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Abstract— A theoretical description of the steady-state motion of a large solid aerosol spherical particle mov
ing in a gas under the effect of an intense electromagnetic radiation is given in the Stokes approximation. In 
considering this motion, it is assumed that the mean temperature of the particle surface may differ substan
tially from the temperature of the gaseous medium surrounding the particle. In solving gas-dynamics equa
tions, analytic expressions for the photophoretic force and velocity were obtained with allowance for the tem
perature dependences of the gas density, viscosity, and thermal conductivity.

INTRODUCTION

The phenomenon of photophoresis in gases con
sists in the motion of aerosol particles in the field of 
electromagnetic radiation under the effect of a radio- 
metric force. Photophoresis may play a substantial role 
in atmospheric processes [1—3], industrial gas clean
ing from aerosol particles, creation of facilities 
intended for a selective separation of particles accord
ing to their dimensions, and so on. The photophoresis 
mechanism can be briefly described as follows. Owing 
to the interaction of electromagnetic radiation with a 
particle, a thermal energy of space density qp is depos
ited within the particle, whereby it is heated nonuni- 
formly. Colliding with the particle surface molecules 
of the gas surrounding the particle are reflected with a 
higher velocity from its heated than from its colder 
side. As a result, the particle acquires an uncompen
sated momentum directed from the heated to the 
colder side of the particle. Depending on the dimen
sions of the particle and on the optical properties of its 
material, either the illuminated or the dark side of the 
particle may prove to be hotter. Therefore, there may 
occur either a positive (particle motion in the direc
tion of the propagation of radiation) or a negative pho
tophoresis. Moreover, particle motion in a gas in the 
direction transverse with respect to the propagation of 
electromagnetic radiation may arise if the radiation 
flux is nonuniform over the cross section.

In the studies devoted to the theory of photophore
sis and published thus far, this phenomenon was ana
lyzed at small relative temperature gradients [4—7]—  
specifically, under the condition (TpS — TgQO)/TgXl < 1, 
where T„s is the mean temperature of the particle sur
face and Tgco is the temperature of the gas medium at 
large distances from the particle surface. At large rela
tive temperature gradients such that (TpS — TgQO)/TgXl ~ 
0(1), this phenomenon has not yet received adequate

study. Hereafter, the indices g andp  refer to the gas and 
particle, respectively, and we use the index .S' to label 
physics quantities taken at the mean temperature of 
the particle surface and the index oo to label physics 
quantities characterizing the gaseous medium in an 
unperturbed flow.

If the mean temperature of the particle surface dif
fers substantially from the temperature of the sur
rounding gaseous medium, then we run into a serious 
problem. In solving gas-dynamics equations, it is nec
essary to take into account the temperature depen
dence of molecular-transport coefficients (viscosity 
and thermal conductivity) for the gaseous medium 
and its density— that is, the set of gas-dynamics equa
tions becomes substantially nonlinear. In view of this, 
there are a few articles in the literature that are devoted 
to studying particle motion in the case of a high tem
perature gradient [8—10]. It should be noted that, in 
[9], solutions of differential equations that describe 
the velocity and pressure fields were sought in the form 
of power series by the order-reduction method. As a 
result, ultimate expressions proved to be quite cum
bersome and difficult in applications. In the present 
study, we solve directly the gas-dynamics equations in 
the form of generalized power series, and this makes it 
possible to represent expressions for the photophoretic 
force and velocity in a compact form and to simplify 
substantially numerical calculations for purposes of 
practical applications.

FORMULATION OF THE PROBLEM

Let us consider a nonuniformly heated solid spher
ical aerosol particle of radius R suspended in a gas of 
temperature Tg, density pA„ thermal conductivity /.,,, 
and viscosity |x„ By a heated particle, we mean a par
ticle for which the mean surface temperature differs
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markedly from the temperature of the gaseous 
medium at a large distance from the particle surface. 
As was indicated above, the molecular-transport coef
ficients cannot be treated in this case as constants. In 
describing the properties of the gaseous medium (vis
cosity and thermal conductivity), we assume here that 
they are power-law functions oftemperature [1]; that is,

T \  ß

^ p  — ^pO

where

qp(r) = 27ixfco4®(r), (1 )

where
2 71

M'gco M ' g C ’ “̂gco ’
^po = ^pi.Tgca),

0.5 < a, p < 1, -1 < y < 1.
In particular, we have a  = 0.81 and p = 0.72 for air 

and a  = 0.77 and p = 0.69 for nitrogen in the temper
ature range from 300 to 900 K; for a copper particle, 
y = —0.01 up to the melting temperature. Also, we 
set Tgx = 273. The relative error of the above formulas 
(comparison with experimental data) does not 
exceed 5% [11].

Nonuniform heating of a particle is due to the 
absorption of the incident electromagnetic radiation. 
The degree of nonuniformity depends on the optical 
constants of the particle material and on the diffrac
tion parameter [12]. Interacting with the surface 
heated nonuniformly, the gas begins moving along the 
surface in the direction of an increase in the tempera
ture. This phenomenon is referred to as thermal slid
ing. It causes the appearance of a photophoretic force 
and the force of medium viscous resistance. As soon as 
the former becomes equal in magnitude to the latter, 
the particle in question begins moving at a constant 
velocity. This velocity is referred to as a photophoretic 
velocity (Uph).

The particle moves at low Peclet and Reynolds 
numbers, and one assumes that the particle is uniform 
in composition and large. In what is concerned with 
the latter, it should be noted that the Knudsen number 
Kn = 7./R, where /. is the mean free path of molecules 
of a gaseous mixture, is applied to classify aerosol par
ticles according to dimensions. Particles are referred 
to as large ones if Kn < 0.01, moderately large ones if 
0.01 < Kn < 0.3, and small ones if Kn 1. In tackling 
the problem at hand, we apply the hydrodynamics 
method— that is, we solve fluid-dynamics equations 
supplemented with respective boundary conditions.

It is convenient to describe the motion of a particle 
in the system of spherical coordinates r, 0, and cp 
comoving with the center of mass of the aerosol parti
cle being considered. The OZ  axis is aligned with the 
direction of propagation of a uniform flux of radiation 
with intensity I0. In this case, the spatial density of 
internal heat sources has a standard form [ 12]; that is,

B(r, 0, cp) = 62’ ^  dip = b ( t, 0, cp =
o u

is the dimensionless electromagnetic-energy source 
function in the case of unpolarized incident radiation, 
E(r, 0, cp) is the local electromagnetic-field strength 
within the particle, E0 is the amplitude of the field 
strength in the incident wave, k0 = 2n/'k(j is the wave 
number, /.0 is the wavelength, and m(k0) = n + i% is the 
complex refraction index of the particle material for a 
given radiation wave. In order to calculate the dimen
sionless source function B(r), one usually employs the 
solution of the Mie problem for the internal field (see, 
for example, [4]). Since the reference frame used 
moves together with the center of mass of the aerosol 
particle, the problem reduces to analyzing the motion 
of a plane-parallel flow around the particle, the gas 
velocity at infinity being the sign-reversed photo
phoretic velocity (that is, U.y = —Uph).

Within the assumptions formulated above, the 
fluid-dynamics equations, the heat equation, and the 
boundary conditions (in the system of spherical coor
dinates) have the form [15, 16]

A
dXj

d_
dXj

|i.
dxj

+ - - S '  
dXj 3 dxLk-

Ô (
dxk P'g u k) = 0,

div(A, V T ) = 0, n„
k /

(2) 

(3)

div(XpVTp) = -qp. (4)
wherex/. are Cartesian coordinates; qp is the density of 
heat sources, which are nonuniformly distributed over 
the particle volume and which are responsible for the 
heating of the particle; p,, = p,,, mg, and ng are,
respectively, the density, mass, and concentration of 
gaseous-medium molecules; k  is the Boltzmann con
stant; and

r = R , Tg = Tp,

d E  _ d l ,  ^
S Qr \  Qr  + a 0a i ( I p  Tgco), (5)

= 0, = *is R T a 50 ’

r
and

■ 00, = U, cos(

P, Tp *  oo.

= -C/^sin©, (6)

(7)

Here, lfr and Ui are the components of the gas mass 
velocity U and Kts is the thermal-sliding coefficient,
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which is found by methods of the kinetic theory of 
gases. In the case where the accommodation coeffi
cients for the tangential momentum and energy (aT 
and aE, respectively) are equal to unity, the gas-kinet- 
ics coefficient is Kts = 1.152 (see, for example, [17]); 
further, ct0 is the Stefan—Boltzmann constant, while ct, 
is the integrated degree of blackness [18].

In the boundary conditions in (5) at the surface of 
the aerosol particle, we have taken into account the 
equality of the temperatures, the continuity of the heat 
fluxes, the impenetrability condition for the normal 
component of the mass velocity, and thermal sliding 
for its tangential component. The boundary condi
tions in (6) are valid at large distances from the particle 
(r —► oo). The finiteness of physics quantities character
izing the particle for r —► 0 is taken into account in (7).

We now reduce Eqs. (2)—(4) and the boundary 
conditions in (5)—(7) to a dimensionless form by 
introducing dimensionless coordinates, velocity, and 
temperature as follows: yk = xk/R, t = T/Tgx, V„ = 
i y  £4, and Ux = |UJ.

At small Reynolds numbers, the incoming flow has 
only a perturbing effect; therefore, we can seek a solu
tion of fluid-dynamics equations in the form

V  =  +  s v i 2) + P = M0) + sP[r> +

(s = Reœ = (p U^R)/^ < 1).
(8)

tg(y,&) = tg0(y) + stgl(y,d),

tp(y,Q) = tpo(y) + ztpl(y’ e ) ’
(9)

where

= ( i  + v
r  A 1/(1 + “)

I N  1
fp o O ) =  B o +  — ' -  -  |V o  dy  +  \— dy

\ y  V j  j  V

1/(1+Y)

cosG r
t

2’

tpiiy, 0 ) =
cost

V o

+ lh \ - 2d y - \ ^ xydy 
i y  y  l 

U  _  ^ 2( 1 +  y ) j  f f  -HQ — Jq, III — R
^p()Tgm ^p()Tgm

V =  -7l R \  
3

Jo = QpdV, J  = i  | QpZdV,
V V

Here, ^qp z.dV\s the dipole moment of the heat-source

= density [1,4, 6, 7, 9, 12, 14],

i?2( l+ y )  2 
v° = - 01|V j 1 y

pO geo
^qp(r, Q)dx,

Vi =
3 R

Tgm
y 2 | QP(r, Q)xdx,

The form of the boundary conditions indicates that 
it is natural to seek expressions for the mass-velocity
components Ff and in the form of expansions in 
Legendre and Gegenbauer polynomials [16]. It is well 
known [16] that, in order to determine the resulting 
force that acts on the particle, it is sufficient to deter
mine the first terms of these expansions.

TEMPERATURE FIELDS OUTSIDE 
AND WITHIN A PARTICLE

In determining the photophoretic force and veloc
ity, we restrict ourselves to corrections of the first order 
of smallness. In order to find them, it is necessary to 
know the temperature fields outside and within the 
particle being considered. For this, we must solve Eqs. 
(3) and (4). Solving these equations by the method of 
separation of variables, we obtain the temperatures tg 
and t„ in the form

x = cost), z = r cost), 
where y  = x /r  is the dimensionless radial coordinate.

The constants of integration that appear in the 
expressions for the temperature fields are determined 
from the boundary conditions at the particle surface. 
In particular, the resulting expression for the coeffi
cient T is

R

lgs ‘hpsTgaoS
-J.

where S = 1 gcotpS >

(10)

‘hps — ‘hpotpS ’
pS pS

xgs = XgaDtgS, tpS = tp0(y = 1), and tgS = y ( y  = 1).
The mean value of the particle-surface tempera

ture, TpS, is determined by solving the set of equations

Tps ~ TgS

tgs ~
R

2 \ s Tg,
■J0 — CqCTj

RTt„

'gS

T,pS

T.,
-  1

( H )

where TpS = tpSTgrrj, TgS = tgSTgrrj, and №  = r 0/ ( l  + r„).
If the strong inequality <s? Xp holds (which takes 

place for the majority of gases), then the particle ther
mal conductivity is much greater than the gas thermal 
conductivity, in which case we can disregard the 
dependence on the angle 0 in the dynamic-viscosity 
coefficient for the particle—gas system (we assume a 
weak angular anisotropy of temperature distribution).
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Taking this into account, we can assume that viscosity 
depends only on the temperature /,,0(/')— that is, 
|X,(/,,(/', 0)) ~ |x,(/,,()(/'))• This assumption makes it pos
sible to separate the hydrodynamic and thermal parts 
of the problem, their coupling being due to the bound
ary conditions.

Substituting expressions (9) into the temperature 
dependence of the dynamic-viscosity coefficient, we 
arrive at

Ij . (y ,  0 ) = ix X o o - (12)

(13)
Ifx y,0) = UcocosQG(y),

Vi(y,Q) = -U^g(y) sin0.

where G(v) and g(y) are arbitrary functions depending 
on the coordinate y.

From the continuity equation (2) and the equation 
of state (3), we find that the functions G(y) and g(y) are 
related by the equation

g{y) =
1 dG(y)
2 dy

1 + 1

I = l(y) =

2(1 + a)

r

I G(y),
(14)

y + r 0

Substituting expressions (13) and (14) into the 
Navier—Stokes equation (2) linearized in velocity, tak
ing into account expression (12), and separating vari
ables after some algebra, we ultimately find that the 
function G(y) satisfies the nonhomogeneous third- 
order differential equation

4 e t G , , n d2G , fi.dGy — +y (4 + YiO—  - y  (4 + y2/ - y 3/ )-
dy

where

dy

- y ( 2 -  1)Yî^G = -

dy

2^  6A2

go

(1 5 )

1 - ß  Ti + ßYi = 7— - ,  Y 2 = 2— ^ , Y3 = 1 + a  1 + a

An = const.

2 + 2a -  ß 
(1 + a )2 ’ (16)

In the following, expression (12) obtained for the 
dynamic-viscosity coefficient is used to determine the 
velocity and pressure fields in the vicinity of a heated 
aerosol particle spherical in shape.

SOLVING THE HYDRODYNAMIC PROBLEM: 
DERIVATION OF EXPRESSIONS 

FOR THE VELOCITY AND PRESSURE FIELDS

An investigation of the Navier—Stokes equation 
linearized in velocity and written in terms of spherical 
coordinates revealed that, if the particle thermal con
ductivity is much greater than the gas thermal conduc
tivity (weak angular asymmetry of the temperature 
distribution), then this equation ultimately reduces to 
a nonhomogeneous third-order differential equation 
with an isolated singular point. A solution of this equa
tion can be sought in the form of generalized power 
series.

Taking into account the boundary conditions in 
(5)—(7), we seek expressions for the mass-velocity 
components of the zero-order approximation (8) in 
the form

First, we seek solutions of the respective homoge
neous equation; that is,

d G 2 , ,2\ dG
I  — , + y  (4 + YiO— ; ~ y  (4 + Y2?-Ï3? ) —

dy dy

- y ( 2 - t ) y / G  = 0.

dy (17)

For Eq. (17), the point y  = 0 is a regular singular 
point [19—21]. This follows from Eq. (17) upon going 
over to the new variable /(>')• Therefore, we seek 
its solution in the form of a generalized power series 
[19—21]; that is,

G(y) = / £ C J C0* 0. (18)
n =  0

Substituting the series in (18) into Eq. (17), we 
arrive at the equation p(p + 3)(p — 2) = 0; its roots are 
Pj = —3, p2 = 2, and p3 = 0. We note that the difference 
of the roots is an integer in magnitude. According to 
the general theory of solutions of differential equations 
in the form of generalized power series (Frobenius 
method), the solutions other than the first one (p, = —3 
in our case) develop an additional term involving a 
logarithm multiplied by the first solution [19—21]. The 
recursion relations for the respective coefficients are 
derived by the method of indeterminate coefficients.

The solution corresponding to the root largest in 
magnitude has the form

co
GjOO = i y  C1; 

y  , = n

(19)

We do not present here the solution corresponding to 
the root p2 = 2, since it does not satisfy the boundary con
ditions in (16) (finiteness of the solution for_y —► 00).

The third solution that satisfies Eq. (17) and which 
is linearly independent with the solution Gl (it is pro
portional to the root p3 = 0) is sought in the form

G3OO = X C3 , /  + ®3ln(j)G1(j). (20)
n =  0

The right-hand side of the nonhomogeneous equa
tion in (15) suggests that a particular solution of this 
equation must be sought in the form
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G(y) = A2G2(y),
co

G2(y) = - Y C 2 >nln + &2\n{y)Gl{y). 
y ^

(21)

n  =  0

c i,» =
1 ■{[(«- 1)(3« + 13« + 8)

n(n  + 3 ) (n  + 5)

+ Yi(« + 2) (n  + 3) + y2(n + 2 ) ] C 1 

-  [(« -  1 ) (n -  2) (3« + 5) + 2y1(«2 -  4) + y2(n -  2) 

+ y3(« + 3 )] C 1>„_2 + ( « - 2 ) [ ( « - l ) ( « - 3 )

+ YiO*-3) + y3]C1>B_3},

C2’'1 "  ( « +  l ) ( «  + 3 ) ( « - 2 )  

x | [ ( w _  1 ) (3 « 2 +  «  -  6) +  y j « ( «  +  1) +  « y 2]C 3

-  [y3(rt + 1) + (n -  1 ) (n -  2) (3n -  1)

+ 2y1n(n  -  2) + y2(n -  2) ]C2;B_2

+  ( n - 2 ) [ ( n -  l ) ( « - 3 )  + y3 + y1( « - 3 ) ] C 2 3

« - 1

- 6

1 0k = 0

( - Y 4 ) ( l  -  Y 4 )  -  1 — y 4 )

ni

C,,„ =
1

«(« + 2)(n -  3)
( « -  1)

x [3« -  5« -  4 + yj« + y2]C3 

-  [(« -  l)(n -  2)(3« -  4) + 2yj(« -  1 )(n -  2) 

+ y2( « - 2 )  + «y3]C3 „_2

+ (« -  2)[(« -  l )(n -  3) + y^n -  3) + y3]C3 „_3

2T Ofc = 0

A* = (3fc + 16fc + 15)C1>t-(( ik -l)(6 ik +  13) 

+ Yi(2£ + 5) + y 2)Cl k _x 

+ (^(k -  \ )(k -  2) + 2yx(k -  2) + Ji)Cl k_2.

In calculating the coefficients CXn, C2 and C3 
it is necessary to consider that Cl 0 = 1, C2 0 = 1,

Q , l =  0> C2,2 =  1, C2 1 =  —  1 (2yx +  y2 +  6y4),

The coefficients Q „(« > 1), C2n(n > 3), and 
C3 „(« > 4) can be found by the method of indetermi
nate coefficients. The respective recursion relations 
have the form

Y4 = 1 + a
= -|2 (1 0  + 3y1 + y2),

2F

C3 i — 0, C3 2 —
4y3

C, 3 = 1, C ,0 = 1,

®2
T-2 15

- ( 2yi + Y2 + 6Y4) (4 -3 y 1 + y2)

+ 3y3 + 3y4(y4 -  1)

for « < 0, C1; „, C2 „, and C3 „ are equal to zero.
Thus, the general solution satisfying Eq. (15) and 

the boundary conditions in (16) has the form
G(y) = A & W + A & i y )  + G3(y), (22)

and we can represent the expressions for the mass- 
velocity components and for the pressure as

lfr = UæcosQ(A1G1 +A2G2 + (?3),

P. = +

e — — î/oo sin 0(^41G4 +A2G5 + G6),
2 ,3Ĵ j y

R
3 - 1

2

2 - y 2f  -  \ y 2f  + (P -  2)yf

(23)
dy

dG
dy

+ 2 'y2f  + y f ( 4  + y V f) - - /_ G\.

where

f =  ~
I

Gk = I 1 +

j ( l  + a ) ’ 

Ct_ 1 _ J q _ 3 + ^ _ 3  2(1 + a y  2

(k = 4, 5,6).

w h i l e / , / 1, , ( i \ , and (73 are the first and second 
derivatives of the corresponding functions with respect 
to y.

The constants of integration A x and A2 are deter
mined from the boundary conditions in (5) at the sur
face of the aerosol particle.

DETERMINATION OF THE PHOTOPHORETIC 
FORCE AND VELOCITY AND ANALYSIS 

OF THE RESULTS
Thus, we have derived expressions for temperature 

fields outside and within an aerosol particle in the first
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approximation in e, along with the distribution of the 
velocity and pressure in its vicinity. The resulting 
strength that acts on the particle is determined by inte
grating the stress tensor over the aerosol-particle sur
face and is given by [15, 16]

2 (24)
Pgcos0 + a„cos0 + a r6sin0)r sin0tff0dq)|,. = Ä.

Here, ct„. and g,.0 are the stress-tensor components, 
which have the form

a" = ^(2̂ 7~3div̂
= u (d jA  \ d ü ; _ ü ^

y d Q  y  y

With allowance for the above expressions, we 
obtain

F = F, + sFph, (25)
where

Fph —
n. is the unit vector aligned with the O Z axis.

The coefficients/^ and/ph can be estimated as 
2N2 4 v  v„5 Gl

U 3Ni’ U  3KtsXpS8 (26)

where

tflOO = G ^ G ^ - G ^ G l i y ) ,

N2(y) = G ^ G lW - G ^ G l iy ^ G lG l  
are the first derivatives of the corresponding functions 
with respect to y.

Equating the resulting force F to zero, we obtain 
the photophoretic velocity Uph (Uph = — U.yJ for a 
heated large solid particle spherical in shape. Specifi
cally, we have

Uph = ~hphJnz, (27)
where hph

In estimating the coefficients/^,,/^, and hph, it is 
necessary to consider that the index s labels those val
ues of physics quantities that are taken at the mean rel
ative particle-surface temperature TpS, which is deter
mined by Eq. (11); the functions G^y), G\ (y), G2(y),

G\ (y), G3(y), G\ (y), Ni(y), and N 2(y) are taken at y.
The formulas derived above can also be used at 

small relative temperature gradients in the vicinity of 
the particle. In the case where the heating of the parti
cle surface is small— that is, the particle-surface tem
perature differs only slightly from the surrounding- 
medium temperature far from the particle (r0 —-  
0)— one can disregard the temperature dependence of

Fig. 1. Dependence of the function c|) on the mean particle- 
surface temperature TPS-

molecular-transport coefficients (viscosity and ther
mal conductivity), in which case (y = 1 ) we have Gx= 1,
G\ = -3 , G2 = 1, Gx = -1 , G3 = 1, G\ = 0, = 2, and
N 2 = 3. The expressions for the photophoretic force 
and velocity then coincide with the respective results 
from [3].

If the spatial distribution of the heat-source density 
is known, then expressions (25)—(27) can be used to 
take into account the effect of heating of the particle 
surface on the photophoretic force and velocity at 
arbitrary temperature gradients between the particle 
surface and the region far from it with allowance for 
the power-law form of the temperature dependence of 
the viscosity and thermal conductivity of the sur
rounding gaseous medium. These formulas have the 
most general character.

Numerical estimates of the effect that the heating 
of the aerosol-particle surface exerts on the photo
phoresis process are of interest. In Figs. 1 and 2, curves 1 
and 2 represent the values of

4> =
f tPh

/pi

(/phIT ,

hph

h
P h  7V.

: 273 K

: 273 K

= 9.34 x 10"

= 9.34 x 10 )

versus TpS for large copper particles of radius R = 
25 |im moving in air under normal conditions.

From Eqs. (25)—(27), one can see that the magni
tude and direction of the photophoretic force and 
velocity are determined by the magnitude and direc-



MALAI et al.

Tps, K

Fig. 2. Dependence of the function § on the mean particle - 
surface temperature TpS-
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Fig. 3. Photophoretic force F*h as a function of the inci
dent-radiation intensity /0.

tion of the dipole moment of the heat-source density, 
jqpzdVnz. In those cases where the dipole moment is
v
negative (a greater part of thermal energy is deposited 
in that part of the particle which faces the radiation 
source), the particle moves along the direction of 
propagation of incident radiation. If the dipole 
moment is positive (a greater part of thermal energy is 
deposited in the dark region of the particle), the parti
cle moves against the direction of propagation of inci
dent radiation. In order to calculate the respective 
integral, it is necessary to know qp, which is determined 
by solving the electrodynamic problem [1, 6 , 14]. 
Numerical methods that make it possible to find the 
dipole moment of the heat-source density have been 
developed to date— for example, the listing of a code 
that can be used for this is presented in [22 ].

By way of example, we consider an extremely sim
ple case where radiation absorption by the particle has 
a blackbody character. In this case, the absorption 
occurs in a thin layer of thickness 8R < R  adjacent to 
the heated part of the particle surface. The density of 
heat sources within the layer of thickness 5R is then 
given by

- ^ c o s 0 ,  - < e < 7 t ,  R - 8 R < r < R ,
8R 2 (28)

0, 0 < 0 < - ,  
2

where I0 is the intensity of incident radiation.

In this case, the integrals are readily calculable. 
Specifically, we have

j'qpdV = n R2I0, jqpzdV = - | t i  i?3/ 0,

The photophoretic force and velocity for large black
body particles spherical in shape are then obtained in 
the form

Fph 3n R l-lç r/ph A) 1

u * h =  ^ i , n h nh= f- ^ ] .
(29)

The mean particle-surface temperature Tps is 
related to the intensity of incident radiation by the 
equation

Tps -  TgS, 

liS) K s T t _ R j
1 p S LgS -  7^ i o1 + a  A,

-  G o^r

*PS

rtU
■pS L

4 ^ 5

^ V -f
(30)

g 00

In Figs. 3 and 4, the curves represent (|>* = F£h and
\|/* = U*h versus / 0 for large copper particles of radius 
R = 25 jam moving in air under normal conditions.
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U*ph, IO"5 m/s

/ 0, W /cm2

Fig. 4. Photophoretic velocity U*h as a function of the 
incident-radiation intensity / 0.

CONCLUSIONS
From the graphs presented in this article, one can 

see that, as the intensity of incident radiation grows, 
the photophoretic force and velocity increase nonlin- 
early, which is associated with the temperature depen
dence of molecular-transport coefficients and density 
In the case of small temperature gradients, the depen
dence in question is linear, which agrees with the 
known results from [2, 4, 6 , 12].
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