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Abstract. We consider the evolution of the free boundary separating
two immiscible viscous fluids with different constant densities in an elastic
porous skeleton. The motion of the liquids is described by the Stokes equa-
tions driven by the input pressure and the force of gravity. For flows in a
bounded domain, we emphasize the study of the properties of the moving
boundary separating the two fluids.
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1 Introduction

As a pore space let us consider isolated parallel capillaries Π = {−l < x
′
1 <

l,−L < x
′
2 < L} (Fig. 1)which are periodically repeated in the rectangle

target domain Ω with sufficiently small l (ideal soil). Let Ωf and Ωs, respec-
tively, be the domains occupied by the pore space and the solid skeleton
and Ω+

f (t), and Ω−
f (t) be the subdomains Ωf , occupied, respectively, by the

fluid 1 and the fluid 2.

If µ+, ρ+
f and µ−, ρ−f are the densities and viscosities of fluids, the

displacement of fluids in the domains Ω±
f (t) are described by the system of
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Figure 1: Parallel capillaries

Stokes equations

∇ ·
(
αµ± D(x,v±)− p±f I

)
+ ρ±f g = 0,

∇ · v± = 0,

for the velocity v± and pressure p.

On the free boundary γ(t) fluid velocities and the normal stresses are
continuous

v+ = v−,(
αµ+ D(x,v+)− p+

f I
)
· n =

(
αµ− D(x,v−)− p−f I

)
· n, (1)

where n is the normal vector to the free surface.

The condition of the material interface γ(t) allows us to consider a joint
motion of two fluids as the displacement of a non-homogeneous fluid with
variable density and viscosity, that do not change along the particles’ paths.
Differential equations of the motion have the form

∇ ·
(
αµD(x,v)− pf I

)
+ ρfg = 0, (2)

∇ · v = 0, (3)

∂ρf
∂t

+∇ · (ρfv) =
∂ρf
∂t

+ v · ∇ρf = 0,

where v = v±, ρf = ρ±f , pf = p±f in Ω±
f .
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Displacement of the medium in the solid skeleton Ωs are described by
the Lamé equations

∇ ·
(
αλD(x,ws)− ps I

)
+ ρsg = 0, (4)

∇ ·ws = 0. (5)

We have the usual conditions of continuity for the velocity vector in
the continuous medium and normal stresses on the boundary Γ (“solid
skeleton-pore space”)

∂ws

∂t
= v, (6)(

αλD(x,ws)− ps I
)
· n =

(
αµD(x,v)− pf I

)
· n. (7)

This statement is generalized, because it allows us to write the equations of
motion in the form of integral identities which do not include the concept
of a free boundary between two fluids.

In fact, it is sufficient to determine wf and ws as

∂wf

∂t
= v, w = wf ∈ Ωf , w = ws ∈ Ωs.

Let us multiply equation (2) and (4) by an arbitrary smooth function
ϕ and integrate the results by parts respectively in Ωf and Ωs. Then sum
results∫

Ω

((
χαµD(x,

∂w

∂t
) + (1− χ)αλD(x,w)− p I

)
:

D(x, ϕ)− ρg · ϕ
)
dx = 0. (8)

Here ρ = ρfχ + ρs(1 − χ), p = pfχ + ps(1 − χ). The integrals over the
boundary Γ are lost due to boundary conditions (6) and (7).

The differential form of equation (8) has the form

∇ ·
(
χαµD(x,

∂w

∂t
) + (1− χ)αλD(x,w)− p I

)
+ ρg = 0. (9)

The equation of motion (9) is supplemented by the continuity equation

∇ ·w = 0,

which obviously follows from (3) and (5).
The basic equation for an elastic body is written in the Lagrangian

formulation:

ρ
∂v

∂t
−∇ · (2λD(w)− pI) + ρg = 0,x ∈ Ωs, (10)
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where v is the velocity field and D(w) is the symmetric second order tensor
[17]

D(w) =
1

2

(
∇′w + (∇′w)T

)
.

To close the system of equations we require speed and displacement
conditions for the second term:

∂w

∂t
− v = 0, x ∈ Ωs, (11)

Inserting (11) into (10), we obtain the equation for w

ρ
∂2w

∂t2
−∇ · (2λD(w)− pI) + ρg = 0,x ∈ Ωs. (12)

In Ωs the displacement of elastic skeleton ws and the pressure ps satisfy
the Lamé equations (1) and (2) on the boundary Γ with conditions (6) and
(7).

A two-phase flow can be realized in various ways, for example by estab-
lishing a liquid level (level-set method). The transport equation is solved
as

∂φ

∂t
+ v · ∇φ = 0, x ∈ Ωf , (13)

where φ is the transport function. The method for establishing the level
of the interface between two fluids is determined as a specified isosurface.
Therefore at each time a step phase in each computational cell is determined
by comparing a simple scalar.

The condition (7) with surface tension takes the form(
(D(v+)− p+I) · n− (D(v−)− p−I) · n

)
=
σ

R
l, x ∈ γ(t), (14)

where n is the unit normal to γ(t), R is the curvature radius, l is the unit
tangent vector to the interface, σ is the surface tension and (14) coincides
with the boundary condition (1) in the absence of surface tension (σ = 0).

The system of equations (2)–(7) and (13) is supplemented by boundary
conditions

(2µD(v)− pI)n = −p±n, x ∈ S±, (15)

(2µD(v)− pI)n = (λD(w)− pI)n, x ∈ Γ, (16)

vf · n = 0; n · (2µD(vf )− pf I)n = 0, x ∈ S0, (17)

w|t=0 = 0, x ∈ Ω; v|t=0 = 0, x ∈ Ω; ϕ|t=0 = 0, x ∈ Ωf , (18)

where S0 is the boundary of symmetry.
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2 ALE-formulation

For the numerical solution of the problem of the joint motion of a fluid
and an elastic body we used both formulations: as two functions (w,v) –
equations (10), (11), and as a single function (w) – equation (12) (see [16],
[12]).

Here are two formulations of the equations for the fluid component.
The first is the Eulerian (natural) fluid description, the second is a free
Lagrangian-Eulerian formulation (ALE-formulation). The ALE-description
is necessary to simulate fluid-structure interaction and allows us to link the
boundary conditions between the fluid and the elastic body.

For a viscous incompressible fluid the system of equations consists of
Stokes equations in the Euler formulation are:

ρ
∂v

∂t
−∇ · (2µD(v)− pI) + ρg = 0,x ∈ Ωf (t), (19)

where Ωf (t) is the current fluid deformable area, v is the fluid velocity field,
p is the pressure, µ is the viscosity, and D(v) is the symmetric second order
tensor

D(v) =
1

2

(
∇v + (∇v)T

)
and the condition of incompressibility is

∇ · v = 0, x ∈ Ωf (t). (20)

As previously mentioned, the arbitrary Lagrangian-Euler formulation
is needed to describe the fluid-structure interaction in a single system. For
this we rewrite the equations (19) and (20), using the following relations:

∇v = ∇′vkF−1

and
∂v

∂t
=
∂vk
∂t
− vf · (∇

′
vkF

−1),

where k is the index denoting the variables in the ALE formulation, vf is
the fluid velocity field, which is defined as vf = ∂χ/∂t. The deformation
gradient is defined as

F = ∇′w + I,

where I is the identity tensor, ∇′ denote differential operators with respect
to the start position X of a material point. Motion defined as

χ(X, t) = X + w,
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w = x(X, t)−X.

Thus equation (19) takes the form:

ρ
∂vk
∂t
−∇ · (2µD(vk)− pkI) + ρgk = 0,X ∈ Ωf (0), (21)

and
(F−1 : ∇′vTk ) = 0, X ∈ Ωf (0), (22)

where Ωf (0) is the region being considered that is occupied by the fluid.
The stress tensor is:

D(vk) =
1

2

(
∇′vkF−1 + F−T (∇′vk)T

)
.

Now when the system of Stokes equations is written in an arbitrary
Lagrangian-Euler formulation, it is possible to combine it with the equa-
tions for an elastic body and solve the problem of fluid-structure interaction.

For equation (13), as well as for equation (21) the required
ALE-formulation to find values in the calculated deformed area is:

∂φ

∂t
+ (vk − vf ) · ∇φ = 0, X ∈ Ωf , (23)

where vf = (x(tn+1)−x(tn))/∆t is the velocity of computational mesh and
∆t is the time step.

It should be noted that the equations (21), (22) and (23) are a coupled
system where there is a mutual influence of the level-set function on the
liquid velocity. If there is an elastic body as a third phase, then the fluid
will affect the displacement of the elastic body, and the body in turn will
act on the fluid subdomain (Fig. 2).

Fluid 1+2 (ALE)

Interface

Mesh

Structure

Figure 2: Interaction of the two-phase liquid components and elastic body

The determinant of F is

J = det(F).
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3 Finite element method

There are several methodologies for solving the partial differential equa-
tions (PDE) described above. Some of the more common methods are the
finite element method (FEM), the finite volume method (FVM), and the
discontinuous Galerkin method (DGM). Although all of these methods can
be used for any PDE, and therefore work for both solid and fluid analysis,
FEM is typically used to analyze solids, while FVM and DGM are more
commonly used for fluid analysis.

The finite volume method divides the computational domain into a finite
number of locally-conservative control volumes centered about a node. All
of the quantities for a control volume are calculated at this node, so they
have to be interpolated to the volume’s surface. The finite volume method
is locally- and globally-conservative as long as consistent surface integrals,
which correspond with convective and diffusive fluxes, are used between
neighboring control volumes and the domain boundary [4], [18]. The fact
that mass and other properties are conserved through each volume makes
FVM ideal for CFD; unfortunately, as all calculations are for the volume
as a whole, FVM is inherently poor at structural analysis, where localized
stresses could occur at locations poorly represented by the control point.

Instead of breaking the domain up into node centered volumes, the
finite element method divides the domain into individual elements which
contain basis functions. Basis functions are members of a function space,
such as polynomials, which approximate the values a quantity has inside
the element [1]. Basis functions allow for interpolation of data at any
point inside the element, which makes FEM desirable for structural analysis
[9,10]. As the computational ability of computers has increased, FEM has
been growing in popularity for use in CFD as well.

The discontinuous Galerkin method is unique in that it has the benefits
of both FEM and FVM. DGM uses basis functions inside the element, like
FEM, but it couples neighboring elements through fluxes, like FVM. This
leads to it being locally conservative, stable, and high-order accurate while
also allowing for complex geometries, irregular meshes with hanging nodes,
and approximations that have polynomials of different degrees in different
elements [2]. However, due to its perceived computational cost, DGM is
less frequently used than FEM or FVM.

Due to the desire to provide both partitioned and monolithic fluid-
structure interaction coupling, a unified framework is required for the solid
and fluid formulations in this research. This not only entails the ALE
description discussed in the previous section, but also a unified solution
method. Based on the discussion above, along with more reasons men-
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tioned in the following section, the finite element method was chosen as
the solution technique (see [6,11,15,19]). The weighted residuals method is
used to convert differential equations in integral form (weak formulation).
The spatial discretization of a weak formulation allows one to obtain a sys-
tem of ordinary differential equations in time (semi-discrete form). Time
discretization of semi-discrete equations leads to a fully discrete system of
algebraic equations. If this is non-linear, it must be linearized.

All of the governing equations presented necessitate second derivatives
in their current form, which can be very difficult to solve. According to the
numerical method, it is necessary to rewrite the original system of equations
in a weak formulation. To do this, multiply our equations by an arbitrary
weight function such that û ∈ H1

Γ = {û ∈ L2, û|Γ = 0} and integrate each
term (see [3]).

Thus, the weak form of the equations of elasticity will be as follows:∫
Ωs

ρ
∂2w

∂t2
· ŵ−

∫
Ωs

div (2µD(w)− pI) · ŵ−
∫

Ωs

ρg · ŵ = 0. (24)

Using integration by parts, the stress tensor takes the form:∫
Ωs

div (2µD(w)− pI) · ŵ =

∫
∂Ωs

t · ŵ−
∫

Ωs

(D(w)− pI) · ∇ŵ, (25)

where t ≡ (D(w)− pI) · n. Inserting (25) into (24) we obtain:∫
Ωs

ρ
∂2w

∂t2
· ŵ +

∫
Ωs

(2µD(w)− pI) : D(ŵ)−
∫

Ωs

ρg · ŵ−
∫
∂Ωs

t · ŵ = 0,

and perform the same procedure for (10) and (11), taking the weight func-
tions v̂ of velocities and ŵ of displacements respectively:∫

Ωs

ρ
∂v

∂t
· v̂+

∫
Ωs

(2µD(w)− pI) : D(v̂)−
∫

Ωs

ρsg · v̂−
∫
∂Ωs

t · v̂ = 0, (26)

∫
Ωs

∂w

∂t
· ŵ−

∫
Ωs

v · ŵ = 0, (27)

The weak formulation of the Stokes equations will have the form:∫
Ωf

ρ
∂v

∂t
· v̂ +

∫
Ωf

2µD(v) : D(v̂)−
∫

Ωf

p div v̂ =

∫
Ωf

ρg · v̂ +

∫
∂Ωf

t · v̂,

∫
Ωf

p̂ div v = 0,
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where p̂ is the weight function of pressure.
The ALE-formulation will be the same, but it is necessary to consider

the transition from Euler form to ALE form∫
Ωf (t)

f(x) dx =

∫
Ωf (0)

fk(X) dX.

Further Ωf ≡ Ωf (0). Taking the same weight function, as well as for the
formulation of the Euler equations, we obtain the weak formulation of the
equation(21) and (22)∫

Ωf

Jρ
∂vk

∂t
· v̂+

∫
Ωf

J(2µD(vk)−pkI)F−T : D(v̂)−
∫

Ωf

Jρgk · v̂−
∫
∂Ωf

Jtk · v̂ = 0,∫
Ωf

(JF−1 : ∇′vTk ) · p̂ = 0.

4 Finite element spatial discretization

The meaning of digitization is to divide the area into separate limited piece-
wise continuous subregions. The set of these elements is defined as a mesh,
which is a model of the original area. The basic variables are the approx-
imated nodal values multiplied by the basis vector, which is required for
interpolation within the cell. Our approximation will be as follows:

w ≈
n∑
j=1

ŵjWj , v ≈
n∑
j=1

v̂jVj , p ≈
n∑
j=1

p̂jPj ,

where ŵj , v̂j and p̂j are j-th basis vectors, n is the number of nodes, Wj , Vj
and Pj are j-th values at the nodes associated with the primary variables.
The set of basis vectors is taken as a set of weighted vectors. Thus the
weighted function can be determined as follows:

ŵ =
n∑
i=1

ŵiWi, v̂ =
n∑
i=1

v̂iVi, p̂ =
n∑
i=1

p̂iPi.

Nodal values associated with weighted functions are arbitrary, so they can
be ignored.

5 Finite element time discretization

Finite differences are used to approximate our equations. The general equa-
tion after the spatial discretization will be as follows:

dv(t)

dt
= g(t).
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Integrating both sides over time we get:∫ tn+1

tn

dv(t)

dt
dt =

∫ tn+1

tn

g(t)dt.

The first integral can be written as∫ tn+1

tn

dv(t)

dt
dt = vn+1 − vn,

the second integral can be approximated by using only the average value
for a certain time τ ∫ tn+1

tn

g(t)dt ≈ g(τ)∆t,

where tn ≤ τ ≤ tn+1. Then the explicit left and right implicit Euler
approximation will have the form:

vn+1 − vn

∆t
= g(tn+1),

vn+1 − vn

∆t
= g(tn).

To combine the left and right sides in Euler’s method, we use the θ-method:

vn+1 − vn

∆t
= θg(tn+1) + (1− ϑ)g(tn),

where θ = 1 or θ = 0. The special case, when θ = 0.5, can be approximated
as:

vn+1 − vn

∆t
= 0.5 (g(tn+1) + g(tn)) ,

to satisfy the second order condition of accuracy with respect to time.

Using the θ-method, rewrite the equations (26) and (27) as follows:∫
Ωs

ρ
vn+1 − vn

∆t
· v̂ = θ

(
−
∫

Ωs

Tn+1
R · v̂ +

∫
∂Ωs

tn+1 · v̂
)

+ (1− θ)
(
−
∫

Ωs

Tn
R · v̂ +

∫
∂Ωs

tn · v̂
)
,

∫
Ωs

ρ
wn+1 −wn

∆t
· ŵ = θ

∫
Ωs

vn+1 · ŵ + (1− θ)
∫

Ωs

vn · ŵ,

where TR = 2µD(v)− pI.
The time derivatives for other governing equations are handled with the

θ-method. For brevity, we will not write it here.
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6 Fluid-structure interaction

The system of equations for a fluid-structure interaction arises by finding
the residuals of the discretized governing equations (the discretization error)
and taking a Taylor series expansion of these residuals (see [8], [14]).

In the appropriate Jacobians, residuals, and unknowns, the monolithic
system of equations can be written as

Jwsws Jwsvs Jwsvf Jwspf Jwswm

Jvsws Jvsvs Jvsvf Jvspf Jvswm

Jvfws Jvfvs Jvfvf Jvfpf Jvfwm

Jpfws Jpfvs Jpfvf Jpfpf Jpfwm

Jwmws Jwmvs Jwmvf Jwmpf Jwmwm



Ws

Vs

Vf

Pf

Wm

 = −


Rws

Rvs

Rvf

Rpf

Rwm

 ,
where the variables of the elastic component are denoted by index s, the
fluid component by f , and the mesh variables are m. The nonlinear terms
are linearized using the Newton-Raphson method, based on the definition
of a Jacobian (see [5]):

Jhk ≡
∂Rh

∂K
, (28)

where Rh is the h-th residual and K is some unknown.
This system is obtained by finding the residuals of the discretized equa-

tions (sampling error) and using a Taylor series expansion of these residuals.
A solid body is studied using two variables in the elasticity equations,

where the residuals are found as

Riws
=

∫
Ωs

∂ws

∂t
· ŵi

s −
∫

Ωs

vs · ŵi
s,

Rivs =

∫
Ωs

ρs
∂vs
∂t
· v̂is +

∫
Ωs

(2µD(ws)− pI) : D(v̂is)−
∫

Γ
ts · v̂is.

The position of the border “fluid-elastic body” is defined by the normal
stress

ts =
(

2µ(∇′vkF−1 + F−T∇′vTk )− pkI
)
·
(
JF−Tn

)
.

The fluid is described by the Stokes equations in the ALE-formulation
of the following residuals

Ri
vf

=

∫
Ωf

(
J ρf

∂vk

∂t
· v̂i

f

)
+

∫
Ωf

(
J(2µ(∇

′
vkF

−1 + F−T∇
′
vT
k )− pkI)F−T

)
∇

′
v̂i
f ,

and

Ripf =

∫
Ωf

(JF−1 : ∇′vTk ) · p̂i,
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where index k indicates affiliation to the ALE field.
The residuals for the computational mesh are

Riwm
=

∫
Ωf

µ(∇′wm +∇′wT
m)∇′ŵi

m +

∫
Ωf

λ(∇′ ·wm)∇′ · ŵi
m.

All of the residuals from equation (6) are now defined. Using these
definitions and applying equation (28), we can determine the Jacobians. In
the monolithic formulation many Jacobians are equal to zero in the overall
system:

Jwsws Jwsvs 0 0 0
Jvsws Jvsvs Jvsvf Jvspf Jvswm

0 0 Jvfvf Jvfpf Jvfwm

0 0 Jpfvf 0 Jpfwm

0 0 0 0 Jwmwm



Ws

Vs

Vf

Pf

Wm

 = −


Rws

Rvs

Rvf

Rpf

Rwm

 ,

For convenience, we denote ()
′ ≡ ∂()/∂Wm. In assessing the Jacobian

the following identities are required [7]:

J
′

= J tr(F
′
F−1),

(F−T )
′

=
(

(F−1)
′
)T

,

(F−1)
′

= −F−1F
′
F−1,

F
′

= ∇′ŵj
m.

The approximate velocity of the mesh motion in the fluid components like
vm ≈ (χ− χn)/∆t, are

v
′
m =

ŵj
m

∆t
.

Jacobians of the solid part will be

J ijwsws
=

∫
Ωs

∂ŵj
s

∂t
· ŵi

s,

J ijwsvs = −
∫

Ωs

v̂js · ŵi
s,

J ijvsws
=

∫
Ωs

Tj
R∇

′
v̂is,

J ijvsvs =

∫
Ωs

ρs
∂v̂js
∂t
· v̂is,
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where

Tj
R = ∇′wj

s [2µD(ws) + psI] + (I +∇′ws)
[
2µD(ŵj

s) + psI
]
.

The Jacobians of the fluid part will be as follows:

J ijvfpf = −
∫

Ωf

Jp̂jfF
−T ∇′ v̂if ,

J ijpfvf =

∫
Ωf

(JF−1 : ∇′ v̂jf )p̂i,

J ijvfvf =

∫
Ωf

Jρf
∂v̂jf
∂t
· v̂if +

∫
Ωf

Jρf v̂
i
f (∇′vkF−1) · v̂jf

+

∫
Ωf

(J 2µ∇′ v̂jfF
−1F−T )∇′ v̂if +

∫
Ωf

(J 2µF−T∇′ v̂jfF
−T )∇′ v̂if .

The Jacobian of the computational mesh is

J ijwmwm
=

∫
Ωf

µ(∇′wj
m +∇′wj

m
T

)∇′ŵi
m + (λ(∇′ · ŵj

m)∇′ · ŵi
m).

And the Jacobians of fluid interaction with the computational mesh will
look like:

J ijvfwm
=

∫
Ωf

J
′
ρf
∂vk
∂t
· v̂if −

∫
Ωf

[J
′
ρf (∇′vkF−1)(vm)] v̂if

−
∫

Ωf

[Jρf (∇′vk(F−1)
′
)(vm)]v̂if −

∫
Ωf

[Jρf (∇′vkF−1)(v
′
m)]v̂if

+

∫
Ωf

[J
′
ρf (∇′vkF−1)(vk)]v̂

i
f +

∫
Ωf

[Jρf (∇′vk(F−1)
′
)(vk)]v̂

i
f

−
∫

Ωf

[J
′
pkF

−T ]∇′ v̂if −
∫

Ωf

[Jpk(F
−T )

′
]∇′ v̂if

+

∫
ΩF

[J
′
µ∇′vkF−1F−T ]∇′ v̂if +

∫
ΩF

[J µ∇′vk(F−1)
′
F−T ]∇′ v̂if

+

∫
ΩF

(J µ∇′vkF−1(F−T )
′
)∇′ v̂if +

∫
ΩF

[J
′
µF−T∇′vTkF−T ]∇′ v̂if

+

∫
ΩF

[J µ(F−T )
′∇′vTkF−T ]∇′ v̂if

+

∫
ΩF

[J µF−T∇′vTk (F−T )
′
]∇′ v̂if ,

J ijpfwms
=

∫ ′
Ωf

(J
′
F−1 : ∇′vTk ) · p̂i +

∫
Ωf

(J(F−1)
′

: ∇′vTk ) · p̂i,
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Application of equation (28) implies that there should also be Jacobians
J ijvsvf , J

ij
vspf , J

ij
vswm . But these terms appear in the monolithic case, and only

as a result of the fluid traction acting on the solid. Velocity continuity
is strongly enforced across the interface. This means the velocities are
continuous on the interface.

The key point here is that the weight functions must also be continuous,
as they are defined using the same basis vectors as for the velocity and
displacement. This means that v̂f−v̂s |Γ = 0. The rigid body displacement
defines an offset mesh on the border of the “liquid-solid body”:

wm −ws |Γ = 0,

and the velocity of the solid state defines the velocity of the fluid at the
same border:

vf − vs |Γ = 0.

7 Error estimation

The method of manufactured solutions [13] is used to verify governing equa-
tions. After the exact solution is chosen, the verification is done by exam-
ining the error between the exact solution and the approximate solution.
Two error norms were considered: L2 (Hilbert space) and H1 (Lebesgue
space). The errors with respect to these norms are defined over a mesh cell
k as

‖w − wh‖L2(k) =

√∫
k
|w(x)− wh(x)|2dx, (29)

‖w − wh‖H1(k) =

√
‖w − wh‖2L2(k)

+

∫
k
|∇w(x)−∇wh(x)|2dx, (30)

where, for this case, w(x) is the exact solution, wh(x) is the approximate
solution.

Thus
‖w − wh‖ = c hα+β, (31)

where α is a parameter based on the space of the norm, β is a polynomial
order, h is a cell width, c is a constant. Note that error norms in the Hilbert
space are optimal when α = 0, but in the Lebesgue space when α = 1.

This method was applied to the discrete governing equations developed
above. For brevity, let us estimate the errors only for the Lame’s elastic-
ity equations (10)–(12). The manufactured solution for the displacement
w = (w1, w2) is chosen as: w1 = 2 sin(2πx) sin(πy) sin(πt),
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Table 1: Error estimation for Q1 displacement and velocity elements of the
elasticity equations.

cells ‖w1 − w1h‖L2 ‖w1 − w1h‖H1

64 2.754E-06 0.621E-04
256 0.504E-06 2.843E-05

1024 1.154E-07 1.840E-05
4056 2.911E-08 0.732E-05

cells ‖w2 − w2h‖L2 ‖w2 − w2h‖H1

64 1.812E-06 3.221E-05
256 3.812E-07 1.583E-05

1024 0.753E-07 0.750E-05
4056 1.742E-08 3.720E-06

cells ‖v1 − v1h‖L2 ‖v1 − v1h‖H1

64 0.610E00 1.505E01
256 1.251E-01 0.741E01

1024 2.434E-02 3.612E00
4056 0.734E-02 1.825E00

cells ‖v2 − v2h‖L2 ‖v2 − v2h‖H1

64 4.753E-01 0.806E01
256 0.948E-03 3.821E00

1024 1.923E-03 1.841E00
4056 4.353E-03 4.605E-01

w2 = − cos(2πx) cos(πy) sin(πt). The manufactured solution for the ve-
locity v = (v1, v2) is chosen as: v1 = 2π sin(2πx) sin(πy) cos(πt), v2 =
−π cos(2πx) cos(πy) sin(πt).

Table 1 shows the error norms for Q1 elements. Using equation (31) we
can compare to the optimal rate, where the α+β is the optimal rate. Here
β = 1. As we can see, the model convergences are optimal. These errors
were calculated with a timestep size ∆t = 0.0001.

Following the same procedure as before, we can get error norms for
Stokes equations (2) and (3). The manufactured solution for the velocity
v = (v1, v2) is

v1 = sin(4πx) sin(4πy) sin(4πt), v2 = cos(4πx) cos(4πy) sin(4πt),

and the pressure p is p = 4πµ cos(4πx) sin(4πt) sin(4πy). Q2 elements are
used for the velocity and Q1 elements are used for the pressure.
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8 Numerical experiments

Applying the above algorithms for numerical simulation of fluid-by-fluid
displacement in an elastic porous medium, we were able to obtain the de-
pendence of the interface velocity on the Lame’s coefficient of elasticity.
For all the cases considered below there is a distinctive feature of the free
surface behavior.

Numerical simulations indicated that there are differences using various
values of the coefficient of elasticity. It is noticeable that with an increased
coefficient of elasticity the fluid movement in the capillary is reduced (see
Fig. 3–5). The propagation velocity of the free boundary in an elastic
porous medium also depends on the surface tension coefficient (see Fig.
6–7).
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Figure 3: The plot of the free boundary position changes over time for
different values of λ = [15; 50; 200]. Here density ρ+ = 1.1, ρ− = 0.86,
viscosities µ+ = 0.001, µ− = 0.01, inlet pressure p+ = 10 and surface
tension σ = 0.
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Figure 4: The plot of the free boundary position changes over time for
different values of λ = [20; 200; 800]. Here density ρ+ = 1.1, ρ− = 0.86,
viscosities µ+ = 0.001, µ− = 0.01, inlet pressure p+ = 10 and surface
tension σ = 0.5.

t=0 t=10 t=30 t=40 t=50 t=60 t=0 t=10 t=30 t=40 t=50 t=60

H
e
ig
h
t

λ=200 λ=15

Figure 5: Numerical simulation results for different λ = [15; 200] over time.
Here density ρ+ = 1.1, ρ− = 0.86, viscosities µ+ = 0.001, µ− = 0.01, inlet
pressure p+ = 10 and surface tension σ = 0.1.
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Figure 6: The plot of the free boundary position changes over time for
different values of σ = [0.1; 0.3, 1]. Here density ρ+ = 1.1, ρ− = 0.86,
viscosities µ+ = 0.001, µ− = 0.01, inlet pressure p+ = 10 and Lame’s
coefficient λ = 50.
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Figure 7: Numerical simulation results for different σ = [0.1; 0.9] and λ =
[15; 50; 200] at time t = 25. Here density ρ+ = 1.1, ρ− = 0.86, viscosities
µ+ = 0.001, µ− = 0.01, inlet pressure p+ = 10.
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9 Conclusion

In this paper, the finite element method (FEM) were used for the nu-
merical solution of two dimensional problem for a viscoelastic filtration
on the microscopic level. The results showed a direct dependence of the
free-boundary propagation velocity on the surface tension and the Lame’s
elastic coefficient. It is worth noting the occurrence of significant artifacts
with invalid values of λ and σ.
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