (37a,b) с гидрохлоридом гидроксиламина и Na_2CO_3 в водном диоксане (рис.1.13).

$$N = S$$
 $N = S$
 $N =$

Рис.1.13. Схема получения амидоксимов

где R':

40a = H $40b = CH_3$

41a = H $41b = CH_3$

Для получения индол-2-иламидинов используют классический вариант получения амидинов - соответствующие нитрилы переводят в иминоэфиры и последние подвергают аммонолизу.

Авторами работы [22] был получен индол-2-ил-амидин (44) по схеме представленной на рисунке 1.14.

Рис.1.14. Схема получения индол-2-ил-амидин

Batt D., Knabb R., Houghton G. работы [23], использовали аналогичную методику получения производных 5-амидиноиндолов (45), представляющих интерес с точки зрения изучения их биологических свойств (рис.1.15.).

Рис.1.15. Схема синтеза

где:

 $a-Me_3Al,\ R'NH_2,\ CH_2Cl_2,\ pyridine/DMSO$

b – NH₃, MeOH, NH₄OAc

Амидинокислоты (48a-d) были получены из 5-цианоиндол-2карбоксилата (46), конденсацией с алифатическими аминоэфирами и последующим превращением их в соответствующие амидины по синтезу Пиннера [24].

NC
$$CO_2H$$
 CO_2H CO_2CH_3 C

Рис.1.16. Схема синтеза амидинокист

На рисунке 1.17. представлен путь синтеза 3,6-дизамещенных карбазолов из карбазола. Дибромкарбазол (49) взаимодействует с цианидом меди (I) по реакции Розенмунда-фон Брауна [25,26] с получением динитрилов (50a,b). Диамидины (52a-b) были получены по реакции Пиннера [24,27,28]. Из динитрилов (50a,b) были получены соответствующие диимидазолины (51a,b) [29].

Рис.1.17. Схема синтеза 3,6-дизамещенных карбазолов

где:
$$50a$$
, $51a - R = H$

$$50b$$
, $51b - R = CH_3$

$$52a - R = R' = H$$

$$52b - R = CH_3$$
, $R' = H$

$$e - EtOH$$
, HCl , 1 , 4 -диоксан
$$f - NH_2(CH_2)_2NH_2$$

На рисунке 1.18. показан синтез индол бис-амидинов и их аналогов. Индолборные кислоты (53 и 53') реагируют с 4-цианофенилйодидом и дает соответствующие (54 и 54'). Они могут быть преобразованы в соответствующие бис амидины (56 и 57) путем образования О-этилимидатов с последующей реакцией с аммиаком. Моноамидины (55 и 60) получают, используя йодбензол с последующим образованием амидина. Бензимидазол бис-амидин (63) получают из диамина (61) с последующим образованием амидина [30].

Рис.1.18. Схема синтеза индол бис-амидинов и их аналогов

Синтез иодида (64) был осуществлён из 2-индолборной кислоты (53b) с использованием N-йодсукцинимида (NIS) в CH₃CN. Образование амидина (65) проходит с одновременным удалением защитной группы. Последующее взаимодействие с соответствующими производными борной кислоты приводит к 2-замещенным 5-индолиламидинам (66) (рис.1.19) [31].

Рис.1.19. Схема получения аналогов 5-индолиламидинов

Авторы работы [32] для получения 6-цианоиндола использовали восстановительную циклизацию 2-нитро-4-циано-N,N-диметилвинилбензола. Затем из полученного 6-цианоиндола были синтезированы амидины, содержащие ацитиленовый фрагмент.

На рисунке 1.20. представлена схема получения индол-ацетиленов (72a-d). Енамин (66) подвергается циклизации с образованием 1H-индол-6-карбонитрила (67) [33]. Защищенный Вос индол (68) был получен с использованием ди-, трет-бутилдикарбоната (Вос₂О) и 4-диметиламинпиридина (DMAP) в дихлорметане. Для получения йодиндола (70), индол станнан (69) перемешивают с йодом в тетрагидрофуране. Динитрилы (71a-d) взаимодействуют с бис(триметилсилил)амидом лития в ТГФ для получения гидрохлоридных солей диамидинов (72a-d).

$$\begin{array}{c} & & & \\ & &$$

Рис.1.20.Схема получение индол-ацетиленов

Схема на рис.1.21. описывает синтез дифенил-индоладиамидина (77а,b). 4,4'-Бромбифенилбензонитрила (75) получают взаимодействием иодбензонитрила (74) с бороной кислотой (73). Затем из 4,4'-Бромбифенил бензонила (75) с использованием 6-карбонитрила и 1,4-диоксана получают динитрилы (76а,b) с последующим превращением в диамидины (77а,b), используя литий бис(триметилсилил)амид [32,34].

Рис.1.21. Схема получения дифенил-индоладиамидина

В работе [35] описан способ получения амидинов, содержащих помимо амидинового фрагмента диазогруппу в положении 3 индольного кольца. Амидиновые фрагменты получены стандартным методом — превращением нитрила в иминоэфир, а последний в амидин. В этой же работе приведен синтез индолов содержащие амидиновые группировки в индольном кольце и пара-положений фенильного заместителя (рис.1.22.).

Рис.1.22. Схема получения амидинов

В работе [36], предложены способы синтеза 5-амидининдолов (85) (рис.1.23).

Рис.1.23. Схема синтеза 5-амидининдола

В работе [37] из 3-цианопиридина (86) растворённого в хлороформе получают иминоэфир (87) к которому добавляют хлорид аммония для получения 3-амидинопиридин (88) (рис.1.24).

$$\begin{array}{c|c}
CN & & NH & NH_{4}CI & NH_{4}CI \\
\hline
CHCI_{3} & & NH_{2}CI & NH_{2}C$$

Рис.1.24. Синтез 3-Амидинопиридина

Амидины используются для синтеза гетероциклических соединений. На рис.1.25. показана схема взаимодействия амидина (89) с производными малонового или циануксусного эфира с образованием замещенных пиримидинов (90) [38].

$$R \xrightarrow{NH} R \xrightarrow{H_2C} COOC_2H_5 \\ NH_2 \\ 89$$

Рис.1.25. Схема синтеза гетероциклических соединений

1.5 Одностадийный метод синтеза амидинов

Разработан удобный метод прямого превращения нитрилов в амидины с высокими выходами - прямым нуклеофильным добавлением амина к исходному нитрилу [39]. При реакции амида алюминия со сложными эфирами карбоновых кислот в одну стадию получаются соответствующие карбоксамиды, предполагалось, что эти амиды алюминия могут аналогичным образом реагировать и с нитрилам с образованием амидинов [40].

Реакция между диэтилалюминий диметиламидом и бензонитрилом впервые была исследована в 1969 году [41]. Взаимодействие алкилхлоралюминий амида, получаемого из хлорида триметилалюминия и хлорида аммония с нитрилами действительно позволяет получить амидины [41,42].

RCN
$$\xrightarrow{\text{MeAI(CI)NR'R"}}$$
 $\xrightarrow{\text{Me}}$ $\xrightarrow{\text{NP'R"}}$ $\xrightarrow{\text{NP'R"}}$ $\xrightarrow{\text{NP'R"}}$

Рис. 1.26. Общая схема синтеза

Взаимодействие амидов метилхлоралюминия с нитрилами является общим, результаты данной реакции приведены в таблице 1.1.

Алкил, бензил и ариламидины могут быть получены из соответствующих нитрилов, для получения моно- и дизамещенных амидинов добавляют соответствующие N-замещенные метилхлоралюминиевые амиды.

По этой методике так же можно получать гуанидины, например, из N-2-нафтилметил-цианамид [43] получают соответствующий гуанидин. Таким образом, взаимодействие алкилхлоралюминиевых амидов с нитрилам и N-замещенным цианамидам позволяет получить амидины и гуанидины в одну стадию [44].

Таблица 1.1. Продукты взаимодействия нитрилов с амидомметилхлоралюминия

Номер	Нитрил	Амид алюминия	Амидин	Выход, (%)
1	CN_CN	MeAl(CI)NH ₂	NH NH ₂	80
2	CN	MeAI(CI)NH ₂	NH ₂	95
3	OMe	MeAl(CI)NH ₂	OMe NH ₂	96
4	CN	MeAl(Cl)NH ₂	NH ₂ NH	88
5	HO CN	MeAI(CI)NH ₂	HO NH ₂	78
6	HCI H ₂ N CN	-	NH	88
7	NHCN	MeAl(CI)NH ₂	NH NH ₂	77
8	CN	MeAl(CI)NHMe	NHMe	94
9	CN	MeAI(CI)NMe ₂	NMe	60

2 ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

2.1 Общая методика синтезаиндол-3-карбальдегидов

2.1.1 Получение комплекса Вильсмейера

K 175 мл (2.3 моль) диметилформамида при интенсивном перемешивании и температуре не выше 20^{0} С по каплям добавляют 50 мл (0.55 моль) POCl₃. Реакционную массу перемешивают при указанной температуре в течение получаса.

2.1.2 Синтез индол-3-карбальдегидов

К полученному комплексу Вильсмейера медленно приливают раствор индола в диметилформамиде, поддерживая температуру не выше 30^{0} С. Затем повышают температуру до 40^{0} С и реакционную смесь перемешивают в течение 1ч. Полученную массу выливают в воду со льдом (1л воды и 0.5 кг

92a-d

льда) и приливают заранее приготовленный, раствор 20%-ного едкого натра до рН больше 8. Выпавший осадок отфильтровывают, промывают на фильтре холодной водой до нейтральной реакции в промывных водах и сушат при 80° C. Сухой осадок перекристаллизовывают из этилового спирта.

Количества реагентов, выходы и температура плавления приведены в таблице 2.1.

 Таблица 2.1.

 Выходы полученных продуктов и температуры их плавления

	Исходный индол	Колич	нества	Полученный индол- 3-карбальдегид	Температура плавления,	Выход,
	91a-d	МОЛЬ	Γ	92а-d	°C	70
a	$R = 5\text{-}CH_3$	0.5	65.5	$R = 5\text{-}CH_3$	148-149	85
b	R = 5-Br	0.5	98	R = 5-Br	227-230	80
c	$R = 4\text{-}OCH_3$	0.5	73.5	$R = 4\text{-}OCH_3$	181-182	79
d	R = 6-C1	0.5	75.7	R = 6-C1	215-216	78

2.2 Общая методика синтеза индол-3-нитрилов

Смесь индол-3-карбальдегида, 10мл (0.3 моль) гидроксиламина и 50мл диметилформамида кипятят в течении 10 минут, реакционную массу охлаждают до 20^{0} С, выливают в 500мл воды, выпавший осадок

отфильтровывают и сушат при температуре не выше 100 с в сушильном шкафу. Нитрилы перекристаллизовывают из этилового спирта.

Количества реагентов, выходы и температура плавления приведены в таблице 2.2.

Таблица 2.2. Выходы полученных продуктов и температуры их плавления

	Исходный	Колич	нества	Полученный индол-	Температура	Выход,
	индол-3-			3-нитрил	плавления,	%
	карбальдегид	МОЛЬ	Γ	93a-c	0 C	
	92a-c					
a	$R = 5-CH_3$	0.3	47	$R = 5\text{-}CH_3$	116-117	82
b	R = 5-Br	0.3	67.5	R = 5-Br	181	76
c	$R = 4\text{-}OCH_3$	0.3	53	$R = 4\text{-}OCH_3$	126	70

2.3 Общая методика синтеза индол-3-иминоэфиров

R

$$CN$$
 R
 CN
 R
 CO
 R
 CO
 R
 CO
 R
 CO
 R
 CO
 C

В перемешиваемый раствор нитрила и этилового спирта в безводном хлороформе при температуре не выше 35° С пропускают ток сухого HCl до привеса 7-8г. Затем реакционную смесь охлаждают до 20° С и выдерживают при этой температуре 72ч. Осадок отфильтровывают, промывают на фильтре

безводным эфиром до нейтральной реакции и сушат в вакууме над КОН. Сухой осадок перекристаллизовывают из смеси 2-пропанол-вода в соотношении 1:2,5.

Количества реагентов, выходы и температура плавления приведены в таблице 2.3.

 Таблица 2.3.

 Выходы полученных продуктов и температуры их плавления

	Исходный	Количества		Полученный индол-	Температура	Выход,
	индол-3-			3-иминоэфир	плавления,	%
	нитрил 93a,b	МОЛЬ	Γ	94a,b	⁰ C	
a	$R = 5-CH_3$	0.2	31.5	$R = 5\text{-CH}_3$	132	81
b	R = 5-Br	0.2	44.5	R = 5-Br	133,5	79

2.4 Общая методика синтеза индол-3-амидинов

R
$$C_2H_5$$
 NH_4Cl
 NH_4Cl

Смесь иминоноэфира и NH_4Cl в 75%-ном этаноле нагревают до температуры 60^{0} С и перемешивают в течении 5ч. Затем реакционную смесь охлаждают до температуры 10^{0} С и выдерживали при этой температуре 2ч. Осадок фильтруют и сушат под вакуумом над КОН.

Количества реагентов, выходы и температура плавления приведены в таблице 2.4.

Таблица 2.4. Выходы полученных продуктов и температуры их плавления

	Исходный	Количества		Полученный индол-	Температура	Выход,
	индол-3-			3-амидин	плавления,	%
	иминоэфир	МОЛЬ	Γ	95a,b	0 C	
	94a,b					
a	$R = 5\text{-}CH_3$	0.1	15.7	$R = 5\text{-CH}_3$	167	74
b	R = 5-Br	0.1	24.5	R = 5-Br	170	70

3 ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На основании изученных литературных данных был выбран оптимальный в наших условиях метод синтеза индол-3-ил-амидинов – реакцией Пинненра, представленный на рисунке 3.1.

Рис.3.1. Схема синтеза индол-3-ил-амидинов

Данная схема включает в себя 4 стадии синтеза: получение индол-3-карбальдегидов (92) из соответствующих индолов (91) по реакции Вильсмейера — Хаака, превращение альдегидов в нитрилы (93), перевод последних в иминоэфиры (94) и, наконец, аммонолиз последних с получением целевых амидинов (95).

На первой стадии осуществлялся синтез индол-3-карбальдегидов (92) по реакции Вильсмейера — Хаака, которая заключается во взаимодействии индола (91) с комплексом Вильсмейера на основе оксихлорида фосфора и диметилформамида. Полученные с достаточно высокими выходами (78-85%) индол-3-карбальдегиды перекристаллизовывались из этилового спирта. Чистота индол-3-ил-карбальдегидов контролировалась методом ТСХ. Их

температуры плавления совпадали с температурами с температурами плавления, приводимыми в литературе.

индол-3-нитрилов (93)Вторая заключается в синтезе стадия кратковременным (29 мин) индол-3-карбальдегидов кипячением диметилформамиде, превращению гидроксиламином что привело В формильной группы в нитрильную. Полученные с также довольно высокими (70-82%)индол-Зил-нитрилы выходами перекристаллизовывались этилового спирта. Чистота их контролировалась методом ТСХ.

Температуры плавления полученных нами нитрилов совпадали с температурами с температурами плавления, приводимыми в литературе. В ИК-спектрах нитрилов наблюдалась полоса поглощения при 2200-2250 1/см. Полоса поглощения при 1650-1700 1/см, типичная для альдегидов, отсутствовала.

На третей стадии был осуществлён синтез индол-3-иминоэфиров (94a,b) путём насыщения хлористым водородом растворов соответствующих индол-3-нитрилов (93a,b) в этиловом спирте. Полученные иминоэфиры непосредственно использовались для перевода их в амидины.

На последней стадии были получены индол-3-амидины (95a,b) действием хлорида аммония на спиртовый раствор соответствующих иминоэфиров (94 a,b).

выводы

- 1. На основе анализа литературных данных был выбран наиболее оптимальный в наших условий метод синтеза индол-3-амидинов.
 - 2. Проведена экспериментальная проверка выбранного метода.
- 3. Осуществлены синтезы индол-3-амидинов, содержащие различные заместители бензольном фрагменте молекулы индола, ранее не описанные в научной литературе.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

- 1. Рубцов М.В., Байчиков А.Г. Синтетические химикофармацевтические препараты. М.: Медицина. 1971. 160 с.
- 2. Яхонтов Л.Н., Глушков Р.Г. Синтетические лекарственные средства. М.: Медицина. 1983. 166 с.
- 3. Яхонтов Л.Н., Глушков Р.Г. Синтетические лекарственные средства. М.: Медицина. 1989. 234 с.
- 4. Gilman H., Adams R. Organic syntheses // Chemical Catalog. 1958. V.8. P. 62–64.
- 5. Gilman H., Adams R. Organic syntheses // Chemical Catalog. 1949. V.1. P. 42–44.
- 6. Dox A. Organic Compounds of Mercury // Chemical Catalog. 1921. V.14. P. 397–403.
- 7. Whitmore F. Organic Synthesis // Chemical Catalog. 1932. V. 12. P. 96–98.
- 8. Gilman H., Adams R., Noller C. Organic syntheses // Chemical Catalog. 1949. V. 1. P. 66–67.
- 9. Patent. DBP 1470284. Farmitalia / F. Arcamone; заявл. 26.07.1963; опубл. 22.07.1964.
- 10. Patent. USP 3420844. Farmitalia / M. J. Weiss; заявл. 26.07.1963; опубл. 07.01.1969.
- 11. Kleemann A., Sucker H. Pharmazeutische Wirkstoffe // Synthesen. 1982. V. 29. P. 784–791.
- 12. Patent. USP 3141019. Farmitalia / Angelini Francesco; заявл. 29.09.1959; опубл. 14.07.1964.
- 13. Patent. RU 2480452 C1. Способ получения N-4нитрофенилбензамидина / Федорова Е.В., Куваева Е.В., Яковлев И.П.; заявл. 11.01.2012; опубл. 27.04.2013.

- 14. Вейганд К. Методы эксперимента в органической химии. М.: «Химия», 1968. 461 с.
- 15. Schaefer F., Peters G. Novel synthesis of heterocyclic // Journal of Organic Chemistry. 1961. V. 26. P. 405–412.
- 16. Graham W. Synthesis and Applications. In Comprehensive Heterocyclic Chemistry // Journal of the American Chemical Society. 1965. V. 5. P. 4387–4396.
- 17. Moss R., Terpinski J. Synthesis and Applications. In Comprehensive Heterocyclic Chemistry // Journal of the American Chemical Society. 1985. V. 107. P. 2743–2748.
- 18. Овсепян Т.Р., Арсенян Ф.Г. Синтез, превращения и изучение некоторых биологических свойств новых 3,4,5-замещенных 1,2,4-триазолов // Химия гетероциклических соединений. 2008. № 11. С. 1712–1715.
- 19. Ароян А.А. Бабаян Н.А. Синтезы гетероциклических соединений. АН Армянской ССР. Ереван, 1972. 314с.
- 20. Аронян А.А. Африкян В.Г., Мнджоян А.Л. Синтезы гетероциклических соединений. АН Армянской ССР. Ереван, 1969. 51с.
- 21. Келарев В., Гасанов Р. СПОСОБ ПОЛУЧЕНИЯ 8-МЕТИЛ-8-АЗАБИЦИКЛО[3,2,1]ОКТ-3-ИЛОВОГО ЭФИРА ИНДОЛ-3-КАРБОНОВОЙ КИСЛОТЫ // Журнал органической химии. 1992. Т. 28. № 12. С. 2561–2567.
- 22. Douglas G. Batt, Jennifer X. Qiao, Dilip P. Modi. 5-Amidinoindolesasdual inhibitors of coagulation factors // Bioorganic & Medicinal Chemistry Letters. 2004. V. 12. P. 4623–4628.
- 23. Batt G., Qiao X., Modi P. 5-Amidinoindolesasdual inhibitors of coagulation factors // Bioorganic & Medicinal Chemistry Letters. 2004. V. 14. P. 5269–5273.
- 24. Pinner A. Klein F. Ueber die Umwandlung der Nitrile in Imide // Berichte der deutschenchemischen Gesellschaft. 1883. V.16. P. 1643–1655.

- 25. Rosenmund K., Struck E. Dae am Ringkohlenstoff gebundene Halogen und sein Ersatz durch andere Substituenten // Ber. Dtsch. Chem. Ges. 1919. V. 52. P. 1749–1756.
- 26. von Braun J., Manz G. Enantioselektive Synthese N-substituierter α-Aminocarbonsäuren aus α-Hydroxycarbonsäuren // Liebigs Ann. Chem. 1931. V.48. P. 111–126.
- 27. Pinner A., Klein F. Umwandlung der Nitrile in Imide // Berichte der deutschenchemischen Gesellschaft. 1878. V. 11. P. 1475–1487.
- 28. Pinner A., Klein F. Umwandlung der Nitrile in Imide // Berichte der deutschenchemischen Gesellschaft. 1877. V. 10. P. 1889–1897.
- 29. Patrick D., Boykin D., Wilson W. Anti-Pneumocystis carinii pneumonia activity of dicationic carbazoles // J. Med. Chem. 1997. V. 32. P. 781–793.
- 30. Scott D., Ronald K., Christina N. Amidine derived inhibitors of acid-sensing ion channel-3 (ASIC3) // Bioorganic & Medicical Chemistry. 2009. V. 19. P. 4059–4063.
- 31. Thiebes C., Prakash G., Petasis N. Mild Preparation of Haloarenes by Ipso-Substitution of Arylboronic Acids with N-Halosuccinimides // Synlett. 1998. V. 14. P. 141–142.
- 32. Abdelbasset A., Arvind K., Martial S. Synthesis, DNA binding, fluorescence measurements and antiparasitic activity of DAPI related diamidines // Bioorganic & Medicinal Chemistry. 2010. V. 18. P. 557–566.
- 33. Clark R., Repke D. A facile route to 1-acetoxy- and 1-methoxyindols // Heterocycles. 1974. V. 22. P. 121–125.
- 34. Kumar A., Boykin D. In vitro metabolism of an orally active Omethyl amidoxime prodrug for the treatment of CNS trypanosomiasis // Synthesis 2008. V.5. P. 707–712.
- 35. Tidwell R., Geratz J., Dann O. Diarylamidine Derivatives with One or Both of the Aryl Moieties Consisting of anIndole or Indole-like Ring, Inhibitors of

- Arginine-Specific Esteroproteases // Journal of Medicinal Chemistry. 1978. V. 21. P. 613–623.
- 36. Edwin J., Daniel G., Roberts M. Derivatives of 5-amidine indole as inhibitors of thrombin catalytic activity // Bioorganic & Medicinal Chemistry Letters. 1996. V. 6. № 12. P. 1339–1344.
- 37. Barber H., Slack R. 3-Amidinopyridine // Chemical Research Department. 1944. V. 45. P. 1602–1607.
- 38. Граник В. Использование амидинов в синтезе гетероциклов // Успехи Химии. 1983. Т. 52. № 4. С. 669-702.
- 39. Gauter M., Farnoux C. The Chemistry of Amidines and Imidates // John Wiley & Sons. 1975. P. 276–283.
- 40. Basha A., Weinreb M. N-ALKYLATION OF AMIDES AND RELATED COMPOUNDS // Journal Art. Chem. 1977. V. 18. P. 4171–4176.
- 41. Hoberg H. Reactions with Condensed Heterocycles R'X // Journal Organometal. Chem. 1969. V. 17. P. 105–115.
- 42. Boere R., Reed R. The only preparative conversion of nitriles to amidines was reported in a stepwise process via N,N,N'-tris(trimethylsilyl) amidines // Journal Organometal. Chem. 1987. V. 21. P. 161–168.
- 43. Kishi Y., Aratani M., Sugiura S. N-(2-Naphthylmethyl) cyanamide was prepared by alkylation of 2-naphthylamine with cyanogen bromide // J. Am. Chem. Soc. 1972. V. 94. P. 217–224.
- 44. Ravi S. AN Efficient conversion of nitriles to amidines // Tetrahedron Letters. 1990. V. 31. № 14. P. 1969–1972.