
 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-6S3, April 2019

582

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F11140486S319/19©BEIESP

Abstract: The present article deals with formal bases of pool

extension procedures with UFO-elements, that represent unit

objects in functional units calculus in the frame of system-object

imitation modelling. It states there is developed basis on the

problems of considering the equilibrium internal system

parameters as the functions of outer imitational parameters

without real object experiments, and the basis is developed of

both computational sciences, and methodology. The given logic

mathematical object description is used for design, analysis and

evaluation of object or process execution.

Key words: Unit-Function-Object system-object approach,

imitation modelling, imitation, analogy, pool of elements,

internal parameters of system, UFO-element, unit object, flow

object.

INTRODUCTION

The present article is a result of what we understand as

the most important way of studying the environment, and

that is analogy. By means of analogies one can form out the

unified description of both parameters and fundamental

features of any system (complexity, stability, reliability,

etc.). This idea / concept forms the basis of a whole range of

disciplines: mathematical modeling, programming, control

theory and other theoretical and practical branches of

science and technology. However, the methodology of the

above mentioned disciplines in relation to the analysis of

complex processes occurring in environments with unknown

characteristics is incomplete. In other words, such an

approach is not applicable to the study of complex objects /

processes, since it does not contain dynamic procedures for

their study, that is, it does not provide a dynamic

interconnection of a static concepts system. Thus, the

schematization of dynamic relationships of static concepts /

objects with dynamic concepts / objects depends on

understanding the basic idea of the model, which provides

the necessary conditions for identifying trends in the

reference area of dynamic complex objects as objects of

functional analysis in the study of the conceptualization

potential itself of the simulation models in wider

disciplinary contexts [1].

At the same time, we believe that within the framework of

simulation modeling by means of special simulators

developing for complex technical devices operating in

various environments, it is possible to develop an

appropriate method for creating software and hardware

Revised Manuscript Received on April 12, 2019.

ZHIKHAREV A.G., Belgorod State University, Russia.

MATORIN S.I., Belgorod State University, Russia.

BUZOV A.A., Belgorod State University, Russia.

KUZNETSOV A.V., Belgorod State University, Russia.
CHEKANOV N.A. Belgorod State University, Russia.

complexes replacing a complex object or process in the real

world with a sufficient degree of accuracy / reliability. To

build an effective simulation model of any complexity and

simplify the procedure for its design, we propose the use of

built-in pools of ready-made components of the model of

various modern software tools. Thus, ready-made elements

pools allow you to build a simulation model from ready-

made parts, which is naturally easier for the developer than

programming the model from scratch. The method proposed

below is an illustration of our approach.

BASIC CONCEPTS AND DEFINITIONS.

The system-object method of simulation is a modern

technology for describing functioning systems, based on the

Unit-Function-Object system approach. In order to

formalize the procedures of simulation modeling of

processes and systems, the authors developed the statements

for calculating functional units [2, 3], within which the

system-object model is represented as:

M=(L,S), (1)

• where M is the model of the system;

• L is an array of model flow objects, its elements

represent an object which is methodless and

possesses only areas (2):

l=[r1, r2, … ,rk], (2)

where:

• lL;

• k is a number of areas of the flow object l;

• r1, r2, ..., rk are the areas of flow object building up

a ‘identifier-meaning’.

S is an array of unit objects of a model, its elements

are described as follows (3):

s=[U, f, O], (3)

where:

• U is an array of areas for interface flows

description of the unit object s;

• f is a method of unit object s, describing the

transformation function from the incoming

interface flow objects L?, that are the incoming

connections of the system, to the outgoing L!;

• О is an array of areas for object parameters

description of the unit object (of the system) s.

Methodological and Practical Aspects of

Developing the Unit Objects Pools in System-

Object Models

Zhikharev A.G, Matorin S.I., Buzov. A.A, Kuznetsov A.V, Chekanov N.A.

Methodological and Practical Aspects of Developing the Unit Objects Pools in System-Object Models

583

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F11140486S319/19©BEIESP

Moreover, the unit objects of the model M represent the

key elements of the model, and the set of flow objects

defines the relationship between the unit objects of the

model [4].

RESULTS & DISCUSSIONS

The pool of ready-made elements of the system-object

model in this case will have the form (1), and | L | = 0. That

is, the pool model will have only unit objects, and will not

contain flow objects. Then the pool of the system-object

model [5] can be considered as a set of unit objects of the

following type:

S’=[s1,s2,…,sn], (4)

where n in the number of unit objects, stored in a pool.

Let us consider in more detail the element of the pool, or

rather its formal aspect [6, 7]. As it is stated above, the pool

element is a separate modelled system [8]. In the framework

of calculating functional objects, the system described by

expression (3) is represented as the following expression:

sn=[L?, L!; f(L?)L!; O?, O!, Of] (5)

Graphical formalism, which is an element of the pool, is

stated in the following form:

Figure 1. Graphical formalism of the pool element

As it can be seen from Figure 1, each element of the pool

is a UFO-element with the corresponding interface

connections, which are used to analyze the compliance of

the current element with the specified characteristics.

Accordingly, the pool of elements represents a set of unit

objects that are not related to each other [9].

Further we consider an abstract pool SM, containing

further elements, as Figure 2 shows.

Figure 2. Graphical formalism of the abstract pool of

unit objects

Obviously, for pool extending and its further use, it is

necessary to consider at least two operations on system-

object models: adding a unit object to the pool or exporting

an item and importing a unit object from the pool. To

describe these operations, an exhaustive set of parameters

are the interfaces of imported and exported unit objects. The

internal organization of such objects (functional and system

object) does not matter for the operations in question. From

Figure 2 it can be seen that for each individual unit object’s

interface is its identifier, that is, the name and sets of input

and output stream objects with regard to their structures and

area types. Further we consider a unit object with the

structure of interface links, as shown in Figure 2. The formal

view of this unit object is presented below:

sn=[L?={l?1, l?2, l?3}, L!={l!1,l!2}; f(L?)L!; O?, O!, Of]

 (6)

Then, the interface of the unit object corresponds to the

structural characteristic of the system U from expression 3,

which corresponds to the main provisions of the “Unit-

Function-Object” methodology [10, 11]. However, in

addition to the structural component of the unit object

interface, in the case of importing and exporting elements,

the typical structure of interface flow objects has an

important role. It is necessary to take into account the data

types of the flow object areas that make up the interface part

of the unit object. Thus, if for the unit object in expression 5,

the interface flow objects have the following structure:

• l?1=(r1, r2)

• l?2=(r1)

• l?3=(r1)

• l!1=(r1, r2, r3)

• l!2=(r1, r2),

then the interface of the unit object is described as

follows:

 International Journal of Innovative Technology and Exploring Engineering (IJITEE)

ISSN: 2278-3075, Volume-8, Issue-6S3, April 2019

584

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F11140486S319/19©BEIESP

𝑈𝑠 =

{

L?= {

l?1= (r1, r2)

l?2= (r1)
l?3= (r1)

L! = {
l!1 = (r1, r2, r3)

l!2 = (r1, r2)

 (7)

Generally, expression 7 can be described in the following

form:

𝑈𝑠 =

{

L?= {

l?1= (r1, … , r𝑖1)
…

l?𝑛= (r1, … , r𝑖𝑛)

L! = {

l!1 = (r1, … , r𝑗1)
…

l!𝑚 = (r1, … , r𝑗𝑚)

 (8)

Further we consider closely the operation of importing the

unit object s of the system-object model M into the pool S’.

Let a hierarchy of model stream objects be given containing

three real stream objects with their own areas of the

following form:

𝐿𝑀 = [𝑙1
𝑣 = {𝑟1

1, 𝑟2
1} , 𝑙2

𝑣 = {𝑟1
2, 𝑟2

2, 𝑟3
2}, 𝑙3

𝑣 = {𝑟1
3}] (9)

An array of flow object of the model described in

expression 9 is stated in the following form:

Figure 3. An Array in Flow objects of the system

presented in hierarchy.

Also, let the corresponding system-object model M = (L,

S) be given, then the set of unit objects has the following

form:

S=[s1=(L?=, L!={l!1}; f(L?)L!; O?, O!, Of),

s2=(L?={l?1, l?3}, L!={l!2}; f(L?)L!; O?, O!, Of),

s3=(L?={l?2}, L!={l!3}; f(L?)L!; O?, O!, Of)] (10)

An array of the flow objects has the following form:

L=[l1={s1,s2}, l2={s2,s3}, l3={s3,s2}] (11)

Graphically the example described in expressions 9, 1 and

11 is stated as follows:

Figure 4. An example of the system-object model

Then, in order to import the unit object s2 of the system-

object model М into the pool Lм we describe the operator in

the following form:

LM
* = import(M,s2,LM)→(L*=; S*=[s1=(L?=,

L!={l!1}; f(L?)L!; O?, O!, Of),s3=(L?={l?2}, L!={l!3};

f(L?)L!; O?, O!, Of)]; LM
*=[s2=(L?={l?1, l?3}, L!={l!2};

f(L?)L!; O?, O!, Of)].

As a result of this operation we get the pool LM
*, which is

extended by the unit object s2 and there is a system-object

model M*(, S*) stated as follows:

Figure 5. The result of importing a unit object into the

pool

As noted above, to work with a uni object placed in the

pool, you must also consider its interface. For the example

in question, the interface of the s2 object is as follows:

𝑈𝑠2 = {
L?= {

𝑙?1= (𝑟1
1, 𝑟2

1)

𝑙?3= (𝑟1
3)

L! = {𝑙!2 = (𝑟1
2, 𝑟2

2, 𝑟3
2)

 (12)

It should be noted that the described operation of

importing a unit object in the example involves extracting

the above-mentioned element from the model into the pool.

At the same time, in the course of modeling, the user can

save a unit object to the pool by copying, that is, without

deleting the first one from the original model and freeing the

corresponding stream objects. In this case, the original

model from which the item is exported to the library

remains unchanged, as shown in Figure 4.

Next, we consider the operation of exporting the unit

object s2 from the pool LM
* into the system-object model

M*(, S*). We formulate the description of the export

operator in the following form:

M* = export(M,s2,LM
)→(L=; S*=[s1=(L?=,

L!={l!1}; f(L?)L!; O?, O!, Of),s2=(L?={l?1, l?3}, L!={l!2};

f(L?)L!; O?, O!, Of),s3=(L?={l?2}, L!={l!3}; f(L?)L!; O?,

O!, Of)]; LM
*=[s2=(L?={l?1, l?3}, L!={l!2}; f(L?)L!;O?, O!,

Of)].

As it can be seen from the description of the export

operation, the corresponding unit object has been added to

the model, but it needs to be connected to the existing unit

objects of the model. For this, we apply the operation of

connecting two unit objects described in [2].

Along with this, for the selection of elements from the

library, it is possible to analyze a special quantitative

indicator of “measure of consistency”.

To describe the algorithm for calculating the measures of

consistency for a unit object with one input and one output,

as shown in Figure 1, we introduce the following notation:

FRFSs, which is an area or an array of the required

functional states of the unit object [2], and FPSs, which is an

area or an array of possible

functional states [2]. Then, the

elements of the given sets

have the following form:

Methodological and Practical Aspects of Developing the Unit Objects Pools in System-Object Models

585

Published By:
Blue Eyes Intelligence Engineering

& Sciences Publication Retrieval Number: F11140486S319/19©BEIESP

as = [A
l1 , Al2], (5)

where:

Al1 is the state of the input flow object l1;

Al2 is the state of the output flow object l2.

The variable MOS is the desired matching coefficient for

the area of possible states and the area of required states.

The algorithm for calculating the measure of consistency is

a sequential comparison of the elements of the FRFSs set

with the elements of the FPSs set.

Figure 5. Algorithm for calculating the systemicity

measure of the unit object

As it can be seen from Figure 5, an element of the set of

required states is alternately compared with the elements of

the set of possible states. If an identical state is found, then

the MOS variable is incremented by one and then the

transition to the new required state is carried out, since there

is no need to further compare the current required state, it

has already been found. Upon expiration of the external

cycle, the variable MOS will contain the number of found

required functional states from the set of possible states,

then dividing this number by the total number of required

states, we obtain the value of the systemic factor from zero

to one, and the closer the coefficient lies to one, however,

the more consistent system is with the supersystem request.

This algorithm will work for all types of unit objects, the

main problem will be the adequate formation of the set of

required functional states of the unit object.

CONCLUSION

Thus, from the description of the algorithm, it follows that

the presented numerical parameters of the system can be

used directly to export pool elements into the model and

determine the most appropriate one.

In this connection, for each component of the “Unit-

Function-Object” approach, a special optimization method is

applied in system-object models. The use of optimization

allows making a more accurate model from the point of

view of a systematic approach, a faster model from a

functional point of view, as well as an object optimization in

order to increase the efficiency of the processes presented in

the model.

ACKNOWLEDGMENTS

The research was carried out with the financial support of

the projects of the Russian Foundation for Fundamental

Research №№ 18-07-00355, 19-07-00290, 19-07-00111.

REFERENCES

1. Kuznetsov, A. V. Ekzistentsial'nyy status idealizatsiy s

neprostranstvennymi svoystvami kak element fizicheskoy

real'nosti // Naslediye M.K. Petrova: filosofiya, kul'turologiya,

naukovedeniye, regionalistika : sbornik nauchnykh statey –

Belgorod : IPK BSIC, 2016. – pp. 92-95.

2. Zhikharev, A.G., Matorin, S.I., Kuznetsov, A.V., Zherebtsov,

S.V., Tchekanov, N.A. To The Problem of the Coefficient

Calculus of the Nodal Object in the System-Object Models //

Journal of Advanced Research in Dynamical & Control

Systems, Vol. 10, 10-Special Issue, 2018. – P. 1813-1817

3. Matorin, S.I., Zhikharev, A.G. Calculation of the function

objects as the systems formal theory basis // Advances in

Intelligent Systems and Computing 679, 2018, p. 182-191

4. Matorin, S.I., Zhikharev, A.G. Uchet zakonomernostey pri

sistemno-ob’yektnom modelirovanii organizatsionnykh

znaniy // Iskusstvennyy intellekt i prinyatiye resheniy, № 03 /

2018, pp. 57-68.

5. Yegorov, I.A., Matorin, S.I., Zhikharev, A.G. Sistemno-

ob’yektnoye imitatsionnoye modelirovaniye khimicheskikh

zagryazneniy podzemnykh vod v gornopromyshlennom

klastere // Nauchnyye vedomosti Belgorodskogo

gosudarstvennogo universiteta. Seriya: ekonomika,

informatika, Vol. 45, № 3, pp. 510-523, 2018.

6. Zhikharev, A., Matorin, S., Egorov, I. Formal principles of

system-object simulation modeling of technological and

production processes // Journal of Advanced Research in

Dynamical and Control Systems, 10(10 Special Issue), pp.

1806-1812, 2018

7. S.I. Matorin, A.G. Zhikharev and O.A. Zimovets Object

Calculus in the System–Object Method of Knowledge

Representation // Scientific and Technical Information

Processing, Vol. 45, No. 5, pp. 1–10, 2018

8. Matorin, S.I., Zhikharev, A.G. Formalizatsiya sistemno-

ob’yektnogo podkhoda "Unit-Function-Object" // Applied

Informatics, Vol. 13, № 3(75), pp. 124-135, 2018 г.

9. Zhikharev, A.G., Matorin, S.I., Zimovets, O.A., Zhikhareva

M.S., Rakov V.I. / The simulation modeling of systems taking

into account their internal parameters change // Research

Journal of Applied Sciences 2016. - V.11 (Issue 12). - pp.

1096-1105.

10. Matorin, S.I., Zhikharev, A.G., Zimovets, O.A. Ischisleniye

ob’yektov v sistemno-ob’yektnom metode predstavleniya

znaniy // Iskusstvennyy intellekt i prinyatiye resheniy. -

2017.- №3.- pp. 104-115.

11. Matorin, S.I., Zhikharev, A.G., Zimovets, O.A. Obosnovaniye

vzaimosvyazey obshchesistemnykh printsipov i

zakonomernostey s pozitsii

sistemno-ob’yektnogo

podkhoda // Trudy Instituta

sistemnogo analiza. - 2017.-

№3.- Vol. 67. – pp. 54-63.

https://kias.rfbr.ru/
https://kias.rfbr.ru/

