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Abstract: We consider the homogenization of diffusion-convective problems with given divergence-free velocities in
nonperiodic structures defined by sequences of characteristic functions (the first sequence). The sequence of concentration
(the second sequence) is uniformly bounded in the space of square-summable functions with square-summable derivatives
with respect to spatial variables. At the same time, the sequence of time-derivative of product of these concentrations
on the characteristic functions, that define a nonperiodic structure, is bounded in the space of square-summable
functions from time interval into the conjugated space of functions depending on spatial variables, with square-summable
derivatives. We prove the strong compactness of the second sequences in the space of quadratically summable functions
and use this result to homogenize the corresponding boundary value problems that depend on a small parameter.
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1. Introduction
In the present work, we establish an Aubin-type compactness lemma [3, 9] for nonperiodic structures and then
apply it to find the homogenization of diffusion-convection equations for such kind of structures. By now, there
exist numerous compactness results of this type [5, 11]. However, none of them seems to be applicable to the
problem which we address in this note.

Let a measurable function χ(x,y) be 1-periodic in variable y ∈ Y =

(
−1

2
,
1

2

)3

⊂ R3 , such that

χ(x,y) = 1 for y ∈ Yf (x) and χ(x, t,y) = 0 for y ∈ Ys(x) .

Here Yf (x) ∪ Ys(x) = Y , Yf (x) ∩ Ys(x) = ∅ , Yf (x) ∩ Ys(x) = γ(x) and γ(x) satisfies the Lipschitz

condition. For example, Ys(x) = {y ∈ Y : |y| < r(x) <
1

2
} , Yf (x) = {y ∈ Y : |y| > r(x)} and γ(x) = {y ∈

Y : |y| = r(x)} .

Now we put Ωεf =
{
x : χ(x,

x

ε
) = 1

}
, Ωεs =

{
x : χ(x,

x

ε
) = 0

}
.

We denote the pore space as Qεf = Ωεf × (0, T ) , the solid skeleton as Qεs = Ωεs × (0, T ) , and through

Γε = Ω
ε

f ∩ Ω
ε

s we denote the boundary between the pore space and the solid skeleton.
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In what follows for the given function r(x) : 0 < r(x) <
1

2
, r ∈ W1,0

∞ (ΩT ) we restrict ourself with two

structures:
structure I:

Ys(x) = {y ∈ Y : |y| < r(x)}, Yf (x) = {y ∈ Y : |y| > r(x)},

χ(x,y) =
1

2
sgn
(
r(x)− |ς(y)|

)
, 0 ≤ r(x) <

1

2
,

where periodic function ς(y) is defined by formula

ς(y) = (y1 − [|y1|], y2 − [|y2|], y3 − [|y3|])

and [|a|] is an integer part of the number a ;

structure II:
Ys(x) = Y 1

s (x) ∪ Y 2
s (x) ∪ Y 3

s (x);

Y 1
s (x) = {y ∈ Y : y22 + y23 < r(x)},

Y 2
s (x) = {y ∈ Y : y21 + y23 < r(x)},

Y 3
s (x) = {y ∈ Y : y21 + y22 < r(x)}, Yf (x) = Y \ Ys(x);

χ(x,y) = χ1(x,y)χ2(x,y)χ3(x,y),

χ1(x,y) = sng
(
r2(x)− y22 − y23

)
,

χ2(x,y) = sng
(
r2(x)− y21 − y23

)
,

χ3(x,y) = sng
(
r2(x)− y21 − y22

)
, χε(x) = χ(x,

x

ε
).

Suppose for simplicity that Ω =

(
−1

2
,
1

2

)3

, S = ∂Ω ,

Sε,± = Ω
ε

f ∩
{
x1 = ±1

2

}
, S± =

{
x1 = ± 1

2

}
, Sε,0 = Ω

ε

f \
(
S
ε,+ ∪S ε,−

)
, S0 =

(
∂Ω \

(
{x1 =

1

2
}∪{x1 =

−1

2
}
))

.

We consider a diffusion-convection of some admixture with concentration cε during the movement of the
liquid in the pore space with given divergence-free velocity vε .

The concentration cε of the admixture satisfies the diffusion-convection equation

∂cε

∂t
= ∇ · (D∇cε − cε vε) (1.1)

in the domain Qεf and following boundary and initial conditions

∂cε

∂n
(x, t) = 0, (x, t) ∈ Γε × (0, T ), (1.2)
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∂cε

∂n
(x, t) = 0, (x, t) ∈ S0,ε × (0, T ), (1.3)

cε(x, t) = c±(x, t), (x, t) ∈ Sε,± × (0, T ), (1.4)

cε(x, 0) = c0(x), x ∈ Ωεf . (1.5)

In (1.1) – (1.5) D is given positive constant and n is a normal vector to the boundary S0,ε .

Due to [8] the problem (1.1) – (1.4) has a unique weak solution c ε ∈ W1,0
2 (Qf,ε) ∩ L∞(Qf,ε) and these

solutions are uniformly bounded in W1,0
2 (Qf,ε) ∩ L∞(Qf,ε) .

Now, using results of [1, 6] we extend our solutions onto the hole domain ΩT .
Let c̃ ε be such extensions. Without loss of generality we may assume that the sequence {c̃ ε} weakly

converges to some function c ∈ W1,0
2 (ΩT ) ∩ L∞(ΩT ) .

As a next step we will show that the sequence {χε(x, t0) c̃ ε(x, t0)} weakly converges to the function
m(x, t0) c(x, t0) for almost all t0 ∈ (0, T ) .

Here

m(x, t) =

∫
Y

χ(x, t,y)dy (1.6)

is a porosity of the continuum medium.
Next we prove that there exists some subsequence {εk} , such that for almost all t0 ∈ (0, T )

lim
ε→0

ε2k

∫
Ω

|∇c̃ εk(x, t0)|2dx = 0, (1.7)

and for almost all t0 ∈ (0, T ) the sequence {c̃ εk(x, t0)} converges weakly and two-scale to the function c(x, t0) .
Finally, as a last step, we prove that the sequence {c̃ εk} converges strongly in L2(ΩT ) to the function

c(x, t) .
Throughout the text we use notations of [8, 9] for the functional spaces and norms there.

2. Auxiliary statements

In this section, we define the notion of two-scale convergence in L2(ΩT ) and formulate basic results from
[1, 6, 14].

Definition 2.1 A sequence {uε(x, t)} , uε ∈ L2(ΩT ) , two-scale converges as n→ ∞ to 1-periodic in y ∈ Y =

(0, 1)3 ⊂ R3 function U(x, t,y) if

lim
ε→0

∫
ΩT

Ψ(x, t,
x

ε
)uε(x, t)dxdt =

∫
ΩT

(∫
Y

Ψ(x, t,y)U(x, t,y)dy

)
dxdt

for any smooth 1-periodic in y function Ψ(x, t,y) .

Notation: uε(x, t)two−sc.−→ U(x, t,y) .
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Theorem 1 (Gabriel Nguetseng)
1) Any bounded in L2(ΩT ) sequence {uε} two-scale converges in L2(ΩT ) (up to some subsequence) to

some 1-periodic in y function U(x, t,y) ∈ L2(ΩT × Y ) :

uε(x, t)
two−sc.−→ U(x, t,y).

2) Let the sequence {uε} be bounded in W 1,0
2 (ΩT ) . Then the sequences {uε} and {∇uε} two-scale converges

(up to some subsequence) to some functions u(x, t) and ∇u(x, t) + ∇yU(x, t,y) correspondingly, where
u ∈W 1,0

2 (ΩT ) and ∇yU ∈ L2(ΩT × Y ) :

uε(x, t)
two−sc.−→ u(x, t),

∇uε(x, t)two−sc.−→ ∇u(x, t) +∇yU(x, t,y).

Definition 2.2 A sequence {vε(x, t)} , vε ∈ L2(ΩT ) , weakly converges as n → ∞ to some function v(x, t) ,
v ∈ L2(ΩT ) if

lim
ε→0

∫
ΩT

φ(x, t)vε(x, t)dxdt =

∫
ΩT

φ(x, t)v(x, t)dxdt

for any smooth function φ(x, t) .

Notation: vε(x, t)⇀ v(x, t) .

Theorem 2 [7]
Any bounded in L2(ΩT ) sequence {vε} contains weakly convergent in L2(ΩT ) subsequence.

A limiting procedure in perforated domain needs some extension of functions defined in domains Qεf onto
domain ΩT . To do that we use results for nonperiodic structures, similar to results of [1, 6] proved for periodic
structures. Due to the special type of structures I and II, especially for the structure I (soft inclusion), proofs
in [1, 6] also serve for our cases. More precisely, holds true the following lemma.

Lemma 2.1 Let c ε ∈ W1,0
2 (Q

ε)
f . Then there exists an extension c̃ ε ∈ W1,0

2 (ΩT ) of this function from Qεf onto
ΩT , such that ∫

ΩT

|c̃ ε|2dxdt ≤M

∫
Qε

f

|c ε|2dxdt,
∫
ΩT

|∇c̃ ε|2dxdt ≤M

∫
Qε

f

|∇c ε|2dxdt. (2.1)

Through M here and in what follows we denote any constant independent of ε .

3. Main results
For the sake of simplicity we suppose that holds true such conditions.

Conditions A
1) c±(x, t) = c±(x) ;
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2) there exists a function c0(x) such that 0 ≤ c0(x) ≤ 1 , c0 ∈ W1
2(Ω) , and c0 satisfies boundary

conditions (1.3) and (1.4);
3) functions vε(x, t) satisfy conditions

∇ · vε = 0, (x, t) ∈ Qεf ,

vε · n = 0, (x, t) ∈ (S0
⋃

Γε)× (0, T ),

∫
Qε

f ,

(
|vε|2 + |∇vε|2

)
dxdt ≤M2;

4) there exist some extensions ṽ ε of functions vε from domain Qf,ε onto domain ΩT such that

∇ · ṽ ε = 0, (x, t) ∈ Qεf , ṽ
ε · n = 0, (x, t) ∈ (S0

⋃
Γε)× (0, T ),

∫
ΩT

(
|ṽ ε|2 + |∇ṽ ε|2

)
dx ≤M2,

ṽ ε ⇀ v(x, t), v ∈ L2(ΩT ), and ṽ ε
two−sc.−→ v(x, t), v ∈ L2(ΩT ),

∇ · v = 0, (x, t) ∈ ΩT , v(x, t) · n = 0, x ∈ S0 × (0, T ).

Here n is a normal vector to the corresponding boundaries.

Definition 3.1 A function cε ∈ W1,0
2 (Qf,ε) is called a weak solution to the problem (1.1) – (1.4) if it satisfies

the integral identity∫
Qf,ε

(
− cε

∂φ

∂t
+
(
D∇cε − cε vε

)
· ∇φ

)
dxdt =

∫
Ωf,ε(0)

c0(x)φ(x, 0)dx (3.1)

for any smooth function φ vanishing at Sε,± × (0, T ) and at {t = T} .

Lemma 3.1 Under conditions A for almost all ε > 0 there exists a unique weak solution c ε(x, t)} to the
problem (1.1) – (1.4) such that ∫

Qε
f

|c ε|2dxdt+
∫
Qε

f

|∇c ε|2dxdt ≤M. (3.2)

Lemma 3.2 Let c̃ ε be an extension of the function cε from Qεf onto ΩT such that

∫
ΩT

|c̃ ε|2dxdt ≤M

∫
Qε

f

|c ε|2dxdt,
∫
ΩT

|∇c̃ ε|2dxdt ≤M

∫
Qε

f

|∇c ε|2dxdt. (3.3)

Then under conditions A for almost all t0 ∈ (0, T ) the sequence
{χ ε(x, t0) c̃ ε(x, t0)} converges weakly in L2(Ω) to the function m(x, t0) c(x, t0) .
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Lemma 3.3 Under conditions A for almost all t0 ∈ (0, T ) there exists some subsequence {εk} , such that

lim
εk→0

ε2k

∫
Ω

|∇ c̃ εk(x, t0)|2dxdt = 0. (3.4)

Lemma 3.4 Under conditions A for almost all t0 ∈ (0, T ) the sequence {c̃ εk(x, t0)} converges weakly and
two-scale in L2(Ω) to the function c(x, t0) .

Lemma 3.5 Under conditions A the sequence {c̃ εk(x, t)} converges strongly in L2(ΩT ) to the function c(x, t)

from W1,0
2 (ΩT ) .

Theorem 3 The limiting function c ∈ W1,0
2 (ΩT ) satisfies boundary and initial conditions

(
DB · ∇c− cv

)
· n = 0, (x, t) ∈ S0 × (0, T ), (3.5)

c(x, t) = c±(x), (x, t) ∈ S± × (0, T ), (3.6)

c(x, 0) = c0(x), x ∈ Ω, (3.7)

and the homogenized equation
∂

∂t

(
m(x, t) c

)
= ∇ · (DB · ∇c− cv) (3.8)

in the domain ΩT in the sense of distributions as a solution of the integral identity∫
ΩT

(
−m(x, t) c

∂φ

∂t
+
(
DB · ∇c− cv

)
· ∇φ

)
dxdt = 0 (3.9)

for any smooth functions φ , vanishing at S± × (0, T ) .
In (3.5) – (3.9) n is a normal vector to the boundary S0 and a symmetric and strictly positively defined

matrix B is given by formula (4.18).

4. Proof of Theorem 3
4.1. Proof of Lemma 3.1
The proof of lemma is straightforward and based on the a priory estimates

∫ ∫
Qε

f

(
D |∇cε|2

)
dxdt ≤M

(∫
Ωf,ε(0)

|c0(x)|2dx+

∫ ∫
Qε

f

|c0(x)|2dxdt

)
(4.1)

0 ≤ cε(x, t) ≤ 1, (4.2)

what follows from the integral identity (3.1) after substituting the function (cε− c0) instead of the test function
in this identity, and from the maximum principle (see, for example [8]).
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4.2. Proof of Lemma 3.2
Due to Lemma B.1.5 (Appendix B, [12]) the sequence {c̃ ε} two-scale converges in L2(ΩT ) to some function c .
That is

lim
ε→0

∫
ΩT

c̃ ε(x, t)φ(x, t,
x

ε
)dxdt =

∫
ΩT

c(x, t)

(∫
Y

φ(x, t,y)dy

)
dxdt. (4.3)

Let us put

φ(x, t,
x

ε
) = χε(x, t) η(t)ψ(x), fεψ(t) =

∫
Ω

χε(x, t)ψ(x)dx, fψ =

∫
Ω

m(x, t)ψ(x)dx.

The equality (4.3) means that

I = lim
ε→0

∫ T

0

η(t) fεψ(t)dt =

∫ T

0

η(t) fψ(t)dt. (4.4)

Coming back to the integral identity (3.1) in the form∫
ΩT

χε
(
− c̃ ε

∂φ

∂t
+
(
D∇c̃ ε − c̃ ε ṽ ε

)
· ∇φ

)
dxdt = 0 (4.5)

with test function φ
(
x, t,

x

ε

)
= η(t)ψ(x) we arrive at

∫ T

0

(
dη

dt
fεψ + η Uε

)
dt = 0,

Uε =

∫
Ω

(χεD∇c̃ ε − c̃ ε ṽ ε) · ∇ψdx
∫ T

0

|Uε|2dt ≤ M2 T

∫
Ω

|∇ψ|2dx.

Thus,
dfεψ
dt

= Uε, fεψ ∈ W1
2(0, T ); |fεψ(t)| ≤ Mψ, |fεψ(t1)− fεψ(t2)| ≤ Mψ |t1 − t2|

1
2 .

The Arzela-Ascoli Theorem [15] permits us to choose some subsequence {fεkψ } , convergent in C(0, T ) to some

continuous function f ψ .
On the other hand due to (4.4) one has

I = lim
ε→0

∫ T

0

η(t) fεψ(t)dt =

∫ T

0

η(t) fψ(t)dt (4.6)

for any smooth function η(t) .

Therefore, fψ = f ψ almost everywhere in (0, T ) , which proves the statement of the lemma.

4.3. Proof of Lemma 3.3

In fact, the uniform boundedness with respect to ε of the sequence
∫ ∫

ΩT

|∇c̃ ε(x, t)|2dxdt implies

lim
ε→0

ε2
∫
ΩT

|∇c̃ ε(x, t)|2dxdt = 0. (4.7)
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Let

uε(t0) = ε2
∫
Ω

|∇c̃ ε(x, t)|2dx. (4.8)

Then (4.7) means that the sequence {uε} converges to zero in L1(0, T ) . In accordance with [7] (Theorem 1,
§ 37 , Chapter X) there exists some subsequence {uεk} convergent to zero almost everywhere in (0, T ) , which
proves the lemma.

4.4. Proof of Lemma 3.4
Since the sequence {c̃ ε} is bounded in L2(Ω) , there exists a subsequence (we leave for simplicity previous
indexes) that two-scale converges to some 1-periodic in variable y function C(x, t0,y) from the space L2(Ω×Y ) .

Integration by parts of expression εk∇ c̃ ε(x, t0) ·φ
(

x

εk

)
ψ(x) gives us an integral identity

εk

∫
Ω

∇ c̃ ε(x, t0) ·φ
(

x

εk

)
ψ(x)dx =

− εk

∫
Ω

c̃ ε(x, t0)

(
φ(

x

εk
) · ∇ψ(x)

)
dx−

∫
Ω

c̃ ε(x, t0)

(
∇ ·φ( x

εk
)

)
ψ(x)dx

for any functions φ ∈ W1
2(Y ) and ψ ∈

◦
W1

2 (Ω) .
The limit as εk → 0 results integral identity∫

Ω

ψ(x)

∫
Y

C(x, t0,y)∇ ·φ(y)dy = 0,

which, due to the arbitrary choice of functions φ and ψ , is equivalent to the equality C(x, t0,y) = c(x, t0) .
Because c(x, t0) is also a weak limit of the sequence {c̃ εk(x, t0)} , then the uniqueness of the weak limit

implies c(x, t0) = c(x, t0) .

4.5. Proof of Lemma 3.5
We put

H1 =
◦
W1

2 (Ω) ⊂ H0 = L2(Ω) ⊂ H−1 =
◦

W−1
2 (Ω), wk(x, t0) = c̃ εk(x, t0)− c(x, t0)

and use the inequality
∥wk(., t0)∥2H0 ≤ η ∥wk(., t0)∥2H1 + Cη ∥wk(., t0)∥2H−1

(the estimate (9), § 10, Chapter III, [2]).
Next we integrate the last relation with respect to time

∫ T

0

∥wk(., t)∥2H0dt ≤ η

∫ T

0

∥wk(., t)∥2H1dt+ Cη

∫ T

0

∥wk(., t)∥2H−1dt,

and apply a compact embedding of the space H0 into the space H−1 [9, 13]: the weak convergence of the
sequence {wk(., t)} in H0(Ω) implies the strong convergence of this sequence in H−1(Ω) .
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That is lim
k→∞

∫ T

0

∥wk(., t)∥2H−1dt = 0 .

The last relation and the choice of small η imply the equality

lim
k→∞

∫ T

0

∥wk(., t)∥2H0dt = 0 , which proves the lemma.

4.6. Proof of Theorem 3
Now we may pass to the limit as ε→ 0 in the integral identity (4.5) and get the desired homogenization of the
problem (1.2) – (1.5). Theorem 1 permits to extract some subsequence of the sequence {c̃ ε} (for simplicity we
will leave the same indices) such that

c̃ ε(x, t)
two−sc.−→ c(x, t), ∇xc̃

ε(x, t)
two−sc.−→ ∇xc(x, t) +∇yC(x, t,y) (4.9)

with some 1-periodic in y function C(x, t,y) , ∇yC ∈ L2(Q× Y ) .
By virtue of conditions A the sequence ṽ ε weakly converges in L2(ΩT ) to some function v ∈ L2(ΩT ) ,

such that
∇ · v = 0, (x, t) ∈ ΩT , v(x, t) · n(x, t) = 0, (x, t) ∈ S0. (4.10)

First of all we consider as a test-function in (4.5) an arbitrary function φ = φ0(x, t) vanishing at S± × (0, T ) .
After the limit as ε→ 0 we arrive at

0 = lim
ε→0

∫
ΩT

(
− χε c̃ ε

∂φ0

∂t
+
(
Dχε∇c̃ ε ∇φ− χε cε ṽε · ∇φ0

))
dxdt =

=

∫
ΩT

(
−mc

∂φ0

∂t
+
(
D (∇xc+

∫
Y

χ∇yC dy) · ∇φ0 −mcv · ∇φ0

))
dxdt = 0. (4.11)

Reintegration of (4.11) gives us desired homogenized diffusion-convection equation

∂

∂t
(mc) = ∇x ·

(
D
(
∇xc+ (

∫
Y

χ∇yC dy)
)
−mcv

)
(4.12)

with unknown function C(x, t,x) .

To find function C we now choose as a test-function in (4.5) function φ = φ0(x, t)φ1(
x

ε
) with the same

as before function φ0(x, t) and with an arbitrary function φ1(y) .
The limiting procedure gives us identity

0 =

∫
ΩT

φ0(x, t)
(∫

Y

(
∇xc+∇yC −mcv

)
· ∇yφ1

)
dxdt (4.13)

and, consequently, the boundary value problem

∇y ·
(
∇xc + ∇yC − mcv

)
= 0, y ∈ Yf (x),

(
∇xc + ∇yC − mcv

)
· N = 0, y ∈ γ(x), (4.14)

where N = (N1, N2, N3) is a normal vector to the boundary γ(x) .
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We look for the solution C of (4.14) in the form

C =

3∑
i=1

Ci(x,y) fi(x, t), fi =
∂c

∂xi
−mcvi. (4.15)

Substitution of this representation into (4.14) results

△Ci = 0, y ∈ Yf (x), (∇yCi + ei)) ·N = 0, ∈ γ(x). (4.16)

This problem has an unique (up to some constant) solution [4, 6, 10] and

∇xc+∇yC −mcv = DBc(x) · (∇xc−mcv), (4.17)

where strictly positively defined matrix Bc(x) is given by formula

Bc(x) = I+
3∑
i=1

∫
Yf (x)

∇Ci(x,y)dy. (4.18)

Finally, the homogenized diffusion-convection equation in the domain ΩT has a form

∂

∂t
(mc) = ∇x

(
DBc(x) · (∇xc−mcv)

)
. (4.19)

In a usual way we show that

c(x, t) = c±, (x, t) ∈ S± × (0, T ),
∂c

∂n
= 0, (x, t) ∈ S0 × (0, T ) (4.20)

and
c(x, 0) = c0, x ∈ Ω. (4.21)

5. Conclusion
In this paper, we prove the compactness lemma for the domains with nonperiodic structures. This result
rigorously justify the homogenization of the initial-boundary value problem, describing the diffusion-convection
of an admixture during the fluid filtration in non-periodic pore space with given divergent-free velocity.
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