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Abstract: The present article deals with formal bases of pool 

extension procedures with UFO-elements, that represent unit 

objects in functional units calculus in the frame of system-object 

imitation modelling. It states there is developed basis on the 

problems of considering the equilibrium internal system 

parameters as the functions of outer imitational parameters 

without real object experiments, and the basis is developed of 

both computational sciences, and methodology. The given logic 

mathematical object description is used for design, analysis and 

evaluation of object or process execution.  

Key words: Unit-Function-Object system-object approach, 

imitation modelling, imitation, analogy, pool of elements, 

internal parameters of system, UFO-element, unit object, flow 

object. 

INTRODUCTION 

The present article is a result of what we understand as 

the most important way of studying the environment, and 

that is analogy. By means of analogies one can form out the 

unified description of both parameters and fundamental 

features of any system (complexity, stability, reliability, 

etc.). This idea / concept forms the basis of a whole range of 

disciplines: mathematical modeling, programming, control 

theory and other theoretical and practical branches of 

science and technology. However, the methodology of the 

above mentioned disciplines in relation to the analysis of 

complex processes occurring in environments with unknown 

characteristics is incomplete. In other words, such an 

approach is not applicable to the study of complex objects / 

processes, since it does not contain dynamic procedures for 

their study, that is, it does not provide a dynamic 

interconnection of a static concepts system. Thus, the 

schematization of dynamic relationships of static concepts / 

objects with dynamic concepts / objects depends on 

understanding the basic idea of the model, which provides 

the necessary conditions for identifying trends in the 

reference area of dynamic complex objects as objects of 

functional analysis in the study of the conceptualization 

potential itself of the simulation models in wider 

disciplinary contexts [1]. 

At the same time, we believe that within the framework of 

simulation modeling by means of special simulators 

developing for complex technical devices operating in 

various environments, it is possible to develop an 

appropriate method for creating software and hardware 
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complexes replacing a complex object or process in the real 

world with a sufficient degree of accuracy / reliability. To 

build an effective simulation model of any complexity and 

simplify the procedure for its design, we propose the use of 

built-in pools of ready-made components of the model of 

various modern software tools. Thus, ready-made elements 

pools allow you to build a simulation model from ready-

made parts, which is naturally easier for the developer than 

programming the model from scratch. The method proposed 

below is an illustration of our approach. 

BASIC CONCEPTS AND DEFINITIONS. 

The system-object method of simulation is a modern 

technology for describing functioning systems, based on the 

Unit-Function-Object system approach. In order to 

formalize the procedures of simulation modeling of 

processes and systems, the authors developed the statements 

for calculating functional units [2, 3], within which the 

system-object model is represented as: 

M=(L,S),                                                                     (1) 

• where M is the model of the system;  

• L is an array of model flow objects, its elements 

represent an object which is methodless and 

possesses only areas (2): 

l=[r1, r2, … ,rk],                                                              (2)  

where:                                        

• lL; 

• k is a number of areas of the flow object l; 

• r1, r2, ..., rk are the areas of flow object building up 

a ‘identifier-meaning’. 

S is an array of unit objects of a model, its elements 

are described as follows (3): 

s=[U, f, O],                                                             (3) 

where:                                                         

• U is an array of areas for interface flows 

description of the unit object s;  

• f is a method of unit object s, describing the 

transformation function from the incoming 

interface flow objects L?, that are the incoming 

connections of the system, to the outgoing L!;  

• О is an array of areas for object parameters 

description of the unit object (of the system) s.  
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Moreover, the unit objects of the model M represent the 

key elements of the model, and the set of flow objects 

defines the relationship between the unit objects of the 

model [4]. 

RESULTS & DISCUSSIONS 

The pool of ready-made elements of the system-object 

model in this case will have the form (1), and | L | = 0. That 

is, the pool model will have only unit objects, and will not 

contain flow objects. Then the pool of the system-object 

model [5] can be considered as a set of unit objects of the 

following type: 

S’=[s1,s2,…,sn],                                                                (4) 

where n in the number of unit objects, stored in a pool. 

Let us consider in more detail the element of the pool, or 

rather its formal aspect [6, 7]. As it is stated above, the pool 

element is a separate modelled system [8]. In the framework 

of calculating functional objects, the system described by 

expression (3) is represented as the following expression: 

sn=[L?, L!; f(L?)L!; O?, O!, Of] (5) 

Graphical formalism, which is an element of the pool, is 

stated in the following form: 

 

 
Figure 1. Graphical formalism of the pool element 

 

As it can be seen from Figure 1, each element of the pool 

is a UFO-element with the corresponding interface 

connections, which are used to analyze the compliance of 

the current element with the specified characteristics. 

Accordingly, the pool of elements represents a set of unit 

objects that are not related to each other [9].  

Further we consider an abstract pool SM, containing 

further elements, as Figure 2 shows.  

 

 
Figure 2. Graphical formalism of the abstract pool of 

unit objects  

 

Obviously, for pool extending and its further use, it is 

necessary to consider at least two operations on system-

object models: adding a unit object to the pool or exporting 

an item and importing a unit object from the pool. To 

describe these operations, an exhaustive set of parameters 

are the interfaces of imported and exported unit objects. The 

internal organization of such objects (functional and system 

object) does not matter for the operations in question. From 

Figure 2 it can be seen that for each individual unit object’s 

interface is its identifier, that is, the name and sets of input 

and output stream objects with regard to their structures and 

area types. Further we consider a unit object with the 

structure of interface links, as shown in Figure 2. The formal 

view of this unit object is presented below: 

sn=[ L?={l?1, l?2, l?3}, L!={l!1,l!2}; f(L?)L!; O?, O!, Of]  

 (6) 

Then, the interface of the unit object corresponds to the 

structural characteristic of the system U from expression 3, 

which corresponds to the main provisions of the “Unit-

Function-Object” methodology [10, 11]. However, in 

addition to the structural component of the unit object 

interface, in the case of importing and exporting elements, 

the typical structure of interface flow objects has an 

important role. It is necessary to take into account the data 

types of the flow object areas that make up the interface part 

of the unit object. Thus, if for the unit object in expression 5, 

the interface flow objects have the following structure: 

• l?1=(r1, r2)  

• l?2=(r1)  

• l?3=(r1) 

• l!1=(r1, r2, r3)  

• l!2=(r1, r2), 

then the interface of the unit object is described as 

follows: 



  International Journal of Innovative Technology and Exploring Engineering (IJITEE) 

ISSN: 2278-3075, Volume-8, Issue-6S3, April 2019 

584 

Published By: 
Blue Eyes Intelligence Engineering 

& Sciences Publication  Retrieval Number: F11140486S319/19©BEIESP 

𝑈𝑠 =

{
 
 

 
 
L?= {

l?1= (r1, r2)

l?2= (r1)
l?3= (r1)

L! = {
l!1 = (r1, r2, r3)

l!2 = (r1, r2)

          (7) 

Generally, expression 7 can be described in the following 

form: 

𝑈𝑠 =

{
  
 

  
 
L?= {

l?1= (r1, … , r𝑖1)
…

l?𝑛= (r1, … , r𝑖𝑛)

L! = {

l!1 = (r1, … , r𝑗1)
…

l!𝑚 = (r1, … , r𝑗𝑚)

              (8) 

Further we consider closely the operation of importing the 

unit object s of the system-object model M into the pool S’. 

Let a hierarchy of model stream objects be given containing 

three real stream objects with their own areas of the 

following form: 

𝐿𝑀 = [𝑙1
𝑣 = {𝑟1

1, 𝑟2
1} , 𝑙2

𝑣 = {𝑟1
2, 𝑟2

2, 𝑟3
2}, 𝑙3

𝑣 = {𝑟1
3}]   (9) 

An array of flow object of the model described in 

expression 9 is stated in the following form: 

 

 
Figure 3. An Array in Flow objects of the system 

presented in hierarchy.  

 

Also, let the corresponding system-object model M = (L, 

S) be given, then the set of unit objects has the following 

form: 

S=[s1=(L?=, L!={l!1}; f(L?)L!; O?, O!, Of), 

s2=(L?={l?1, l?3}, L!={l!2}; f(L?)L!; O?, O!, Of), 

s3=(L?={l?2}, L!={l!3}; f(L?)L!; O?, O!, Of)] (10) 

An array of the flow objects has the following form: 

L=[l1={s1,s2}, l2={s2,s3}, l3={s3,s2}]  (11) 

Graphically the example described in expressions 9, 1 and 

11 is stated as follows: 

 

 
Figure 4. An example of the system-object model  

 

Then, in order to import the unit object s2 of the system-

object model М into the pool Lм we describe the operator in 

the following form: 

LM
* = import(M,s2,LM)→(L*=; S*=[s1=(L?=, 

L!={l!1}; f(L?)L!; O?, O!, Of),s3=(L?={l?2}, L!={l!3}; 

f(L?)L!; O?, O!, Of)]; LM
*=[s2=(L?={l?1, l?3}, L!={l!2}; 

f(L?)L!; O?, O!, Of)].  

As a result of this operation we get the pool LM
*, which is 

extended by the unit object s2  and there is a system-object 

model  M*(, S*) stated as follows: 

 

 
Figure 5. The result of importing a unit object into the 

pool 

 

As noted above, to work with a uni object placed in the 

pool, you must also consider its interface. For the example 

in question, the interface of the s2 object is as follows: 

𝑈𝑠2 = {
L?= {

𝑙?1= (𝑟1
1, 𝑟2

1)

𝑙?3= (𝑟1
3)

L! =  {𝑙!2 = (𝑟1
2, 𝑟2

2, 𝑟3
2)

      (12) 

It should be noted that the described operation of 

importing a unit object in the example involves extracting 

the above-mentioned element from the model into the pool. 

At the same time, in the course of modeling, the user can 

save a unit object to the pool by copying, that is, without 

deleting the first one from the original model and freeing the 

corresponding stream objects. In this case, the original 

model from which the item is exported to the library 

remains unchanged, as shown in Figure 4. 

Next, we consider the operation of exporting the unit 

object s2 from the pool LM
* into the system-object model 

M*(, S*). We formulate the description of the export 

operator in the following form: 

M* = export(M,s2,LM
*)→(L*=; S*=[ s1=(L?=, 

L!={l!1}; f(L?)L!; O?, O!, Of),s2=(L?={l?1, l?3}, L!={l!2}; 

f(L?)L!; O?, O!, Of),s3=(L?={l?2}, L!={l!3}; f(L?)L!; O?, 

O!, Of)]; LM
*=[ s2=(L?={l?1, l?3}, L!={l!2}; f(L?)L!;O?, O!, 

Of)]. 

As it can be seen from the description of the export 

operation, the corresponding unit object has been added to 

the model, but it needs to be connected to the existing unit 

objects of the model. For this, we apply the operation of 

connecting two unit objects described in [2]. 

Along with this, for the selection of elements from the 

library, it is possible to analyze a special quantitative 

indicator of “measure of consistency”. 

To describe the algorithm for calculating the measures of 

consistency for a unit object with one input and one output, 

as shown in Figure 1, we introduce the following notation: 

FRFSs, which is an area or an array of the required 

functional states of the unit object [2], and FPSs, which is an  

area or an array of possible 

functional states [2]. Then, the 

elements of the given sets 

have the following form: 
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as = [A
l1 , Al2],   (5) 

where: 

Al1  is the state of the input flow object l1;  

Al2  is the state of the output flow object l2.  

The variable MOS is the desired matching coefficient for 

the area of possible states and the area of required states. 

The algorithm for calculating the measure of consistency is 

a sequential comparison of the elements of the FRFSs set 

with the elements of the FPSs set.  

 

 
Figure 5. Algorithm for calculating the systemicity 

measure of the unit object 

 

As it can be seen from Figure 5, an element of the set of 

required states is alternately compared with the elements of 

the set of possible states. If an identical state is found, then 

the MOS variable is incremented by one and then the 

transition to the new required state is carried out, since there 

is no need to further compare the current required state, it 

has already been found. Upon expiration of the external 

cycle, the variable MOS will contain the number of found 

required functional states from the set of possible states, 

then dividing this number by the total number of required 

states, we obtain the value of the systemic factor from zero 

to one, and the closer the coefficient lies to one, however, 

the more consistent system is with the supersystem request. 

This algorithm will work for all types of unit objects, the 

main problem will be the adequate formation of the set of 

required functional states of the unit object. 

CONCLUSION 

Thus, from the description of the algorithm, it follows that 

the presented numerical parameters of the system can be 

used directly to export pool elements into the model and 

determine the most appropriate one. 

In this connection, for each component of the “Unit-

Function-Object” approach, a special optimization method is 

applied in system-object models. The use of optimization 

allows making a more accurate model from the point of 

view of a systematic approach, a faster model from a 

functional point of view, as well as an object optimization in 

order to increase the efficiency of the processes presented in 

the model. 
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