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ON THE THEORY OF ANISOTROPIC FLAT ELASTICITY

A. P. Soldatov UDC 517.9

Abstract. For the Lamé system from the flat anisotropic theory of elasticity, we introduce gener-
alized double-layer potentials in connection with the function-theory approach. These potentials are
built both for the translation vector (the solution of the Lamé system) and for the adjoint vector
functions describing the stress tensor. The integral representation of these solutions is obtained using
the potentials. As a corollary, the first and the second boundary-value problems in various spaces
(Hölder, Hardy, and the class of functions just continuous in a closed domain) are reduced to the
equivalent system of the Fredholm boundary equations in corresponding spaces. Note that such an ap-
proach was developed in [19, 20] for common second-order elliptic systems with constant (higher-order
only) coefficients. However, due to important applications, it makes sense to consider this approach
in detail directly for the Lamé system. To illustrate these results, in the last two sections we consider
the Dirichlet problem with piecewise-constant Lamé coefficients when contact conditions are given on
the boundary between two media. This problem is reduced to the equivalent system of the Fredholm
boundary equations. The smoothness of kernels of the obtained integral operators is investigated in
detail depending on the smoothness of the boundary contours.
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1. Lamé System

Consider the Lamé system [10, 11]

a11
∂2u

∂x2
+ (a12 + a21)

∂2u

∂y∂y
+ a22

∂2u

∂y2
= 0 (1.1)

Translated from Sovremennaya Matematika. Fundamental’nye Napravleniya (Contemporary Mathematics.
Fundamental Directions), Vol. 60, Proceedings of the Seventh International Conference on Differential and
Functional Differential Equations and International Workshop “Spatio-Temporal Dynamical Systems” (Moscow,
Russia, 22–29 August, 2014). Part 3, 2016.
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with constant coefficients

a11 =

(
α1 α6

α6 α3

)
, a12 =

(
α6 α4

α3 α5

)
,

a21 =

(
α6 α3

α4 α5

)
, a22 =

(
α3 α5

α5 α2

)
.

The elements αj of matrix coefficients, called elasticity moduli, obey the requirement of positive
definiteness of the matrix

α =

⎛
⎝ α1 α4 α6

α4 α2 α5

α6 α5 α3

⎞
⎠ . (1.2)

It is convenient to introduce in addition to this matrix its adjugate β = α∗, written in the same form:

β =

⎛
⎝ β1 β4 β6

β4 β2 β5
β6 β5 β3

⎞
⎠ ,

β1 = α2α3 − α2
5 β2 = α1α3 − α2

6,
β3 = α1α2 − α2

4 β4 = α5α6 − α3α4,
β5 = α4α6 − α1α5, β6 = α4α5 − α2α6.

(1.3)

Then the Sylvester criterium of positive definiteness of the matrix α can be expressed by the inequalities
detα > 0 and αi > 0, βi > 0, 1 ≤ i ≤ 3.

We form a block matrix a = (aij)
2
1 from the Lamé coefficients. Then it can be directly seen from (1.2)

that for any η ∈ R
4 the following equality holds:

(aη)η = (αη̃)η̃, η̃ = (η1, η4, η2 + η3), (1.4)

with respect to scalar products of vectors in R
4 and R

3. In particular, for any nonzero λ = (λ1, λ2) ∈ R
2

and ξ ∈ R
2 forming the vector η = (λ1ξ, λ2ξ) we have the relation⎡

⎣
⎛
⎝ 2∑

i,j=1

aijλiλj

⎞
⎠ ξ

⎤
⎦ ξ = (αη̃)η̃.

Thus vanishing of the left-hand side implies η̃ = 0 or, equivalently, ξ = 0. Hence the matrix on the
left-hand side of this expression is positive definite:

2∑
i,j=1

aijλiλj > 0 (1.5)

and therefore the Lamé system (1.1) is strongly elliptic.
Consider the matrix trinomial p(z) = a11+(a12+a21)z+a22z

2 of system (1.1), which is a symmetric
matrix

p =

(
p1 p3
p3 p2

)
,

p1(z) = α1 + 2α6z + α3z
2,

p2(z) = α3 + 2α5z + α2z
2,

p3(z) = α6 + (α3 + α4)z + α5z
2.

(1.6)

By (1.5) the determinant det p(t) > 0 for t ∈ R, i.e., the characteristic polynomial of the fourth order
χ = det p(z) of the Lamé system has no real roots. Accordingly, in the upper half-plane it has two
roots ν1, ν2, such that two cases are possible, where (i) ν1 �= ν2 and (ii) ν1 = ν2 = ν. In the sequel
the main role belongs not to these roots as such, but to their symmetric combinations

s = ν1 + ν2, t = ν1ν2. (1.7)

In the case (ii) of multiple roots they take values s = 2ν and t = ν2.
With notation (1.3), (1.6) the characteristic polynomial χ = p1p2 − p23 can be written in the form

χ(z) = β2 − 2β5z + (β3 + 2β4)z
2 − 2β6z

3 + β1z
4. (1.8)
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It is not difficult to describe the conditions on its coefficients that ensure the case (ii) of multiple
roots. In this case one must have

χ(z) = β1(z − ν)2(z − ν)2, (z − ν)(z − ν) = δ0 + δ1z + z2,

where δ21 < 4δ0. Equalizing the coefficients at the same powers of z, we obtain the equations

δ0 =
β2
β1

, δ1 = −β6
β1

= − β5√
β1β2

for coefficients δj and relations

β2
5 < 4β2

2 , β5 = β6
√

β2/β1, β2
5 + 2β2

2 = β2(β3 + 2β4), (1.9)

that are necessary and sufficient for the multiplicity of the roots of the characteristic polynomial. In
this case according to (1.9) we have the expression

2β1ν = β6 + i

√
4β1
√

β1β2 − β2
6 (1.10)

for the root ν.
In the class A of positive definite matrices of the form (1.2) we define subsets A1 and A2, by the

condition of linear independence of the polynomials p2, p3 and p1, p3 that appear in (1.6), respectively.
Evidently, the complements of these subsets can be described by the conditions

α /∈ A1 ⇔ α3α5 = α2α6, α2(α3 + α4) = 2α2
5 ⇔ χ(ν) = p2(ν) = 0,

α /∈ A2 ⇔ α1α5 = α3α6, α1(α3 + α4) = 2α2
6 ⇔ χ(ν) = p1(ν) = 0

(1.11)

for one of the roots ν of the characteristic equation. The second equivalence follows from the fact that
χ = p1p2 − p23. Therefore equalities pj(ν) = p3(ν) = 0 for one of the values j = 1, 2 are equivalent to
the linear dependence of the polynomials pj and p3.

Note that
α2
3 < α1α2 for α /∈ A1 ∩ A2. (1.12)

In fact, let, e.g., the conditions α /∈ A1 in (1.11) hold. Then 2α2α
2
6 = α2

3(α3 + α4), 2α1α
2
5 =

α1α2(α3+α4). Substituting these expressions into the formula of the determinant of the matrix (1.2),
we get

2 detα = (α1α2 − α2
3)(α3 − α4) > 0.

It remains to note that the inequalities α1α2 − α2
3 < 0 and α3 < α4 contradict the inequality

α1α2 − α2
4 > 0. The case α /∈ A2 is considered in a similar way.

We also introduce the class A0 of matrices α, for which p3 = 0, i.e., α3 + α4 = α5 = α6 = 0.
Obviously, this class does not intersect the sets A1 and A2. From (1.12) it easily follows that

A = A0 ∪ A1 ∪ A2. (1.13)

In fact, let α /∈ A1 ∪ A2, so that the respective conditions in (1.11) hold simultaneously. Then the
first equalities (1.11) imply α5α6(α1α2 − α2

3) = 0, so that due to (1.12) one must have α5α6 = 0.
By (1.11), this implies α ∈ A0.

Similar arguments show that the matrix p(ν) is distinct from the zero one for all ν:

p(ν) �= 0, ν ∈ C. (1.14)

In fact, if p(ν) = 0, then Im ν �= 0 and α /∈ Aj for both values j = 1, 2. Therefore α ∈ A0, but in
this case the polynomials p1 and p2 are linearly independent.

In the cases where α belongs to one of the exceptional sets A0 and A \ Aj, j = 1, 2, the roots νj
of the characteristic equation can be calculated explicitly by means of quadratic equations.

For α ∈ A0 the Lamé system becomes diagonal, i.e., it dissolves into two equations

α1
∂2u1
∂x2

+ α3
∂2u1
∂y2

= 0, α3
∂2u2
∂x2

+ α2
∂2u2
∂y2

= 0.
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In this case χ = p1p2 and one can consider pj(νj) = 0 or, in the explicit form,

ν1 = i

√
α1

α3
, ν2 = i

√
α3

α2
. (1.15)

In the case α /∈ Aj the roots of the characteristic equation can be found from the equations

(α2
2p1 − α2

5p2)(ν1) = 0, p2(ν2) = 0, α /∈ A1;

p1(ν1) = 0, (α2
3p2 − α2

5p1)(ν2) = 0, α /∈ A2.
(1.16)

In fact, let, for example, α /∈ A1. Then α2p3 − α5p2 = 0 and we have the equality α2
2χ = (α2

2p1 −
α2
5p2)p2.
The case α /∈ A2 ca be considered in a similar way. Note that the numbering of roots used in (1.16)

agrees with the case α ∈ A0 in (1.15).
In all three mentioned cases the roots νj are distinct. In the case (1.15) this fact follows from (1.12).

If these roots coincide in case (1.16), then p1(ν) = p2(ν) = 0 and hence p(ν) = 0, which contra-
dicts (1.14). In particular, in the situation with a multiple root the matrix α necessarily belongs to
A1 ∩ A2.

Let us agree to call the nonzero vector x ∈ C
2 an eigenvector of the polynomial p corresponding to

the root ν the characteristic equation if p(ν)x = 0 and an adjoined vector if p(ν)x+ p′(ν)y = 0, where
p(ν)y = 0 and p′(ν)y �= 0.

Lemma 1.1.

(a) Let the roots νj be distinct. Then there exists a base e = {e1, e2} of the space C
2 consisting of

eigenvectors, e.g., p(νj)ej = 0, j = 1, 2. Any other base ẽ of this type is linked with e by the
relation ẽj = λjej , j = 1, 2.

(b) Let the root ν be multiple. Then there exists a base e = {e1, e2} consisting of an eigenvector
and an adjoined vector, i.e.,

p(ν)e1 = 0, p(ν)e2 + p′(ν)e1 = 0. (1.17)

Any other base ẽ of this type is linked with e by the relation ẽ1 = λe2, ẽ2 = λe2 + λ0e1, λ �= 0.
Proof.

(a) By (1.14) the spaces {x ∈ C
2, p(νj)x = 0}, j = 1, 2, are one-dimensional; therefore it suffices to

check that for a nonzero vector x ∈ C
2 the simultaneous equalities p(ν1)x = p(ν2)x = 0 are impossible.

In fact, suppose that such a vector x = (x1, x2) does exist. Then necessarily x1x2 �= 0, since
the polynomials p1 and p2 cannot have both numbers νj as their roots. Thus one can consider that
x1 = 1, x2 = λ. Then the inequality p(νj)x = 0 reduces to two scalar equalities (p1 + λp3)(νj) = 0,
(p3 + λp2)(νj) = 0. Therefore the polynomials p1 + λp3 and p3 + λp2 have the polynomial q(z) =
(z − ν1)(z − ν2) as a divisor, so that

p1 + λp3 = c1q, p3 + λp2 = c2q

with some factors cj ∈ C. Since the coefficients of the polynomials pj are real, hence we have

p1 + λp3 = c1q, p3 + λp2 = c2q,

where q(z) = (z − ν1)(z − ν2). Since a quadratic trinomial with real coefficients cannot be a multiple
of q, the number λ is not real. Therefore from these systems one can express the polynomials pj as

a function of q, q by the formulas pj = djq + djq, 1 ≤ j ≤ 3, with respective coefficients dj ∈ C. In
particular,

p1p2 − p23 = (d1d2 − d23)q
2 + (d1d2 + d1d2 − 2d3d3)qq + (d1d2 − d

2
3)q

2.

On he other hand, by (1.6) in our notation

p1p2 − p23 = cqq, c = α2α3 − α2
5 > 0.
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Hence one must have d1d2 − d23 = 0 and 2Re(d1d2) − 2d3d3 = c (otherwise the polynomial q2 has q

as a divisor, which is impossible). But then c = 2[Re(d1d2)− |d1d2|], which contradict the inequality
c > 0.

(b) First of all, show that the simultaneous equalities p(ν)x = p′(ν)x = 0 are impossible for any
nonzero vector x ∈ C. In fact, suppose that such a vector x = (x1, x2) does exist. Then necessarily
x1x2 �= 0, since for real polynomials pj the equalities pj(ν) = p′j(ν) = 0 are impossible. As in the case
of distinct roots, we arrive at the relations

p1 + λp3 = c1q, p3 + λp2 = c2q,

where q(z) = (z − ν)2. The further arguments are similar to those from the proof of item a).
Thus any pair of nonzero vectors e1, e2 with property (1.17) is a base. The existence of such a pair

will be shown below in Lemma 1.2.
It remains to establish the connection between two bases e and ẽ that satisfy (1.17). Obviously,

ẽ1 = λe1, λ �= 0, and ẽ2 = λ0e1 + λ′e2, λ′ �= 0. Therefore

p(ν)ẽ2 + p′(ν)ẽ1 = λ′p(ν)e2 + λp′(ν)e1 = 0.

Subtracting form this equality the second equality (1.17) multiplied by λ′, we obtain (λ−λ′)p′(ν)e1 = 0,
hence, λ′ = λ.

Consider the adjoined matrix of p

p∗ =
(

p2 −p3
−p3 p1

)
. (1.18)

Lemma 1.2.

(i) In the case of distinct roots for α ∈ Ak, k = 1, 2, the condition p(νj)ej = 0 of proposition a)
of Lemma 1.1 is satisfied by the k-th column ej = p∗(k)(νj). If α /∈ A1, then in notation (1.16)

one can put ej = p∗(j)(νj). Respectively, in the case α /∈ A2 one can similarly put e1 = p∗(1)(ν2),
e2 = p∗(2)(ν1).

(ii) In the case of a multiple root the matrix α ∈ A1 ∩ A2 and the condition (1.17) is satisfied by
the vectors e1 = p∗(k)(ν) and e2 = (p∗)′(k)(ν) for any value k = 1, 2, where the prime denotes the

derivative of the matrix (1.18).

Proof. Prove the statement for each of the cases (i) and (ii) separately.
(i). We make use of the obvious relation

p(z)p∗(z) = χ(z), (1.19)

where χ on the right-hand side denotes a scalar matrix. This relation implies that p(νj)p
∗
(k)(νj) = 0

for any value k = 1, 2. In other words, if the column p∗(k)(νj)of the matrix p∗(νj) is nonzero, then it

is an eigenvector corresponding to νj . By (1.18), for k = 1 ( k = 2) it can be zero only if α /∈ A1

( α /∈ A2). Hence, taking into account Lemma 1.1, we immediately obtain the first assertion of the
lemma.

(ii). Since by hypothesis χ(ν) = χ′(ν) = 0, we have

p(ν)p∗(ν) = p(ν)(p∗)′(ν) + p′(ν)p∗(ν) = 0.

Therefore the vectors e1 = p∗(k)(ν) and e2 = (p∗)′(k)(ν) satisfy (1.17). Since, as we have noted before,

in the considered case of the multiple root ν the matrix α belongs to A1 ∩ A2, these vectors are
nonzero.

An elastic medium is called orthotropic if

α5 = α6 = 0. (1.20)
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In this case the coordinate axes are the axes of symmetry of the elastic medium, and we have simpler
expressions

p1(z) = α1 + α3z
2, p2(z) = α3 + α2z

2, p3(z) = (α3 + α4)z (1.21)

for polynomials (1.6). In particular, in an orthotropic medium one has either α ∈ A1 ∩A2 or α ∈ A0.
From (1.21) it follows that the characteristic equation p1p2 − p23 = 0 is biquadratic and its roots ν

in the upper half-plane can be expressed explicitly. For this purpose we introduce positive quantities
ρ and ρ0 by the formulas

ρ2 =

√
α1

α2
, ρ20 =

α1α2 − α2
4 + 2α3(

√
α1α2 − α4)

α2α3
. (1.22)

The positivity of the expression on the right-hand side of the second equality follows from the condition
α2
4 < α1α2. For the same reason, the quantity

ρ20 − 4ρ2 =
(
√
α1α2 − α4)(

√
α1α2 − α4 − 2α3)

α2α3
(1.23)

has the same sign as
√
α1α2 − α4 − 2α3.

In this notation for the roots ν we have formulas

ν1,2 = iρe±iθ, 2θ = arccos

[
ρ20 − 2ρ2

2ρ2

]
, if ρ0 < 2ρ,

ν1,2 = iρe±τ , 2τ = arcch

[
ρ20 − 2ρ2

2ρ2

]
, if ρ0 > 2ρ, (1.24)

ν1 = ν2 = iρ, if ρ0 = 2ρ.

In fact, let δ denote the expression in square brackets (1.24), so that ρ20 = 2(δ + 1)ρ2. Then

p1(z)p2(z) − p23(z) = α2α3(ρ
4 + 2δρ2z2 + z4).

Therefore, ν2 = −ρ2(δ ±√
δ2 − 1), which after elementary transformations results in (1.24).

Note that the case α ∈ A0 of a diagonalizable Lamé system corresponds to the first equality in (1.20),
and in this case the expressions for the roots νj coincide with (1.14). The case (ii) of multiple roots
corresponds to the last equality in (1.24). Note that this fact agrees with the criterion (1.9), (1.10) of
multiple roots.

It is easy to see that independently of the three possible cases in (1.24) we have the same expressions

s = iρ0, t = −ρ2 (1.25)

for the sum and product (1.7) of the roots.
An orthotropic medium is called isotropic if, in addition to (1.20), the following relations hold:

α1 = α2 = 2α3 + α4. (1.26)

Together with the inequality α2
4 < α1α2 this implies that α1 > α3, so that the quantity

κ =
α1 + α3

α1 − α3
> 1. (1.27)

It is easy to see that in the case under consideration the characteristic equation has a multiple root
ν = i.
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2. Representation of Solutions of the Lamé System

In accordance with two cases (i) and (ii) of the roots of the characteristic equation introduce the
matrices

(i) J =

(
ν1 0
0 ν2

)
, (ii) J =

(
ν 1
0 ν

)
. (2.1)

We relate to this matrix an elliptic system of the first order of the special form

∂φ

∂y
− J

∂φ

∂x
= 0; (2.2)

for J = i it corresponds to the Cauchy–Riemann system, which defines analytic functions. For this
reason, the solutions φ = (φ1, φ2) of this system are called J-analytic functions.

In the studies of boundary value problems of flat elasticity by classical methods one can find two
main trends. The first one consists in using analytic functions similarly to Kolosov–Muskhelishvili
formulas [12] in the isotropic case. This trend is present in the papers by Lekhnitsky, Savin, Mikhlin,
etc. (see, e.g., [5, 11, 12]). The other one consists in application of solutions of some elliptic systems
of the first order instead of analytic functions (see, e.g., [2, 3, 7]). The approach considered below is
adjacent to this trend and based on system (2.2), more exactly, on the representation of the general
solution of the Lamé system by J-analytic functions. This representation itself is based on the following
structural lemma.

Lemma 2.1. There exists an invertible matrix b ∈ C
2×2 such that

a11b+ (a12 + a21)bJ + a22bJ
2 = 0, (2.3)

and any other matrix b̃ with the same properties is related to b by the equality b̃ = bd with some
invertible matrix d that commutes with J .

Equality (2.3) is equivalent to the relation

AB = B diag(J, J) (2.4)

for block matrices

A =

(
0 1
a0 a1

)
, B =

(
b b

bJ bJ

)
, (2.5)

where we put a0 = −a−1
22 a11, a1 = −a−1

22 (a12 + a21). Here the matrix B is invertible.

Proof. From (2.1) one can see that for any matrix b ∈ C
2×2 in case (i) of distinct roots for the j-th

column we have relations (bJ)(j) = νjb(j), (bJ
2)(j) = ν2j b(j) and therefore

(a11 + (a12 + a21)bJ + a22bJ
2)(j) = p(νj)b(j) (j = 1, 2).

Similarly in case (ii) of a multiple root

(bJ)(1) = νb(1), (bJ)(2) = b(1) + νb(2),

(bJ2)(1) = ν2b(1), (bJ2)(2) = 2νb(1) + ν2b(2),

whence one has
(a11 + (a12 + a21)bJ + a22bJ

2)(1) = p(ν)b(1),

(a11 + (a12 + a21)bJ + a22bJ
2)(2) = p(ν)b(2) + p′(ν)b(1).

Therefore, choosing the vectors ej of Lemma 1.1 as columns b(j), we arrive at the validity of the first
part of the Lemma. One must just take into consideration that the matrices d that commute with J
have the form

(i) d =

(
d1 0
0 d2

)
, (ii) J =

(
d1 d0
0 d1

)
. (2.6)

The equivalence of relations (2.3) and (2.4) is obvious, therefore it remains to establish the invert-
ibility of the matrix B.
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Consider the invertible matrix B1 that takes A to the Jordan form. Since the matrix A is real, the
Jordan matrix can be chosen in the form diag(J1, J1), where the eigenvalues of the matrix J1 lie in
the upper half-plane and this matrix is either diagonal or a Jordan block. Accordingly, B1 can be
reduced to the block structure

B1 =

(
b1 b1
b2 b2

)
.

Thus,

AB1 = B1diag(J1, J1). (2.7)

Due to the obvious identity

(z −A)

(
1 1
0 z

)
=

(
z 0

−a0 z2 − a1z − a0

)

the eigenvalues of the matrix A in the upper half-plane coincide with the roots of the characteristic
equation det p(z) = 0. Therefore either J1 = J , or the matrix J1 is scalar: J1 = ν. We show that the
second case is impossible. In fact, if J1 = ν, then there exist two linearly independent eigenvectors
η, η̃ ∈ C

4 of the matrix A that correspond to the eigenvalue ν. But then the form (2.5) of this matrix
implies that η = (η1, η2), where the vectors ηj ∈ C

2 satisfy the relations η2 = νη1, p(ν)η1 = 0 and the
vector η̃ possesses a similar property. But then the vectors η1 and η̃1, and therefore also the vectors
η, η̃ must be linearly dependent, which contradicts our assumption.

Thus, the matrix J1 = J and (2.4) implies that b2 = b1J and the matrix b1 satisfies (2.3). Passing
to the columns of these matrices, as in the proof of Lemma 1.1, we see that b1 = bd with some matrix
d that commutes with J . But then B1 = Bdiag(d, d), whence detB1 = detB|det d|2. Therefore the
matrices B and d are invertible, which completes the proof of the Lemma.

We turn to system (2.2) in some domain D of the complex plain. We will denote the partial
derivatives of its solutions as

φ′ =
∂φ

∂x
, Jφ′ =

∂φ

∂y
.

Then if we relate the matrix

zJ = x+ yJ (2.8)

to the complex number z = x+ iy, we can write

∂φ

∂x
dx+

∂φ

∂y
dy = dzJφ

′.

In particular, the function φ can be restored from its derivative ψ = φ′ by the curvilinear integral

φ(z) = φ(z0) +

z∫
z0

dtJψ(t) (2.9)

along some smooth arc joining the points z and z0 in the domain D.
Conversely, if a J-analytic function ψ is given, this formula defines a J-analytic function φ such that

its derivative coincides with ψ. If the domain D is simply connected, this formula defines a single-
valued function. But in the case of a multiply connected domain, generally speaking, φ is multivalued
and can admit nonzero increments while tracing the connected components of the boundary ∂D. In
the sequel we understand under multivalued functions such ones, which have single-valued derivatives.

Theorem 2.1. In the notation of Lemma 2.1 any solution u of the Lamé system (1.1) in the domain
D can be represented in the form

u = Re bφ, (2.10)
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with some (generally multivalued) J-analytic function φ in this domain, and its derivative φ′ can be
restored from the gradient gradu of this solution by the formula

φ′ = 2

(
d1

∂u

∂x
+ d2

∂u

∂y

)
,

(
d1 d2
d1 d2

)
= B−1. (2.11)

Proof. In notation (2.5) with respect to the vector U = gradu system (1.1) can be written as a first
order one

∂U

∂y
−A

∂U

∂x
= 0.

By (2.4), with respect to V = B−1U this system passes into

∂V

∂y
− diag(J, J)

∂V

∂x
= 0.

Since the vector U is real, the vector V = B−1gradu has a block structure (ψ,ψ), so that the function
ψ is J-analytic and

gradu = BV, V = (ψ,ψ). (2.12)

Thus according to the form (2.5) of the matrix B we have

∂u

∂x
= 2Re bψ,

∂u

∂y
= 2Re bJψ.

Hence, similarly to (2.9), we arrive at the equality

u = Re bφ+ ξ, ξ ∈ R
2,

where the J-analytic function φ has a derivative φ′ = ψ. Due to the invertibility of the matrix B there
exists a vector η ∈ C

2 such that Re bη = ξ. Therefore, denoting φ+ η by φ again, we finally arrive at
representation (2.10).

As for equality (2.11), it is equivalent to (2.12) with respect to ψ = φ′.

Theorem 2.1 can be complemented by a representation formula for the stress tensor

σ =

(
σ1 σ3
σ3 σ2

)
.

Recall that the vector u = (u1, u2) characterizes the shift vector; it is related to the columns σ(1), σ(2)
of the stress tensor by the equalities

σ(i) = ai1
∂u

∂x
+ ai2

∂u

∂y
, i = 1, 2, (2.13)

that form the content of Hooke’s law.
In the absence of mass forces the matrix σ satisfies equilibrium equations

∂σ(1)

∂x
+

∂σ(2)

∂y
= 0,

which together with (2.13) result in the Lamé system.
The columns of the tensor can be conveniently described as the partial derivatives of the so-called

adjoint function v. The latter is defined by the relation

∂v

∂x
= −

(
a21

∂u

∂x
+ a22

∂u

∂y

)
,

∂v

∂y
= a11

∂u

∂x
+ a12

∂u

∂y
. (2.14)

Writing (1.1) in the form

∂

∂x

(
a11

∂u

∂x
+ a12

∂u

∂y

)
+

∂

∂y

(
a21

∂u

∂x
+ a22

∂u

∂y

)
= 0,
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we see that the necessary condition of the existence of the function v holds. Therefore up to an
additive constant ξ ∈ R

l it is uniquely defined in each simply connected subdomain D0 ⊆ D. In the
whole domain this function can be multivalued and admit bifurcations while encircling the connected
components of the boundary ∂D.

If the adjoint function v is constant, then (2.14) is a homogeneous system with respect to the
gradient vector η; therefore, due to (1.4) we have

∂u1
∂x

=
∂u1
∂y

+
∂u2
∂x

=
∂u2
∂y

= 0

identically in the domain D. Evidently, these relations are equivalent to

u1(x, y) = λ1 − λ0y, u2(x, y) = λ1 + λ0x (2.15)

with some λj ∈ R. We will call solutions of this type trivial, they correspond to translation of the
elastic medium as a whole.

From (2.13), (2.14) we reach the expressions

σ(1) =
∂v

∂y
, σ(2) = −∂v

∂x
(2.16)

for the columns of the stress tensor.

Theorem 2.2. Under the hypotheses of Theorem 2.1 the adjoint function of the solution (2.10) of the
Lamé system is representable as

v = Re cφ, c = −(a21b+ a22bJ). (2.17)

In this case v is constant if and only if the derivative φ′ is constant in this representation.

Proof. Differentiating (2.10) and substituting the result into (2.14), we get

∂v

∂x
= −Re(a21b+ a22bJ)φ

′,
∂v

∂y
= Re(a11b+ a12bJ)φ

′. (2.18)

By (2.11), for the matrix c in (2.17) we have the relation a11b+ a12bJ = cJ , so that

∂v

∂x
= Re cφ′,

∂v

∂y
= Re cJφ′.

As in the proof of Theorem 2.1, we arrive at (2.17).
If the function v is constant in the representation (2.17), as we have mentioned above, the solution

u of the Lamé system is trivial and has the form (2.15). Together with (2.10) this leads to a system

Re bφ′ = ξ, Re cφ′ = 0

with a vector ξ = (0, λ0) ∈ R
2. By Lemma 2.1, the matrix(

b b
c c

)
=

(
1 0

−a21 −a22

)(
b b
bJ bJ

)
(2.19)

is invertible, so that the previous system yields a constant vector φ′.

By Lemma 1.2 it is easy to give explicit expressions for the matrices b and c mentioned in Theo-
rems 2.1, 2.2. We introduce these expressions separately for each of the three cases where the matrix
α belongs to different subsets of (1.13). For this purpose, in the notation (1.3) we introduce the
polynomials

q0(z) = β5 − β3z + β6z
2,

q1(z) = β2 − β5z + β4z
2,

q2(z) = β4 − β6z + β1z
2,

q3(z) = zq2(z),
q4(z) = q0(z)− zq2(z).

(2.20)
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We can directly check that

−(a21 + a22z)

(
p2(z) −p3(z)
−p3(z) p1(z)

)
=

( −q3(z) −q1(z)
q2(z) q4(z)

)
. (2.21)

Lemma 2.2. In the case (i) of distinct roots we can set

b =

(
p2(ν1) p2(ν2)
−p3(ν1) −p3(ν2)

)
, c =

( −q3(ν1) −q3(ν2)
q2(ν1) q2(ν2)

)
, α ∈ A1,

b =

( −p3(ν1) −p3(ν2)
p1(ν1) p1(ν2)

)
, c =

( −q1(ν1) −q1(ν2)
q4(ν1) q4(ν2)

)
, α ∈ A2,

(2.22)

b = 1, c =

( −i
√
α1α3 −α3

α3 −i
√
α2α3

)
, α ∈ A0. (2.23)

In the case (ii) of a multiple root we can set

b =

(
p2(ν) p′2(ν)
−p3(ν) −p′3(ν)

)
, c =

( −q3(ν) −q′3(ν)
q2(ν) q′2(ν)

)
. (2.24)

In all cases the matrix c is invertible and representable in the form

c = c0d, (2.25)

where

(i) c0 =

( −ν1 −ν2
1 1

)
, (ii) c0 =

( −ν −1
1 0

)

and the matrix d commutes with J .

Proof. Expressions (2.22) and (2.24) for the matrix b follow directly from Lemma 1.2. The fact that
for α ∈ A0 the matrix b = 1 satisfies (2.3) can be checked directly due to (1.15).

In case (i) for the columns of the matrix c in (2.17) we have the expressions c(j) = −(a21+a22νj)b(j).
Substituting here the columns of the matrix b from (2.22) and using relation (2.20), we obtain the
respective expressions for the matrices c. Equality (2.23) for c can be checked directly.

Similarly, in case (ii) the relations

c(1) = −(a21 + a22ν)b(1), c(2) = −(a21 + a22ν)b(2) − a22b(1),

together with (2.20) and with the expression (2.24) for b yield the desired result.
It remains to establish the second part of the Lemma. By (1.15) for the matrix c in (2.23) we can

write

c =

( −ν1 −ν2
1 1

)(
α3 0
0 −i

√
α2α3

)
,

therefore it suffices to consider the cases α ∈ Aj, j = 1, 2.
In notation (2.20) polynomial (1.8) can be written in the form

χ(z) = q1(z)− zq0(z) + z2q2(z) = q1(z) − zq4(z). (2.26)

In particular, q1(ν) = νq4(ν) for χ(ν) = 0. Therefore, in the case of distinct roots νj matrix c in (2.22)
can be written in the form, respectively,

c =

( −ν1 −ν2
1 1

)( −p2(ν1) 0
0 −p2(ν2)

)
, α ∈ A1,

and

c =

( −ν1 −ν2
1 1

)(
p4(ν1) 0

0 p4(ν2)

)
, α ∈ A2.

If the rootν is multiple, then α ∈ A1 ∩A2 and the matrix c in (2.24) can be represented in the form

c =

( −ν −1
1 0

)(
p3(ν) p′3(ν)
0 p3(ν)

)
.
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Therefore it suffices to check that

χ(ν) = q2(ν) = 0 ⇒ α /∈ A1,

χ(ν) = q4(ν) = 0 ⇒ α /∈ A2.
(2.27)

The first three equalities in (2.20) with respect to the vectors q = (q2, q1, q0) and e = (z2, 1,−z) can
be written in the form q = βe. In particular, the vector q(z) �= 0 for any z. Since β = (detα)α−1, one
has (detα)e = αq, or, in the explicit form,

(detα)z2 = α1q2 + α4q1 + α6q0,
(detα) = α4q2 + α2q1 + α5q0,

−(detα)z = α6q2 + α5q1 + α3q0.

In particular, the polynomials qj are linked by two relations

(α4z + α6)q2 + (α2z + α5)q1 + (α5z + α3)q2 = 0,

(α6z + α1)q2 + (α5z + α4)q1 + (α3z + α6)q2 = 0.
(2.28)

Now suppose that χ(ν) = q2(ν) = 0. Then by (2.26) we must have q1(ν) = νq0(ν), q0(ν) �= 0.
Therefore due to (1.6) for z = ν the left-hand side of the first equality (2.28) coincides with p2(ν)q0(ν).
Thus p2(ν) = 0, and from (1.11) follows (2.27).

The argument for the second case is similar. If χ(ν) = q4(ν) = 0, then by (2.26) one must have
q1(ν) = 0 and q0(ν) = νq2(ν), q2(ν) �= 0. Therefore from (1.6) and from the second equality (2.28),
it follows that p1(ν) = 0, which means the linear dependence of the polynomials p1 and p3.

By Theorem 2.2, the space of J-analytic functions φ such that the real function v = Re cφ is the
identical zero is three-dimensional and consists of polynomials

φ(z) = η0 + zJη1, Re cη0 = 0, Re cη1 = Re cJη1 = 0. (2.29)

This fact can be specified to some extent.

Lemma 2.3. The space {η ∈ C
2 | Re cη = Re cJη = 0} is the one-dimensional hull of the vector e

defined by the system

ce = iξ0, cJe = iξ1, (2.30)

where in the notation of (1.7) the vectors ξk ∈ R
2 (k = 0, 1) are defined by equalities

ξ0 = (− Im t, Im s), ξ1 = (− Im(s̄t), Im t).

In particular, in formula (2.29) one can set η1 = λe, λ ∈ R.
Simultaneous equalities Re cη = Re cJη = Re cJ2η = 0 are possible only for η = 0.

Proof. By (2.25), the operation η → dη takes the subspace Xn ⊆ C
2 defined by the conditions

Re cJkη = 0, 0 ≤ k ≤ n, to a similar space corresponding to c0. In the case c = c0 equalities
dimX1 = 1 and dimX2 = 0 can be checked directly.

Further we note that the system of equations (2.30) is solvable if and only if one has

(cJc−1)ξ0 = ξ1. (2.31)

But by (2.25) in both cases (i) and (ii) the matrix

cJc−1 = c0Jc
−1
0 =

(
s t
−1 0

)
,

and equality (2.31) for the vectors ξk under consideration can be checked directly.
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Consider system (2.1), (2.2) in more detail. If the roots νj are distinct, then this system reduces
into two scalar equations

∂φ

∂y
− νj

∂φ

∂x
= 0,

which pass into the Cauchy–Riemann equation in the variables x̃ + iỹ = x + νjy. Therefore the
substitution

φj(x, y) = ψj(x+ νjy), j = 1, 2, (2.32)

defines analytic functions ψj in the domains D(νj) = {z̃ = x+ νjy, z ∈ D}.
A direct check shows that in the case of a multiple root ν the substitution

φ1(x, y) = ψ1(x+ νy) + yψ′
2(x+ νy), φ2(x, y) = ψ2(x+ νy) (2.33)

is one-to-one between the J-analytic vector function φ and the vector function ψ, which is analytic in
the domain D(ν). The inverse transform is given by a similar formula

ψ1(x+ νy) = φ1(x, y)− yφ′
2(x, y), ψ2(x+ νy) = φ2(x, y).

It is worth noting that in the case where the domain D is the upper half-plane the function ψ is
also defined in the same half-plane.

Substitution of formulas (2.32), (2.33) into (2.10), (2.17) together with (2.13) leads to classical
representations of the shift vector and the stress tensor by means of a pair of analytic functions. In
the case of multiple roots the derivative of one of the functions also enters this representation. It is
well known [11, 12] that this circumstance somewhat interferes with the use of these representations
in the study of boundary value problems.

As an illustration we discuss the connection between representations (2.12), (2.15) for an isotropic
medium and the classical Kolosov—Muskhelishvili formulas expressing the shift vector u and the stress
tensor σ by analytic functions. According to Section 1 in this case we have a multiple root ν = i and
the matrix J is a Jordan block, while the matrices b and c are given by formulas (2.24).

By (1.20), (1.26) these formulas yield the equalities

b =

(
α3 − α1 2α1i

(α3 − α1)i α3 − α1

)
, c = 2α3

(
(α1 − α3)i 2α1 − α3

α3 − α1 α1i

)
.

By Lemma 2.1, one can take as b and c the matrices obtained from the multiplication of these
equalities from the right by the matrix

d = (α3 − α1)
−1

(
1 2α1(α1 − α3)

−1i
0 1

)
.

After elementary calculations we finally arrive at the formulas

b =

(
1 0
i −κ

)
, c = α3

( −2i κ − 1
2 i(κ + 1)

)
(2.34)

with a positive constant κ from (1.27).
With these matrices written component-wise representation (2.10) takes the form

u1 = Reφ1, u2 = Re(iφ1 − κφ2). (2.35)

Substituting the expression (2.34) of the matrix c into (2.17), for the elements of the matrix σ in (2.16)
we obtain the representations

σ1 = Re[2φ′
1 + i(κ − 3)φ′

2],

σ2 = −Re[2φ′
1 + i(κ + 1)φ′

2],

σ3 = Re[2iφ′
1 − (κ − 1)φ′

2)

(2.36)

of the components of the stress tensor. It is worth noting that the matrix c possesses the property
(cJ)2k = −c1k, and therefore the equality which defines σ3 enters the component-wise notation (2.35)
twice.
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Substituting (2.33) into (2.34), (2.36), we arrive at the representation

u1 = Re[ψ1 + yψ′
2], u2 = Re[i(ψ1 + yψ′

2)− κψ2]

of the components of the shift vector and

σ1 = α3Re[2(ψ
′
1 + yψ′′

2) + i(κ − 3)ψ′
2],

σ2 = −α3 Re[2(ψ
′
1 + yψ′′

2 ) + i(κ + 1)ψ′
2],

σ3 = α3 Re[2i(ψ
′
1 + yψ′′

2)− (κ − 1)ψ′
2]

of the elements of the stress tensor by a pair of analytic functions ψ1, ψ2 of the same variable z.
With the help of a linear substitution

χ1(z) = −iψ2(z), χ2(z) = −2ψ1(z) + iκψ2(z) + izψ′
2(z)

these representations can be rewritten in the form of the equalities

2(u1 − iu2)(z) = κχ1(z) − zχ′
1(z)− χ2(z),

(σ1 + σ2)(z) = 4α3 Reχ
′
1(z), (σ2 − σ1 + 2iσ3)(z) = 2α3[z̄χ

′′
1(z) + χ′

1(z)],

i.e., of the classical Kolosov–Muskhelishvili formulas [12].

3. Analytic Functions According to Douglis

Let a domain D be bounded by a smooth contour Γ, which is positively oriented with respect to
D. This domain can be either finite (i.e., lies inside some disk) or infinite (i.e., contains the exterior
of some disk and therefore be a neighborhood of the infinite point ∞ on the plane). It is convenient
to denote these two possible cases for brevity σ(D) = 1 and σ(D) = 0, respectively.

Consider in the domainD system (2.2) with an arbitrary matrix J ∈ C
l×l such that all its eigenvalues

lie in the upper half-plane. In the case where J is a Hankel matrix, this system was studied by
Douglis [4] in the framework of hypercomplex numbers. It is convenient to relate the complex number
z = x+ iy to the matrix

zJ = x1 + yJ, (3.1)

where x = x1 is a scalar matrix. Since the eigenvalues of J lie in the upper half-plane, for z �= 0 this
matrix is invertible. Recall that the solutions φ of system (2.2) were called J-analytic functions. The
introduction of this term is motivated by the fact that these solutions can be described as functions
of the class C1(D) that admit at each point z ∈ D the generalized derivative

φ′(z) = lim
t→z

(t− z)−1
J [φ(t) − φ(z)],

which coincides with the partial derivative in x. In the case σ(D) = 0 of an unbounded domain we
add to this definition the condition that φ should be bounded at ∞. In the sequel we will see that in
this case φ has a limit φ(∞) = limφ(z) as z → ∞. In general, we will say that φ has the order k ∈ Z

at ∞ if the function |z|−kφ(z) is bounded in a neighborhood of ∞.
Let the l-vector function φ ∈ C1(D) satisfy system (2.2) in the domain D and in the case σ(D) = 0

let it have the order −2 at infinity. Then, integrating equality (2.2) and using Green’s formula, we
will obtain the equality ∫

Γ

dtJφ
+(t) = 0, (3.2)

which plays the role of the Cauchy Theorem. Here the matrix differential is defined similarly to (3.1)
and acts on the vector φ+ by the usual rule and therefore stands before the vector. As in the case of
classical analytic functions, one can deduce the Cauchy Formula

1

2πi

∫
Γ

(t− z)−1
J dtJφ

+(t) =

{
φ(z), z ∈ D,

0, z ∈ D̃,
(3.3)
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where D̃ = C \D and it is assumed in addition that in the case σ(D) = 0 the function φ has the order

−1 at infinity. This formula, in particular, implies that φ ∈ C∞(D). Denoting by φ(k) the consecutive
partial derivatives in x, due to (2.2) we have expressions

∂kφ

∂xk−s∂ys
= Jsφ(k), 0 ≤ s ≤ k. (3.4)

for the other partial derivatives. The Cauchy Formula also implies that a J-analytic function on the
whole plane that vanishes at infinity is the identical zero. As for usual analytic functions, formu-
las (3.2), (3.3) easily imply the following proposition on analytic continuation.

Let the domain D contain a cut L, i.e., a smooth arc ending in the points of the boundary contour
Γ, which lies inside D with the exception of the endpoints themselves. Then, if the function φ is
continuous in D and J-analytic in D \ L, then this function is J-analytic in the whole domain D.

All the main results of the classical theory of analytic functions based on the Cauchy integral remain
valid for J-analytic functions [17]. For convenience, we formulate the main ideas of this theory without
proof.

In a neighborhood of an isolated singular point a for a J-analytic function we have a Laurent
decomposition

φ(z) =
∑

(z − a)kJck, ck ∈ C
l,

in integer powers of the matrix (z − a)J . If φ is bounded in the neighborhood of this point, then the
singularity is removable and this decomposition becomes the respective Taylor series with coefficients
ck = φ(k)/k!. The respective partial sums of this series are J-analytic polynomials

p(z) =
n∑

k=0

(z − a)kJck, ck ∈ C
l.

If the domain D is unbounded, the infinite point ∞ can be considered as an isolated one. In this
case, the Laurent decomposition holds in a neighborhood of ∞ in integer powers of zJ . If φ has the
order k at infinity, then this decomposition contains only powers ziJ , i ≤ k. In particular, the function

z−k
J φ(z) is Douglas analytic in a neighborhood of ∞.
If the function ψ is given and J-analytic in a simply connected domain D, then the integral

φ(z) =

z∫
z0

dtJψ(t) (3.5)

does not depend on the integration path and defines a J-analytic function with a derivative φ′ = ψ.
In the case of a multiply connected domain D the primitive φ of the function ψ, generally speaking,
is multivalued and admits bifurcations while encircling connected components of the boundary of the
domain. Evidently, formula (3.5) yields a single-valued function if and only if one has∫

Γ′

dtJψ(t) = 0 (3.6)

for any simple contour Γ′ ⊆ D. In the general case the integral here can be understood as the increment
of the function φ along the contour Γ′.

Let the domain D be bounded and let its boundary consist of the finite number m of connected
components. Consider in D simple contours Γ′

j, 1 ≤ j ≤ m − 1, that contain within themselves
the respective m − 1 components among these. Then by the Cauchy Theorem it suffices to check
condition (3.6) for these contours. A similar statement holds for an unbounded domain provided that
ψ has the order −2 at infinity. In this case one can integrate in (3.5) starting at z0 = ∞, and the
components of the boundary linked to Γ′

j are equivalent.
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Similarly to (3.3), one can introduce a generalized Cauchy type integral

(Iϕ)(z) =
1

2πi

∫
Γ

(t− z)−1
J dtJϕ(t)

defining outside the oriented contour a J-analytic function φ = Iϕ with the order −1 at infinity and
the respective singular Cauchy integral

(Sϕ)(t0) =
1

πi

∫
Γ

(t− t0)
−1
J dtJϕ(t), t0 ∈ Γ,

understood in the sense of the principal value. The operator I defined by this integral is bounded in the
Hölder spaces Cμ(Γ) → Cμ(D), 0 < μ < 1, where D is any connected component of the complement
of Γ, and for its boundary values φ± (the signs are defined by the orientation of the contour) the
Sohocki–Plemelj formula holds (see [1]):

2φ± = ±ϕ+ Sϕ. (3.7)

Let a function φ be Douglis analytic outside of the contour Γ, have a finite order at infinity and
belong to Cμ(D), where D is any connected component of the complement to Γ. Then by (3.7)
the difference φ0 = φ − Iϕ, where ϕ = φ+ − φ−, has the property φ+

0 = φ−
0 . By the Cauchy

formulas (3.2), (3.3), applied to domains D, it is easy to deduce from here that φ0 is Douglis analytic
in the whole plane and therefore is a J-analytic polynomial p.

Formula (3.7) also implies that the singular operator S is bounded in Cμ(Γ). By the way, with
the help of the next lemma this fact can be easily reduced to a similar well-known result [13] for the
classical Cauchy singular operator

(S0ϕ)(t0) =
1

πi

∫
Γ

ϕ(t)dt

t− t0
, t0 ∈ Γ,

which corresponds to the case J = i.

Lemma 3.1. Let the contour Γ belong to the class C1,ν and

k(t0, t) ∈ Cν(Γ× Γ), k(t, t) ≡ 0. (3.8)

Then the integral operator

(Kϕ)(t0) =
1

πi

∫
Γ

k(t0, t)

t− t0
ϕ(t)dt, t0 ∈ Γ, (3.9)

is bounded C(Γ) → Cν(Γ) and, in particular, compact in the spaces C(Γ) and Cμ(Γ), 0 < μ < ν.
If the function ϕ is summable, then integral (3.9) exists almost everywhere in Γ and the operator

K is compact in the Lebesgue space Lp(Γ) for any p ≥ 1.

Proof. There exists a 0 < ρ < 1/2 (the standard radius of the contour) such that for any point a ∈ Γ
and 0 < δ < ρ the set Γ ∩ {|t − a| ≤ δ} is a smooth arc. Then for the function ψ = Kϕ we have an
obvious estimate

|ψ(t0)| ≤ |k|ν |ϕ|0
∫
Γ

|t− t0|ν−1|dt| ≤ M0|k|ν |ϕ|0, (3.10)

where | |0 and | |ν denote the norms in C and Cν , respectively, and the constant M0 > 0 depends only
on Γ. Further we use the estimate∫

Γ∩{|t−a|≥δ}
|t− a|α−2|dt| ≤ M1

{
δα−1, 0 < α < 1,

ln(1/δ), α = 1,
(3.11)

where the constant M1 > 0 depends only on Γ and on α.
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Fix the points t1, t2 ∈ Γ, and let δ = |t1 − t2| ≤ ρ/3. Write

ψ(t1)− ψ(t2) =

∫
Γ

[
k(t1, t)

t− t1
− k(t2, t)

t− t2

]
ϕ(t)dt = Δ1 +Δ2,

where Δ1 and Δ2 denote integrals along Γ1 = Γ ∩ {|t − t1| ≤ 2δ} and Γ2 = Γ ∩ {|t − t1| ≥ 2δ},
respectively. Evidently,

|Δ1| ≤ |k|ν |ϕ|0
∫
Γ1

[|t− t1|ν−1 + |t− t2|ν−1]|dt|.

Since |t− t1| ≤ 2δ implies |t− t2| ≤ 3δ, similarly to (3.10) we have:

|Δ1| ≤ M0[(2δ)
ν + (3δ)ν ]|k|ν |ϕ|0.

As for Δ2, we write

Δ2 =

∫
Γ2

k(t1, t)− k(t2, t)

t− t1
ϕ(t)dt +

∫
Γ2

(t1 − t2)k(t2, t)

(t− t1)(t− t2)
ϕ(t)dt.

Then we have

|Δ2| ≤ |k|ν |ϕ|0
⎡
⎣δν

∫
Γ2

|t− t1|−1|dt|+ δ

∫
Γ2

|t− t1|−1|t− t2|ν−1|dt|
⎤
⎦ .

Since |t− t1| ≥ 2δ implies |t− t2| ≥ |t− t1| − δ ≥ |t− t1| − |t− t1|/2, we can apply estimate (3.11) to
the expression in square brackets. Then we have

|Δ2| ≤ |k|ν |ϕ|0M1[δ
ν ln(1/δ) + 21−νδν ].

Combining both estimates for Δ1 and Δ2 results in

|ψ(t1)− ψ(t2)| ≤ C|k|ν |ϕ|0|t1 − t2|μ if |t1 − t2| ≤ ρ/3

with some constant C > 0. By (3.10), this implies boundedness of the operator K from C into Cν.
We turn to the second statement of the lemma. Assuming that the function ϕ is summable,

according to (3.8) we write (3.9) in the form

(Kϕ)(t0) =

∫
Γ

k̃(t0, t)ϕ(t)|dt|
|t− t0|α ,

where 1 − ν < α < 1, and the function k̃ is continuous and vanishes at t = t0. Then by the Fubini
Theorem this integral exists almost everywhere and defines a summable function ψ = Kϕ with an
estimate ∫

Γ

|ψ(t0)||dt0| ≤ |k̃|0
∫
Γ

|ϕ(t)||dt|
∫
Γ

|t− t0|−α|dt0| ≤ M |k̃|0
∫
Γ

|ϕ(t)||dt|.

If ϕ ∈ Lp(Γ), p > 1, then by the Hölder inequality

|ψ(t0)| ≤ |k̃|0
⎛
⎝∫

Γ

|ϕ(t)|p|dt|
|t− t0|α

⎞
⎠

1/p⎛
⎝∫

Γ

|dt|
|t− t0|α

⎞
⎠

1/q

,

where 1/q = 1 − 1/p. Rasing this inequality to the p-th power and integrating, due to the previous
inequality we get ∫

Γ

|ψ(t0)|p|dt0| ≤ |k̃|p0Mp/q

∫
Γ

|ϕ(t)|p|dt|.
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Thus the operator K is bounded in Lp(Γ) with an estimate

|K|L(Lp) ≤ M |k̃|0 (3.12)

for its norm.
Evidently, if for some δ > 0 the function k̃(t0, t) vanishes for |t − t0| ≤ δ, then the operator K is

compact in Lp(Γ). We choose a sequence of functions k̃n with this property with respect to δ = δn,

which converges to k̃ in the sup-norm, and letKn be defined from k̃n, as above. Then by estimate (3.12)
applied to the difference K−Kn the sequence of compact operators Kn converges to K in the operator
norm, so that the operator K is compact.

Lemma 3.2. Let the contour Γ belong to the class C1,ν and let the eigenvalues of the matrix J lie not
on the real axis. Then the operator S − S0 is compact in the spaces Cμ(Γ), 0 < μ < ν, and Lp(Γ),
p > 1.

If the contour Γ is the boundary of the domain D and positively oriented with respect to it, then
S2 = S2

0 = 1.

Proof. We write the difference S − S0 in the form

[(S − S0)ϕ)](t0) =
1

πi

∫
Γ

q(t; t− t0)

t− t0
ϕ(t)dt

with a matrix function q(t, ξ) = [e(t)]Jξ
−1
J ξ − e(t). Then it remains to make use of Lemma 3.1 and

the following general property of functions of the form q.
Let Γ ∈ C1,ν and the function q(t0, t; ξ) defined for t0, t ∈ Γ and ξ = ξ1 + iξ2 ∈ C, ξ �= 0 be even,

homogeneous of order zero, and continuously differentiable in ξ, namely, continuous in all the variables
together with its partial derivatives in ξ. Then, if q(t0, t; ξ) ∈ Cν(Γ×Γ) uniformly in |ξ| = 1, then the
function k(t0, t) = q(t0, t; t− t0) belongs to Cν(Γ× Γ), and k(t, t) = q(t, t; e(t), where e(t) is the unit
tangential vector on Γ.

It suffices to prove this proposition in a neighborhood of a fixed point (a, a) ∈ Γ × Γ. Write a
parametrization of the contour in this neighborhood in the form z = γ(s), |s| ≤ δ, where s is the
parameter of the arc length measured from the point a. Then the function

α(s0, s) =
γ(s)− γ(s0)

s− s0
=

1∫
0

γ′[sτ + s0(1− τ)]dτ

belongs to the class Cν in the square |s0|, |s| ≤ δ, is separated from zero in absolute value and takes the
value γ′(s) at s0 = s. Consequently, the function k[γ(s0), γ(s)] = q[γ(s0), γ(s);α(s0, s)] also belongs
to this class and its value at s0 = s coincides with q[γ(s0), γ(s); γ

′(s)]. Hence it follows that the
formulated proposition holds for the function q(t0, t; t− t1) in the neighborhood of the contour under
consideration.

We turn to the second statement of the Lemma. For the operator S0 it is well known [13], and for
S it can be proved according to the same scheme as in [13]. Namely, let the contour Γ be positively
oriented with respect to the domain D and for brevity P = (1 + S)/2. Then for the boundary value
of the function φ = Iϕ we have the equality φ+ = Pϕ. On the other hand, by the Cauchy formula
φ = Iφ+, where we take into account the fact that in the case of an unbounded domain D the
function φ vanishes at ∞. Then Pφ+ = φ+ or P 2ϕ = Pϕ, which is equivalent to the operator equality
S2 = 1.

The boundary properties of integrals of the Cauchy type Iϕ with density from ϕ ∈ Lp(Γ), 1 <
p < ∞, were studied in [16]. In this case the J-analytic function φ = Iϕ belongs to the Hardy space
Hp(D), which can be introduced [18] in the following way. Let the contour Γ belong to the class C1,ν
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and let the sequence of contours Γn ⊆ D, n = 1, 2, . . . converge to Γ in the metric of C1. By definition,
this means that for some diffeomorphisms γn : Γ → Γn, the condition

lim
n→∞ |γn(t)− t|C1(Γ) = 0 (3.13)

holds. Then Hp(D) consists of all J-analytic functions in D such that the norm

|φ| = sup
n

|φ|Lp(Γn) (3.14)

is finite.
In this notation the Cauchy type integral as a linear operator ϕ → φ = Iϕ is bounded Lp(Γ) →

Hp(D), the angular limiting values φ± exist almost all in Γ, and the Sohocki–Plemelj formula holds [16].
Conversely, any function φ ∈ Hp is representable as a Cauchy type integral with density ϕ ∈ Lp(Γ).

In fact, let the domain Dn ⊆ D be bounded by the contour Γn. Then for a fixed point z ∈ D and
sufficiently large n one can write the Cauchy Formula

φ(z) =
1

2πi

∫
Γn

(t− z)−1
J dtJφ(t).

From (3.14) and the weak compactness [15] of the unit ball in the reflexive Banach space Lp, p > 1,
it follows that there exists a function ϕ ∈ Lp(Γ) such that some subsequence φ ◦ γnk

weakly converges
to ϕ in Lp. Therefore due to (3.13) we can pass to the limit as k → ∞ in the previous equality for
n = nk and as a result represent φ by a Cauchy type integral.

This implies, in particular, that φ ∈ Hp(D) if and only if angular limiting values exist almost
everywhere in Γ, belong to Lp(Γ), and the Cauchy Formula remains valid. By the same reasons, the
space Hp can be defined as the closure of the class of J-analytic functions, which are continuous in
the closed domain D, in the norm

|φ| = |φ+|Lp(Γ)

equivalent to norm (3.14). Recall that in the case σ(D) = 0 of an unbounded domain J-analytic
functions are supposed to be bounded at ∞, so that the given equality defines a norm in this case as
well.

It is well known [13] that any analytic function can be represented by a Cauchy type integral up
to an additive constant. This fact also holds [16] for J-analytic functions in the Hölder classes. With
the help of the following lemma it can be easily extended to the Hardy class as well.

Lemma 3.3. Let a domain D be bounded by a simple Lyapunov contour Γ and a matrix J be trian-
gular. Let a J-analytic function φ ∈ Hp(D) be such that Reφ+ is constant in Γ. Then φ is constant
in the domain D.

Proof. Prove this Lemma first for the scalar case l = 1, where J = ν ∈ C and φ is a solution of the
equation

∂φ

∂y
− ν

∂φ

∂x
= 0.

Under the affine transformation z = x+ iy → zν = x+νy this equation becomes the Cauchy–Riemann
equation that defines analytic functions. Evidently, the Hardy class is invariant with respect to these
transformations, so that without loss of generality the function φ can be considered analytic. In this
case the statement of the Lemma is well known [8].

So in the scalar case the statement of the Lemma is proven. In the general case let for definiteness
the matrix J ∈ C

l×l be upper triangular, i.e., Jik = 0 for i > k. Then in the coordinate notation with
respect to the vector φ = (φ1, . . . , φl) the Douglis system can be rewritten in the form

∂φj

∂y
−

l∑
k=j

Jkj
∂φk

∂x
= 0, 1 ≤ k ≤ l.
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By the above the last equation of this system implies that the function φl is constant. Therefore the
(l − 1)-th equation of this system becomes the scalar equation considered above with respect to φl−1

and ν = Jl−1,l−1. Hence, by the same reasons the function φl−1 is constant. Repeating the same
arguments, we finally come to the conclusion that all the functions φk are constant.

We turn to the problem of representability of J-analytic functions φ ∈ Hp by the Cauchy type
integrals with real density.

Theorem 3.1. Let a Lyapunov contour Γ be the boundary of a domain D, positively oriented with
respect to D, and consist of components Γ1, . . . ,Γm, m ≥ 1, where in the case of a bounded domain the
contour Γm encompasses all the others. Let a matrix J be triangular. Then any J-analytic function
φ ∈ Hp(D) can be represented in the form

φ = Iϕ+ η, η ∈ C
l, (3.15)

where the real l-vector function ϕ ∈ Lp(Γ) and Re η = 0 in the case of a bounded domain D.
In this representation φ = 0 if and only if η = 0 and the function ϕ is constant on the contours Γj,

and in the case of a bounded domain D it vanishes on Γm.

Proof. It follows the same scheme as in the case of functions considered in the Hölder classes [16].

First suppose that the domain D is bounded by a simple contour (i.e., m = 1). Denote by D̃ the

complement of D on the plane, and let Ĩϕ denote the respective Cauchy type operator in the domain

D̃. Then due to (3.7) one has

(Iϕ)+ − (Ĩϕ)− = ϕ. (3.16)

We assert that

Re(Iϕ)+ = 0 ⇒ ϕ = 0, (3.17)

Re(Ĩϕ)− = ξ ∈ R
l ⇒ ξ = 0, ϕ ∈ R

l. (3.18)

In fact, if Re(Iϕ)+ = 0, then by Lemma 3.3 the function Iϕ is constant and due to (3.16) the

function Im(Ĩϕ)− is also constant. Using Lemma 3.3 again, we derive that the function Ĩϕ and
consequently the density ϕ = ξ ∈ R

l are constant as well. But then Iϕ = ξ and since by condition

Re(Iϕ)+ = 0, hence follows (3.17). The argument for the integral Ĩϕ is similar. As above, we check

that the functions Ĩϕ and ϕ are constant. Since the first of them vanishes at infinity, this implies (3.18).

Consider the operators Mϕ = Re(Iϕ)+ and M̃ϕ = Re(Ĩϕ)− that act in Lp(Γ). According to (3.7),
we have:

Mϕ = Re(ϕ+ Sϕ)/2, M̃ϕ = Re(−ϕ+ Sϕ)/2.

The operation of complex conjugation ϕ → ϕ of the functions induces the respective operator involu-
tion N → N by the rule Nϕ = Nϕ. In this notation one has

M = 1 + (S + S)/2, M̃ = −1 + (S + S)/2. (3.19)

If we denote the dependence of the operator S on the matrix J by the notation S = S(J), then

S(J) = −S(J) (the minus sign appears due to the factor 1/πi before the singular integral). According
to Lemma 3.2, the operators S(J)− S0 and S(J)− S0 are compact in the space Lp(Γ). But then the
same property belongs to the operator S + S = S(J) − S(J). Therefore by the Riesz Theorem [15]

the operators M and M̃ in (3.19) are Fredholm of index zero. In combination with (3.17), (3.18) this
allows us to conclude that the operator M is invertible and

ker M̃ = 0, R
l ∩ im M̃ = 0. (3.20)

Now let φ ∈ Hp(D) and f = Reφ+. Setting ϕ = M−1ϕ, we obtain (φ−Iϕ)+ = 0 and by Lemma 3.2
the function φ = Iϕ+ iξ with some ξ ∈ R

l. If in this equality φ = 0, then Mϕ = 0 and hence ϕ = 0.
This proves the claim of the theorem in the case under consideration.
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Further let φ̃ ∈ Hp(D̃) and φ̃0(z) = φ̃(z)− φ̃(∞). Recall that the operator M̃ is Fredholm of index

zero. Therefore, taking into account (3.20), the function f = Re φ̃0 can be represented in the form

M̃ϕ+ ξ with some ϕ ∈ Lp and ξ ∈ R
l. Then Re(φ̃0− Ĩϕ) = ξ and by Lemma 3.2 the function φ̃0− Ĩϕ

is constant. Since it vanishes at ∞, in fact one has φ̃ = Ĩϕ, which leads to the decomposition (3.15)

for φ̃ with η = φ̃(∞). The fact that φ̃ = 0 in this decomposition implies η = 0 and ϕ ∈ R
l can be

proved similarly. Thus the claim of the Theorem is also proved for the case of an unbounded domain
whose boundary is a simple contour.

Consider the general case of a contour Γ, assuming for definiteness that the domain D is bounded.
Let the domainDj have the contour Γj as a boundary, being unbounded for 1 ≤ j ≤ m−1 and bounded
j = m, so that D = D1 ∩ . . .∩Dm. According to the Cauchy Formula the function φ ∈ Hp(D) can be
represented as the sum

φ(z) = φ1(z) + . . .+ φm(z), z ∈ D, (3.21)

where φj ∈ Hp(Dj) are defined by the integral of the Cauchy type

φj(z) =
1

2πi

∫
Γj

(t− z)−1
J dtJφ

+(t), z ∈ Dj .

The conclusion of the theorem is already applicable to the functions φj , so that

φj(z) =
1

2πi

∫
Γj

(t− z)−1
J dtJϕj(t), 1 ≤ j ≤ m− 1,

φm(z) =
1

2πi

∫
Γm

(t− z)−1
J dtJϕm(t) + iξ, ξ ∈ R

l.

Substituting these expressions into (3.21), we arrive at the required decomposition (3.15). If in this
decomposition φ = 0 and the functions φj ∈ Hp(Dj) are defined by the Cauchy type integral with
density ϕ|Γj , then the equality −φm = φ1 + . . . + φm−1 allows us to extend −φm up to a Douglis
analytic function on the whole plane that vanishes at ∞. Therefore φm = 0. Similarly one can show
that φj = 0 for all j. Applying the conclusion of the Theorem to φj, we see that ϕ|Γj ∈ R

l for
1 ≤ j ≤ m− 1 and ξ = 0, ϕ|Γm = 0.

4. The Riemann–Hilbert Problem

As in the case of usual analytic functions, for Douglis analytic functions one can consider the
Riemann–Hilbert Problem

ReGφ
∣∣
Γ
= f, (4.1)

where the l × l-matrix function G ∈ C(Γ) is invertible everywhere on Γ. This problem is considered
in the space Hp(D), p > 1, with a right-hand side f ∈ Lp(Γ). The Fredholm property and the index
of the problem are understood with respect to the R-linear operator φ → Re Gφ of its boundary
condition.

Theorem 4.1. Let the Lyapunov contour Γ consist of m connected components and the determinant
of the matrix function G ∈ C(Γ) be nonzero everywhere on Γ. Then problem (4.1) is Fredholm and
its index κ is given by the formula

κ = − 1

π
arg detG

∣∣
Γ
+ (2−m)l, (4.2)

where the increment of a continuous branch of the argument on Γ is taken in the direction leaving the
domain D on the left.
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If Γ ∈ C1,ν and G ∈ Cν(Γ), then any solution φ ∈ Hp(D) of this problem with a right-hand side
f ∈ Cμ(Γ), 0 < μ < ν, belongs to the class Cμ(D). Under the additional assumption G ∈ C1,ν(Γ) a
similar assertion also holds for the classes C1,μ.

Proof. Without loss of generality the matrix J can be considered Jordan and, in particular, triangular.
In fact, let a matrix b ∈ C

l×l take J to the Jordan form J0, i.e., J0 = b−1Jb. Then the substitution
φ = bφ0 takes J-analytic functions to J0-analytic ones. it remains to note that under this substitution
problem (4.1) passes into a similar problem for a J0-analytic function φ0 with a matrix G0 = Gb.

Thus we can make use of Theorem 3.1. This theorem implies that the integral operator I acting from
the space Lp(Γ) of real l-vector functions intoHp(D) is Fredholm and its index ind I = l(m−2). On the
other hand, according to (3.7) for the composition N = 2RI of the operator R of problem (4.1) with
I we have the equality Nϕ = Re(ϕ+ Sϕ). In terms of operator involution of conjugation introduced
in the proof of Theorem 3.1 we can write

N = G(1 + S)/2 +G(1 + S)/2 = G(1 + S0)/2 +G(1− S0)/2 +K (4.3)

with an integral operator 2K = G(S − S0) + G(S + S0), which by Lemma 3.2 is compact in Lp(Γ).
According to the classical theory of singular operators with the Cauchy kernel [9, 13] we conclude
that the operator N is Fredholm in Lp and its index is determined by the first term on the right-hand
side of (4.2). Since S2

0 = 1, with the help of Lemma 3.2 one can similarly check that the operator

N (−1) = G−1(1 + S0)/2 + G
−1

(1 − S0)/2 is a regularizer of N , i.e., the operators 1 − NN (−1) and

1−N (−1)N are compact in Lp(Γ).
The second part of the Theorem is based on Lemma 4.1, which will be proved below. Let Γ ∈

C1,ν , G ∈ Cν(Γ) and 0 < μ < ν. Then by Lemma 3.1 the operator K in (4.4) is compact in the space

Cμ(Γ) and the operator N (−1) is a regularizer of N in this space. Therefore the claim of the theorem
follows from Lemma 4.1.

Further let G ∈ C1,ν(Γ). Consider the operation of differentiation on Γ by the formula

(Dϕ)(t0) = lim
t→t0, t∈Γ

(t− t0)
−1
J [ϕ(t)− ϕ(t0)].

It is related to the similar operation D0 with respect to J = i by the equality D = dD0, where
d = e−1

J e ∈ Cν(Γ). It can be directly checked by integration by parts that

(Iϕ)′(z) =
1

2πi

∫
Γ

(t− z)−1
J dtJ(Dϕ)(t).

In particular, the Cauchy type operator I is bounded C1,μ(Γ) → C1,μ(D). Therefore it suffices to
establish the regularity statement of the theorem with respect to the equation Nϕ = f defined by the
operator (4.3).

Applying to the previous equality the Sohocki–Plemelj Formula (3.7) and comparing the result with
the differentiated formula (3.7), we obtain the equality DS = SD or dD0S = SdD0. Similarly one
has D0S0 = S0D0, so that

D0(S − S0) = [d−1(S − S0)d+ (d−1S0 − S0d
−1)d]D0.

As a result, for the operator K in (4.3) we have the relation D0K = K0 + K1D0, where Kj (j =
0, 1) are defined similarly to (3.9) with some functions kj(t0, t) having the property (3.8). Therefore
the operator K is compact in the space C1,μ(Γ), 0 < μ < ν. Similarly one can check that the
operator N (−1) is a regularizer of N in the space C1,μ(Γ) as well, so that it remains to make use of
Lemma 4.1.

Lemma 4.1. Let the operator N be Fredholm in the space Lp(Γ), p > 1, and together with its

regularizer N (−1) bounded in some Banach space X embedded into Lp(Γ). Then if N (−1) is a regularizer
of N with respect to X as well, then any solution ϕ ∈ Lp(Γ) of the equation Nϕ = f with the right-hand
side f ∈ X also belongs to X.
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Proof. It suffices to prove the assertion with respect to the equation ϕ + Kϕ = f , where K =
1 − N (−1)N . By hypothesis, the operator K is compact both in Lp and in X. The space Lq(Γ),
q = p/(p − 1), is dual to Lp(Γ) with respect to the bilinear form

(ϕ,ψ) =

∫
Γ

ϕ(t)ψ(t)dt.

Respectively, the adjoint operator K ′ related to K by the identity (Kϕ,ψ) = (ϕ,K ′ψ) is compact
in the space Lq. By the Riesz Theorem [15] the dimension of the kernel n = dim[ker(1 +K)] of the
operator 1 +K is finite and coincides with dim[ker(1 +K ′)], and the equation Nϕ = f is solvable if
and only if (f, ψ) = 0, ψ ∈ ker(1 +K ′). Let n0 have an analogous sense with respect to the operator
K0 = K|X acting in X. Then, obviously, the condition (f, ψ) = 0, ψ ∈ ker(1 +K ′) is necessary for
the solvability of the equation Nϕ = f in X. Thus,

n0 ≤ n, dim[X/Im (1 +K0)] ≥ n0,

so that ind(1 + K0) ≤ ind(1 + K) = 0. Since in fact one has ind(1 + K0) = 0, the two previous
inequalities are also exact equalities. Thus ker(1 +K0) = ker(1 +K), and the condition (f, ψ) =
0, ψ ∈ ker(1 +K ′) is necessary and sufficient for the solvability of the equation Nϕ = f in X. This
directly implies the assertion of the lemma.

We pay a special attention to the Riemann–Hilbert problem with a constant matrix G. In this
case the index formula (4.2) becomes κ = l(2 − m). To consider this problem in more detail, it is
convenient to introduce the Hardy space for the class of real vector functions

u = ReGφ, (4.4)

which is denoted here by hp(D). It is introduced similarly to the case of J-analytic functions with
the difference that the sequence of contours Γn ⊆ D, n = 1, 2, . . . converges to Γ in the metric of
this class. In other words, the domain D is bounded by the contour Γ ∈ C1,ν and condition (3.13)
holds with respect to the norm of the space C1,ν(Γ). Then the space hp(D) of functions u = ReGφ is
defined by the condition of finiteness of the norm

|u| = sup
n

|u|Lp(Γn). (4.5)

Theorem 4.2. Let the domain D be bounded by a contour Γ of the class C1,ν; then u ∈ hp(D) if and
only if in the representation (4.4) the function φ ∈ Hp(D).

Proof. Without loss of generality the matrix J can be considered triangular, which is justified in the
same way as in the proof of Theorem 4.1. Since the assertion of the theorem has to do with the
behavior of φ near the connected components of the contour, we can consider the domain D bounded,
and the contour Γ consisting of two components. In this case it is convenient to modify the operator
I of the Cauchy type integral slightly, putting

(Iϕ)(z) =
1

2πi

⎡
⎣∫
Γ

(t− z)−1
J dtJϕ(t) +

∫
Γ

ϕ(t)|dt|
⎤
⎦ , z ∈ D. (4.6)

Then by Theorem 3.1 this operator is invertible Lp(Γ) → Hp(D).
In our notation formula (3.7) corresponds to the equality

2(Iϕ)+ = ϕ+ Sϕ, (Sϕ)(t0) =
1

πi

∫
Γ

[(t− t0)
−1
J eJ(t) + 1]ϕ(t)|dt|, (4.7)

and for the operator Nϕ = ReG(Iϕ)+ we have an expression similar to (4.5):

N = G(1 + S)/2 +G(1 + S)/2. (4.8)
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Thus problem (4.1) is equivalent to the equation Nϕ = 2f , whose solution ϕ determines the solution
φ = Iϕ of the problem. According to Theorem 4.1 this problem and, respectively, the operator N
are Fredholm of index zero. Let φ1, . . . , φk ∈ Hp(D) form the base of the space of solutions of the
homogeneous problem (4.1). Without loss of generality we can consider that some subdomain D0

together with its boundary lies inside all the contours Γn. Real l-vector functions Reφj are linear

independent as elements of C(D0). In fact, if Reφ ≡ 0 in the domain D0 for some J-analytic function
φ, then also φ ≡ 0, which is proved similarly to Lemma 3.2. We choose a system of real l-vector
functions ψ1, . . . , ψk, biorthogonal to functions Reφj(z), z ∈ D0. In other words,∫

D0

(Reφi)ψjdxdy = δij ,

where δij is the Kronecker symbol. Then the homogeneous problem (4.1) complemented by the
conditions ∫

D0

ψj Reφdxdy = 0, 1 ≤ j ≤ k,

has only the zero solution. Consider the operator L : Lp(Γ) → R
k defined by the formula

(Lϕ)j =

∫
D0

Reψj Re(Iϕ)dxdy, 1 ≤ j ≤ k.

Due to (4.6) it can be written in a more explicit form of the scalar product

(Lϕ)j =

∫
Γ

gj(t)ϕ(t)|dt|, 1 ≤ j ≤ k, (4.9)

with functions

gj(t) =
1

2π

∫
D0

Im[eJ (t)(t− z)−1
J + 1]ψj(z)dxdy.

In this notation the operator (N,L) : Lp(Γ) → Lp(Γ) × R
k is Fredholm and its kernel is trivial.

The dependence of operators (4.7)–(4.9) and their defining functions on Γ is indicated by subscripts
SΓ, LΓ, etc.

We turn to the sequence of contours Γn considered in the Theorem. By hypothesis, there exist
homeomorphisms γn : Γ → Γn of the class C1,ν(Γ) such that condition (3.12) holds in the norm of
C1,ν , i.e.,

lim
n→∞ |γn(t)− t|C1,ν = 0. (4.10)

The operation of superposition ϕ → ϕ ◦ γn of functions induces the operator transformation M →
M ◦ αn by the rule (M ◦ γn)(ϕ ◦ γn) = (Mϕ) ◦ γn, which takes the Banach space L[Lp(Γn)] of
bounded operators in Lp(Γn) into L[Lp(Γ)]. The notation (M ◦ γn)(ϕ ◦ γn) = Mϕ for the operator
M : Lp(Γn) → R

k has a similar sense. We assert that in this notation

|SΓn ◦ γn − SΓ|L → 0, |LΓn ◦ γn − LΓ|L → 0 (4.11)

as n → ∞ in the operator norm of the respective spaces. In fact, set

qn(t0, t) = [γn(t)− γn(t0)]
−1
J eJ [γn(t)]e

−1
J (t)(t− t0)J .

Then by (4.10) the sequence of matrix functions qn → 1 in the norm of Cν(Γ×Γ). It remains to note
that in this notation one has

[(S ◦ γn)ϕ](t0) = 1

πi

∫
Γ

[qn(t0, t)(t− t0)
−1
J eJ (t) + 1]ϕ(t)|γ′n(t)||dt|,
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[(LΓn ◦ γn)ϕ]j =
∫
Γ

gΓn,j[γn(t)]|γ′n(t)|ϕ(t)|dt|,

and to make use of the estimate of he operator norm of the operator K in Lp(Γ) established in the
proof of Lemma 3.1.

Now let a J-analytic in D function φ be given, for which norm (4.5) is finite, i.e., real functions
fn = Reφ|Γn are uniformly bounded in the norm of the spaces Lp(Γn). Put

ξj =

∫
D0

ψj Reφdxdy, 1 ≤ j ≤ k.

Let ϕn ∈ Lp(Γn) be defined by the equality φ = IΓnϕn in the domain Dn ⊆ D bounded by the
contour Γn. Then one has NΓnϕn = 2fn and (LΓnϕn)j = ξj, or, equivalently,

(NΓn ◦ αn)ϕ̃n = 2fn, [(LΓn ◦ αn)ϕ̃n]j = ξj ,

where we put ϕ̃n = ϕn ◦αn. According to (4.8) relation (4.11) also holds for the operator N ; therefore
by Lemma 4.2 below the sequence ϕ̃n is bounded in Lp(Γ). Due to (4.7), (4.11) this implies that the
sequence of functions (SΓn ◦ αn)ϕ̃n and hence also φ ◦ αn are bounded in Lp(Γ), which completes the
proof of the theorem.

Lemma 4.2. Let Banach spaces X,Y and the Fredholm operator N ∈ L(X,Y ) with a trivial kernel be
given. Let the sequence Nn → N as n → ∞ in the norm of the space L(X,Y ). Then, if the sequence
of vectors Nnxn is bounded in Y , so are xn in X.

Proof. First suppose that the image imN of the operator coincides with Y , i.e., the operator N is
invertible. Then the operators Nn are also invertible for sufficiently large n and the sequence N−1

n

converges to N−1 in L(Y,X) so that the sequence xn = N−1
n yn is bounded. In the general case by

hypothesis the image imN is closed and Y = Y0 ⊕ imN for some finite-dimensional subspace Y0.

Consider the operators Ñ , Ñn ∈ L(X × Y0, Y ) defined by the formula

Ñ(x, y0) = Nx+ y0, Ñn(x, y0) = Nnx+ y0.

Then the operator Ñ is invertible and the sequence Ñn → Ñ in the operator norm. Since Ñn(xn, 0) =
yn, this implies the boundedness of the sequence xn.

Note that an analogue of Theorem 4.2 also holds with respect to the Hölder classes Cμ(D), 0 <
μ < ν.

To conclude, we discuss multivalued J-analytic functions, i.e., functions φ with single-valued deriva-
tives φ′ in the domain D. Here in the case of an unbounded domain it is assumed that this derivative
is of the order −2 at ∞. These functions can be easily reduced to single-valued ones with the help of a
special matrix function L(z) such that its derivative coincides with (2πi)−1z−1

J . It is easy to show [17]
that it can be defined as a value of the analytic function (2πi)−1 ln ζ of the matrix zJ . Then for any
η ∈ C

l the multivalued vector function φ(z) = L(z)η will be a J-analytic function such that its incre-
ment in the anti-clockwise motion of the point z = 0 yields the vector η. In the case of matrix (2.1)
this function is given by the formula

(i) L(z) =
1

2πi

(
ln(x+ ν1y) 0

0 ln(x+ ν2y)

)
,

(ii) L(z) =
1

2πi

(
ln(x+ νy) y(x+ νy)−1

0 ln(x+ νy)

)
,

(4.12)

Starting from L(z) construct a family of multivalued functions with a similar behavior with respect
to the connected components of the contour Γ = ∂D. Let this contour consist of connected components
Γ1, . . . ,Γm, and let in the case of a bounded domain D the contour Γm encompass all the other ones.
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Evidently, the complement of the closed domain D on the plane consists of m domains D̃1, . . . , D̃m

such that each of them has a simple contour as its boundary. For 1 ≤ j ≤ m− 1 all the domains D̃j

are bounded, and the domains D̃m and D are of the opposite type.

Choose inside each domain D̃j a point aj and put

Lj(z) =
1

2πi

{
L(z − aj), σ(D) = 1,
L(z − aj)− L(z − am), σ(D) = 0,

1 ≤ j ≤ m− 1. (4.13)

Note that in the case of an unbounded domain the derivative L′
j(z) is of the order −2 at ∞.

It is easy to see that in this notation each multivalued function is representable in the form

φ(z) = φ0(z) +

m−1∑
j=1

Lj(z)ηj , ηj ∈ C
l, (4.14)

where φ0 is single-valued. According to this, the notation φ ∈ hp(D) means by definition that in
this representation one has φ0 ∈ hp(D). In a similar way, other classes of multivalued functions are
introduced.

The formulation of the Riemann–Hilbert problem (4.1) can be extended to admissible multivalued
functions, i.e., functions φ such that the real l-vector function ReGφ is single-valued. They are defined
by decomposition (4.14), where ReGηj = 0. Accordingly, this problem can be considered as

ReGφ0

∣∣
Γ
+

m−1∑
j=1

Re[GLjηj ]
∣∣
Γ
= f

with respect to (φ0, η1, . . . , ηm−1), where φ0 is single-valued, and the vectors ηj (j = 1, . . . ,m − 1)

belong to the finite-dimensional space {η ∈ C
l, ReGη = 0} of dimension l. It is well known [14] that

extension of a Fredholm operator by n dimensions increases its index by n. Therefore due to (4.2) the
index of problem (4.1) in the class hp(D) of admissible multivalued functions equals l.

5. First and Second Boundary-Value Problem for the Lamé System

Consider the Lamé system in a domain D bounded by a Lyapunov contour Γ ∈ C1,ν , 0 < ν < 1.
It is known [12] that the main boundary conditions for this system consist in fixing on the boundary
contour either the shift vector

u+ = f, (5.1)

or the normal component σ+n = σ+
(1)n1 + σ+

(2)n2 of the stress tensor σ, where n = (n1, n2) is the

exterior unit normal on Γ and the superscript + denotes the boundary value of the function.
According to (1.1), (2.13) the latter boundary condition can be written in the form

n1

(
a11

∂u

∂x
+ a12

∂u

∂y

)+

+ n2

(
a21

∂u

∂x
+ a22

∂u

∂y

)+

= g, (5.2)

where we put x1 = x, x2 = y. Thus (5.1) corresponds to the Dirichlet problem for the Lamé system,
and (5.2) to the Neumann problem. These problems are also called the first and the second boundary
value problems, respectively.

In the case σ(D) = 0 of an unbounded domain the following condition is imposed on the gradient
of the solution u of this system:

grad u(z) = O(|z|−2) as z → ∞, (5.3)

in particular, there exists a limit u(∞) = limu(z) at infinity. Then Theorem 2.1 implies that in
representation (2.10) function φ′(z) is of the order −2 at ∞.

From the viewpoint of general strongly elliptic systems the solvability of the Dirichlet and Neumann
problems for the Lamé system in Hölder and Sobolev spaces is well studied [6]. In this section we
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consider these problems in Hardy classes hp(D) for the solutions of the Lamé system and the conjugate
functions, which according to Theorems 2.1, 2.2 are defined as in Section 4 with respect to G = b and
G = c, respectively.

In the class C1(D) the uniqueness of the solution of the Dirichlet problem for system (1.1) easily
follows from Green’s Formula:

2∑
i,j=1

∫
D

(
aij

∂u

∂xj

)
∂u

∂xi
dx1dx2 =

2∑
i,j=1

∫
Γ

(
aij

∂u

∂xj
ni

)
u|dt|, (5.4)

where we put for the sake of uniformity x1 = x, x2 = y. If u satisfies the homogeneous boundary
condition (5.1), then the integral over Γ falls out of this equality, and due to (1.4) the solution u must
be trivial, i.e., of the form (2.15). Combining this with (1.4) yields u = 0.

For the same reasons we conclude that the homogeneous problem (5.2) admits only trivial solutions.
On the other hand, for two solutions u, u0 ∈ C1(D), similarly to (5.4), we can write the identity

2∑
i,j=1

∫
D

(
aij

∂u

∂xj

)
∂u0
∂xi

dx1dx2 =
2∑

i,j=1

∫
Γ

(
aij

∂u

∂xj
ni

)
u0|dt|.

If u0 is a trivial solution, then

2∑
i,j=1

∫
D

aij
∂u

∂xj

∂u0
∂xi

dx1dx2 =
2∑

i,j=1

∫
D

aij
∂u0
∂xj

∂u

∂xi
dx1dx2 = 0,

so that the condition ∫
Γ

g(t)u0(t)|dt| = 0 (5.5)

of orthogonality of the right-hand side of problem (5.2) to the trivial solutions u0 is necessary for its
solvability.

Theorem 5.1. Let the domain D be bounded by a contour Γ ∈ C1,ν. Then the Dirichlet problem is
uniquely solvable in the class hp(D), p > 1.

If the right-hand side f ∈ Cμ(Γ), 0 < μ < ν, then any solution u ∈ hp(D) of this problem belongs
to Cμ(D). Similarly, f ∈ C1,μ(Γ) implies u ∈ C1,μ(D).

Proof. By Theorems 2.1 and 3.3 the Dirichlet problem is equivalent to the Riemann–Hilbert one

Re bφ+ = f (5.6)

in the class hp(D) of admissible multivalued solutions. As we have noted at the end of Section 3,
this problem is Fredholm in the class under consideration and its index equals 2. If f = 0, then by
Theorem 4.1 the function φ ∈ C1(D) and, respectively, u = Re bφ is a solution of the homogeneous
Dirichlet problem for the Lamé system. As it was noted above, we have u = 0, so that by Theorem 2.1
the function φ is constant. So, the dimension of the solution space of the homogeneous problem (5.6)
equals 2 and, since its index equals 2, this problem is unconditionally solvable. Thus we have estab-
lished the first assertion of the theorem. The second part of the theorem is a corollary of the second
part of Theorem 4.1.

We turn to the formulation of problem (5.2) in the Hardy class. If u ∈ C1(D), then by (2.14)
equality (5.2) can be written with respect to the conjugate function v in the form

(v+)′ = g, (5.7)

where the prime denotes the derivative in the arc length parameter measured in the positive direction
with respect to D.
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Let Γj , 1 ≤ j ≤ m, be simple contours that make Γ. By (2.19), there exist unique ηj ∈ C
2 that

satisfy the system

Re bηj = 0, Re cηj =

∫
Γj

g(t)|dt|, 1 ≤ j ≤ m− 1. (5.8)

Consider the multivalued solution of the Lamé system

u1(z) = u(z)− Re
m−1∑
j=1

bLj(z)ηj (5.9)

such that its conjugate function by Theorem 2.2 is given by the equality

v1(z) = v(z) − Re

m−1∑
j=1

cLj(z)ηj .

Evidently, it satisfies a boundary condition similar to (5.7):

(v+1 )
′ = g1 (5.10)

with the right-hand side

g1 = g −
⎡
⎣
⎛
⎝m−1∑

j=1

Re cLjηj

⎞
⎠

+⎤
⎦
′

.

By (5.8), the function g1 satisfies the condition∫
Γj

g1(t)|dt| = 0, 1 ≤ j ≤ m, (5.11)

Let the necessary condition (5.5) of solvability of the Neumann problem hold. Then, choosing as u0
constant vector functions, we arrive at an equality similar to (5.11) on Γm as well. Thus there exists
a primitive f1 ∈ C1(Γ) of the function g1. Here the function v1 is single-valued, and (5.9) becomes
the Dirichlet problem

v+1 = f1 (5.12)

for the conjugate function v.
This problem can already be considered both in the Hölder class Cμ(D) and in the Hardy class

hp(D) of conjugate functions. If a single-valued conjugate function v1 ∈ hp(D) of the solution u1 of
the Lamé system satisfying the boundary condition (5.12) is found, then we will call the single-valued
function u defined by equality (5.9) the solution of the Neumann problem. The described procedure
establishes a correspondence between problem (5.2) of solving the Lamé system with a multivalued
conjugate function and problem (5.12) for single-valued conjugate functions to multivalued solutions
of the Lamé system.

In the case v1 ∈ C1,μ(D) the function u defined in such a way belongs to the same class and satisfies
the classical boundary condition (5.2). In particular, then condition (5.5) must necessarily hold for
g1, since it takes place for g and for the restriction of the function

∑
Re cLjηj to Γ. Recall that in the

case of an unbounded domain only constant vectors are trivial solutions.
Thus after integration by parts the orthogonality condition (5.5) in the case of an unbounded domain

disappears, and in the case of a bounded domain D it becomes a single condition∫
Γ

f1(t)n(t)|dt| = 0, (5.13)

where the integrand is understood as the scalar product of f1(t) and the normal vector n = (n1, n2)
at the point t ∈ Γ in R

2.
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So, if the domain D is bounded and f1 ∈ Cμ(Γ), then condition (5.13) is necessary for the solvability
of problem (5.12). By density, we conclude that it is necessary for any right-hand side f1 ∈ Lp(Γ).

Theorem 5.2. Let the domain D be bounded by a contour Γ ∈ C1,ν. Then the homogeneous Dirichlet
problem for conjugate functions in the class hp(D), p > 1, has only the zero solution, and the inho-
mogeneous problem is unconditionally solvable in the case σ(D) = 0, and for σ(D) = 1 it is solvable if
and only if its right-hand side satisfies the orthogonality condition (5.13). In particular, this problem
is Fredholm and its index equals −σ(D).

If the right-hand side f1 ∈ Cμ(Γ), 0 < μ < ν, then any solution v1 ∈ hp(D) of this problem belongs
to Cμ(D). Similarly, f1 ∈ C1,μ(Γ) implies v1 ∈ C1,μ(D).

Proof. It is similar to that of Theorem 5.1. By Theorems 2.2 and 4.1 the Dirichlet problem (5.12) is
equivalent to the Riemann–Hilbert one

Re cφ+ = f1 (5.14)

in the class hp(D) of admissible multivalued solutions. In particular, by Theorem 4.1 the latter problem
is Fredholm with index 2. This also implies the second part of the theorem, in particular, any solution
v of the homogeneous problem belongs to the class C1,μ(D). The multivalued solution u of the Lamé
system such that its conjugate function is v has a similar property as well.

Let us call a smooth arc joining distinct contours Γj a cut of the domain D. Consider finitely many
nonintersecting cuts L1, . . . , Ln that divide the domain D into subdomains D1, . . . ,Dl such that each
of them is bounded by a simple piecewise smooth contour. Then in each domain Dk any multivalued
J-analytic function φ admits a single-valued branch φk, and if Ls ⊆ ∂Dk ∩ ∂Dr, then the difference
φk − φr is constant in Ls.

Now consider a multivalued solution φ of the homogeneous problem (5.14), which by Theorem 4.1
belongs to the class C1(D). By definition, for this solution the function v = Re cφ is single-valued in
the domain D and vanishes on Γ. Then we can apply identity (5.4) to functions ur = Re bφr in the
domain Dk:

2∑
i,j=1

∫
Dk

(
aij

∂uk
∂xj

)
∂uk
∂xi

dx1dx2 =

∫
∂Dk

v′kuk|dt|,

where vk = Re cφk and the prime denotes the tangential derivative in the direction leaving the domain
Dk on the left. The sum of the right-hand sides of this equality for all k’s is zero. In fact, the integrals
over Γ ∩ ∂Dk are zero due to the boundary condition for v. On the other hand, if Ls ⊆ ∂Dk ∩ ∂Dr,
then on Ls we have equalities vk = vr and v′k = −v′r, since the tangential derivatives are taken in
the opposite directions. On the other hand, the difference uk − ur on Ls equals the constant vector
ξs ∈ R

2. Therefore up to the sign∫
∂Dk

v′kuk|dt|+
∫

∂Dr

v′ruk|dt| =
∫

∂Dk

v′kξs|dt| = 0,

where we have taken into account the fact that the function vk vanishes at the ends of Ls.
Thus the integral of the left-hand side of (5.4) equals zero and, respectively, u = Re bφ is a trivial

solution of the Lamé system and v = 0.
As it was noted in Section 2, the functions φ with this property in the case σ(D) = 1 are polynomials

of the first degree and form a three-dimensional space, and for σ(D) = 1 they are constant vectors
and form a two-dimensional space. Since the index of the problem equals 2, this implies that in the
case σ(D) = 1 the inhomogeneous problem is unconditionally solvable, and for σ(D) = 0 this problem
is solvable if one orthogonality condition holds, which is obviously (5.13).

As a corollary of Theorem 5.2 we obtain the following classical result on the solvability of the
Neumann problem.
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hp(D), p > 1, has only the zero solution, and the inhomogeneous problem is unconditionally solvable
in the case σ(D) = 0, and for σ(D) = 1 it is solvable if and only if its right-hand side satisfies the
orthogonality condition (5.13). In particular, this problem is Fredholm and its index equals −σ(D).

Theorem 5.3. Let the domain D be bounded by a contour Γ ∈ C1,ν. Then the homogeneous Neumann
problem for the Lamé system in the class C1,μ(D), 0 < μ < ν, has only trivial solutions, and
the inhomogeneous problem is solvable if and only if its right-hand side satisfies the orthogonality
condition (5.15) to these trivial solutions.

We also illustrate the application of Theorem 5.2 in the following situation.

Lemma 5.1. Let the domain D be unbounded and have a simple contour Γ ∈ C1,ν as its boundary.
Let f be the restriction of the polynomial p(x, y) = xξ0+yξ1 to Γ, where ξk (k = 0, 1) appear in (2.30).
Then there exists a unique J-analytic function φ0, which belongs to the class C1,μ(D) for any μ < ν
vanishes at infinity and satisfies the boundary condition

Re cφ+
0 = ξ + f1 (5.15)

with some ξ ∈ R
2.

Proof. It requires only uniqueness. Let the function φ ∈ Hp(D) vanish at infinity and satisfy the
boundary condition Re cφ+ = ξ for some ξ ∈ R

2. Then by Theorem 5.2 the function v = Re cφ is the
identical zero, so that by Theorem 4.2 the function φ is a polynomial of the second degree. Since by
hypothesis φ(z) → 0 as z → ∞, this polynomial equals zero. Thus we establish the uniqueness of the
function φ0 from the Lemma.

6. Double Layer Potentials

Consider in the domain D integrals

(Pϕ)(z) =
1

π

∫
Γ

Re[n(t)(t− z)]

|t− z|2 ϕ(t)|dt|, z ∈ D, (6.1)

(Qϕ)(z) =
1

π

∫
Γ

Im[n(t)(t− z)]

|t− z|2 ϕ(t)|dt| z ∈ D, (6.2)

with real density ϕ, where n = n1 + in2 is the exterior unit normal on the Lyapunov contour Γ.
Integrals (6.1) and (6.2) can also be considered for z = t0 ∈ Γ. In this case we denote them by P ∗ϕ

and Q∗ϕ, respectively. Since Γ is a Lyapunov contour, similarly to Lemma 3.1 one can check that the
kernel of the integral operator P has a weak singularity. As for integral (6.2), it is singular, like the
respective Cauchy integral.

Since dt = in|dt|, these integrals are related to the Cauchy type integral by the formula

(Pϕ)(z) − i(Qϕ)(z) =
1

πi

∫
Γ

ϕ(t)dt

t− z
. (6.3)

Therefore the functions Pϕ and Qϕ are harmonic in the domain D. Equality (6.3) immediately implies
that the operators P and Q are bounded Lp(Γ) → hp(D), p > 1, and the formulas

(Pϕ)+ = ϕ+ P ∗ϕ, (Qϕ)+ = Q∗ϕ (6.4)

for their boundary values hold. For the same reasons under assumption Γ ∈ C1,ν these operators are
bounded Cμ(Γ) → Cμ(D) and C1,μ(Γ) → C1,μ(D), 0 < μ < ν. It is also well known that the operator
P is bounded C(Γ) → C(D).

Integral (6.1) is a classical double layer potential. We construct generalized double layer potentials
for the solutions of the Lamé system and their conjugate functions by the same scheme starting from
matrix (2.1), a Cauchy type integral for J-analytic functions and the matrices b, c that appear in
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Theorems 2.1 and 2.2. For this purpose, in notation (3.1) we introduce homogeneous matrix functions
of order −1 of the variable ξ = ξ1 + iξ2 by the formulas

H11(ξ) = Im[b (iξ)Jξ
−1
J b−1], H22(ξ) = Im[c (iξ)Jξ

−1
J c−1],

H21(ξ) = Im[c (iξ)J ξ
−1
J b−1], H12(ξ) = Im[b (iξ)Jξ

−1
J c−1].

(6.5)

Note that in the explicit form (iξ)Jξ
−1
J = (−ξ2 + ξ1J)(ξ1 + ξ2J)

−1. Evidently, the matrices H(ξ) are
homogeneous of order zero and by Lemma 2.1 do not depend on the choice of b. These matrices define
the integral operators

(Pkrϕ)(z) =
1

π

∫
Γ

Re[n(t)(t− z)]

|t− z|2 Hkr(t− z)ϕ(t)|dt|, z ∈ D, (6.6)

(P ∗
krϕ)(z) =

1

π

∫
Γ

Re[n(t)(t− t0)]

|t− t0|2 Hkr(t− t0)ϕ(t)|dt|, t0 ∈ Γ. (6.7)

As in the case of P ∗, the kernel of the operators P ∗
kr has a weak singularity, which due to the

evenness of the matrix functions H(ξ) can be established in a way completely similar to the proof of
Lemma 3.2. Therefore by Lemma 3.1 the operators P ∗

kr are compact in Lp(Γ).
The next lemma describes the relation of the functions Pkrϕ with the Cauchy type integral Iϕ

introduced in Section 3. It is convenient to introduce the class hp for functions w = Pkrϕ by the
condition of finiteness of the respective expression on the right-hand side of (3.8).

Lemma 6.1. The following equality holds:

[Im(bkb
−1
r )]Qϕ+ Pkrϕ = 2Re[bkI(b

−1
r ϕ)], k, r = 1, 2, (6.8)

where, for the sake of uniformity, we put b1 = b, b2 = c. In particular, the operators Pkr are bounded
Lp(Γ) → hp(D), p > 1, and the following formulas for angular boundary values hold :

(Pkkϕ)
+ = ϕ+ P ∗

kkϕ, k = 1, 2,
(P21ϕ)

+ = [Re(cb−1)]ϕ+ P ∗
21ϕ,

(P12ϕ)
+ = [Re(bc−1)]ϕ+ P ∗

12ϕ.
(6.9)

Proof. In terms of the tangential unit vector e = in one can write eξ−1 = |ξ|−2[Re(nξ)− i Im(nξ)] or

|ξ|2(e1 + ie2) = [Im(nξ)]ξ + [Re(nξ)]iξ.

Since the expressions in square brackets are real, this yields

|ξ|2eJ = [Im(nξ)]ξJ + [Re(nξ)](iξ)J .

which due to definition (6.5) leads to the equality

|ξ|2 Im[bkξ
−1
J eJ )b

−1
r ] = [Im(nξ)] Im(bkb

−1
r ) + [Re(nξ)]Hkr(ξ).

By (6.2), (6.6) this implies (6.8).
A similar equality holds for the integral operators with a “star” superscript:

[Im(bkb
−1
r )]Q∗

0ϕ+ P ∗
krϕ = Re[bkS(b

−1
r ϕ)]. (6.10)

On the other hand, application of formulas (3.7) and (6.4) to (6.8) yields the relation

[Im(bkb
−1
r )]Q∗

0ϕ+ (Pkrϕ)
+ = [Re(bkb

−1
r )]ϕ+Re[bkS(b

−1
r ϕ].

Together with the previous equality this implies (6.9).
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Due to (6.5) from (6.8) and Theorems 2.1, 2.2 it immediately follows that the following pairs are
the solution u of the Lamé system and its conjugate function v:

u = P11ϕ, v = [Im(cb−1)]Q0ϕ+ P21ϕ;

v = P22ϕ, u = [Im(bc−1)]Q0ϕ+ P12ϕ.
(6.11)

Accordingly, it is natural to call the integrals P11ϕ and P22ϕ generalized double layer potentials for
the solutions of the Lamé system and their conjugate functions, respectively.

The previous results extend to the spaces of continuous functions as well.

Lemma 6.2. Let Γ ∈ C1,ν, 0 < μ < ν and let X denote any of the symbols C, Cμ, C1,μ. Then the
operator Pkr is bounded X(Γ) → X(D), and the operator P ∗

kr is compact in X(Γ).

Proof. First consider the operators Pkr. The boundedness of these operators Cμ(Γ) → Cμ(D) follows
from equality (6.8) and from the similar property of the operators Q and I. For the classes C1,μ, the
proof is based on the differentiation formula for the Cauchy type integral φ = Iϕ. Let ϕ ∈ C1(Γ) and
Dϕ denote the derivative ϕ in the arc length parameter on Γ measured in the positive direction. Then
one has

∂φ

∂x
(z) =

1

2πi

∫
Γ

[(t− z)−2
J eJ(t)ϕ(t)|dt| = − 1

2πi

∫
Γ

[D(t− z)−1
J ]ϕ(t)|dt|,

∂φ

∂y
(z) =

1

2πi

∫
Γ

[J(t− z)−2
J eJ(t)ϕ(t)|dt| = − 1

2πi

∫
Γ

[DJ(t− z)−1
J ]ϕ(t)|dt|,

which after a partial integration yields differentiation formulas

∂(Iϕ)

∂x
= I(e−1

J Dϕ),
∂(Iϕ)

∂y
= I(Je−1

J Dϕ). (6.12)

Due to (6.4) we have similar formulas for the operator Q0:

∂(Qϕ)

∂x
= − Im

⎡
⎣ 1

πi

∫
Γ

(Dϕ(t)|dt|
t− z

⎤
⎦ ,

∂(Qϕ)

∂y
= − Im

⎡
⎣ 1

π

∫
Γ

(Dϕ(t)|dt|
t− z

⎤
⎦ . (6.13)

Applying these formulas to (6.8), we arrive at the boundedness of the operators Pkr : C1,μ(Γ) →
C1,μ(D).

The proof of the assertion of the Lemma under consideration for the spaces C is based on the
estimate

sup
z∈D

∫
Γ

|Re[n(t)(t− z)]|
|t− z|2 |dt| < ∞,

which is well known for the classical double layer potentials. Since the elements of the homogeneous
matrix function H of order 0 do not exceed some constant in the absolute value, we have

sup
z∈D

∫
Γ

|Re[n(t)(t− z)]|
|t− z|2 |Hkr(t− z)||dt| < ∞, (6.14)

where under |H(t − z)| we understand some norm in R
2×2. Therefore we will establish the assertion

under consideration if we show that for ϕ ∈ C(Γ) the function (Pkrϕ)(z), z ∈ D, has a limit at a
fixed boundary point t0 ∈ Γ. According to (6.8), the operator Pkr takes constant vector functions into
constant ones. Therefore we can consider without loss of generality that ϕ(t0) = 0. If Γ0 ⊆ Γ is a
neighborhood of the point t0, then, evidently,∫

Γ\Γ0

Re[n(t)(t− z)]

|t− z|2 H(t− z)ϕ(t)|dt| →
∫

Γ\Γ0

Re[n(t)(t− t0)]

|t− t0|2 H(t− t0)ϕ(t)|dt|
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as t → t0. On the other hand, by (6.14) with an appropriate choice of Γ0 a similar integral over Γ0

can be made arbitrarily small in absolute value uniformly in z.
We turn to the operators P ∗

kr. Under the assumption Γ ∈ C1,ν their compactness in the spaces
Cμ(Γ) and Cμ(Γ), 0 < μ < ν, is established with the help of Lemma 3.1 in a way completely similar
to the proof of Lemma 3.2. One must just consider that the homogeneous matrix function Hkr(ξ) of
order zero is even. As for the last case of the space C1,μ, we preliminarily deduce the differentiation
formula

DP ∗
krϕ = P̃ ∗

krDϕ, ϕ ∈ C1,μ(Γ), (6.15)

where the operator P̃ ∗
kr is obtained by a change of n(t) with n(t0) in the integral on the left-hand side

of (6.7).

The proof is based on the use of differentiation formulas (6.12) and (6.13). Let the operator Q̃∗ be

obtained from Q∗ in a similar way by a change of n(t) with n(t0) in the integral. Also, put S̃ = eJSe
−1
J

or, in the explicit form,

(S̃ϕ)(t0) =
1

πi

∫
Γ

eJ (t0)(t− t0)
−1
J ϕ(t)|dt|, t0 ∈ Γ.

Then, as in the proof of Lemma 6.1, we see that an equality similar to (6.10) holds for the operators
under consideration as well:

[Im(bkb
−1
r )]Q̃∗

0ϕ+ P̃ ∗
krϕ = Re[bkS̃(b

−1
r ϕ)]. (6.16)

Further fix a point t0 ∈ Γ and substitute the partial derivatives of (6.12) into the expression

e1(t0)
∂(Iϕ)

∂x
(z) + e2(t0)

∂(Iϕ)

∂y
(z).

Then in the limit as z → t0 due to the Sohocki–Plemelj Formulas (3.7) we get 2D(Iϕ)+ = Dϕ+ S̃Dϕ.
On the other hand, differentiation of the Sohocki–Plemelj Formula yields a similar equality 2D(Iϕ)+ =

Dϕ+DSϕ. Comparing it with the previous one, we obtain a differentiation formula DS = S̃D for the

singular operator S. In a completely similar way, using (6.13), we obtain the equality DQ = Q̃0D for
the operator Q. Acting on equality (6.10) by the operator D and applying these formulas, we obtain

[Im(bkb
−1
r )]Q̃Dϕ+DP ∗

krϕ = Re[bkS̃(b
−1
r ϕ)].

Together with (6.16) this implies (6.15).

As above, we see that the operator P̃ ∗
kr is compact in the space Cμ(Γ). Due to (6.15) this implies

the compactness of the operator P ∗
kr in C1,μ(Γ), which completes the proof of the Lemma.

If the conjugate function is represented by one of the two ways (6.11), by formulas (2.16) one can
determine the elements of the stress tensor σ. Therefore the differentiation formulas for the function
v play an important role in representations (6.11). They immediately follow from relation (6.8) of
Lemma 6.1 and differentiation formulas (6.12) of the Cauchy type integral.

Lemma 6.3. Let ϕ ∈ C1(Γ) and Dϕ denote the derivative of ϕ in the tangential direction e = in on
Γ. Then

∂v

∂x
(z) =

1

π

∫
Γ

Im[c(t− z)−1
J c−1](Dϕ)(t)|dt|,

∂v

∂y
(z) =

1

π

∫
Γ

Im[cJ(t − z)−1
J c−1](Dϕ)(t)|dt|,

if v = P22ϕ, and
∂v

∂x
(z) =

1

π

∫
Γ

Im[c(t− z)−1
J b−1](Dϕ)(t)|dt|,
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∂v

∂y
(z) =

1

π

∫
Γ

Im[cJ(t− z)−1
J b−1](Dϕ)(t)|dt|,

if the function v is the conjugate of u = P11ϕ.

7. Integral Representations of Double Layer Potentials

Consider the representation of the solutions of the Lamé system and their conjugate functions by
generalized double layer potentials. Preliminarily we describe the kernel kerP11 = {ϕ ∈ Lp(Γ) |P11ϕ =
0} of the operator P11. By Theorem 3.1 the analogous kernel of the operator I consists of complex
functions that are constant on simple contours making Γ (and vanish on the external contour in the
case σ(D) = 1 of a bounded domain). Therefore due to (6.8) analogous real vector functions belong
to the kernel kerP11. In fact, they completely describe this kernel.

Lemma 7.1. Let the domain D be bounded by the contour Γ ∈ C1,ν consisting of connected compo-
nents Γ1, . . . ,Γm, and in the case of a bounded domain let the contour Γm encompass all the other
components.

Then the kernel of the operator P11 consists of functions that are constant on the connected compo-
nents Γ and vanish on Γm in the case of a bounded domain. In particular, dim(kerP11) = 2[m−σ(D)].

Proof. Write equality (6.8) for the operator under consideration:

P11ϕ = 2Re[bI(b−1ϕ)]. (7.1)

Assuming P11ϕ = 0, consider the Cauchy type integral φ = I(b−1ϕ) in the domainD and the analogous

integral in the complement D̃ = C \ D, which will be denoted by ψ = Ĩ(b−1ϕ). For the boundary
values of these functions by (3.7) one can write:

φ+ − ψ− = b−1ϕ, (7.2)

where we have taken into account the fact that the contour Γ is negatively oriented with respect to

D̃.
According to (7.1) the assumption P11ϕ = 0 means that Re bφ = 0. Therefore the function φ is

constant in the domain D; more precisely,

bφ = iξ, ξ ∈ R
2.

By (7.2), since ϕ is real, hence we get

Im bψ− = ξ, ϕ = −Re bψ−. (7.3)

Consequently, the function u0 = (Im bψ)−ξ is a solution of the homogeneous Dirichlet problem for the

Lamé system in the connected components of the open set D̃, and by Theorem 5.1 it is identical zero.

Therefore the function ψ is constant in the connected components of D̃. If the domain D is bounded,

then the domain D̃m is unbounded, and since ψ(∞) = 0, the function ψ = 0 in D̃m. Together with
the second equality (7.3) this implies that the function ϕ is constant on the contours Γj and in the
case σ(D) = 1 it vanishes on Γm.

The next main theorem similarly to 3.1 solves the problem of representation of the solutions of the
Lamé system by generalized double layer potentials. According to (7.1), the function u = P11ϕ can
be written in the form u = Re bφ, where the J-analytic function φ = I(b−1ϕ) is single-valued in the
domain D. Thus the conjugate function of u = P11ϕ is single-valued in the domain D. In addition, in
the case σ(D) = 0 the function P11ϕ vanishes at infinity. Therefore in notation (4.12), (4.13) functions
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of the form

u =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m−1∑
j=1

Re bLjηj , σ(D) = 1,

ξ +
m−1∑
j=1

Re bLjηj , σ(D) = 0,

Re bηj = 0, ξ ∈ R
2, (7.4)

cannot be represented by the potential P11ϕ. Note that these functions form a space of dimension
2[m− σ(D)]. In fact, the complement to this space is the image of the operator P11.

Theorem 7.1. Let the domain D be bounded by the contour Γ ∈ C1,ν consisting of connected com-
ponents Γ1, . . . ,Γm, and in the case of a bounded domain let the contour Γm encompass all the other
components. Then any solution u ∈ hp(D), 1 < p < ∞, of the Lamé system is representable in the
form

u = P11ϕ+ u0 (7.5)

with some ϕ ∈ Lp(Γ) and the function u0 of form (7.4), and the last function is uniquely determined
by u.

If u ∈ X(D), where X denotes any of the symbols C, Cμ, C1,μ, μ < ν, then also ϕ ∈ X(Γ).

Proof. The proof of the first assertion is almost obvious. By Lemma 6.1 the composition of P11 with
the operator of the Dirichlet problem (2.1) is a Fredholm operator 1 + P ∗

11 with index zero, therefore
due to Theorem 4.2 and well-known properties of Fredholm operators [14] the operator P11 is also
Fredholm and its index equals 1. In particular, the image imP11 is closed and its codimension coincides
with the dimension 2[m− σ(D) of the kernel kerP11. Since the space of functions (7.4) has the same
dimension and does not intersect the image �P11, this implies the validity of the first part of the
Theorem.

The second assertion is a corollary of Lemma 4.1. In fact, if u ∈ X(D), then according to (7.5) the
function ϕ ∈ Lp(Γ) is a solution of equation ϕ+ P ∗

11ϕ = f1 with the right-hand side f1 = u+ − u+0 ∈
X(Γ). By Lemma 6.2, the operator P ∗

11 is compact both in Lp(Γ) and in X(Γ), so that the identity
operator is a regularizer of 1 + P ∗

11. Therefore due to Lemma 4.1 the function ϕ ∈ X(Γ).

Theorem 7.1 allows one to reduce the Dirichlet problem in the space hp(D) to an equivalent Fredholm
integral equation in Lp(Γ). Let k = 2[m − σ(D) and g1, . . . , gk be the base of the space kerP11. Let
also u1, . . . , uk be the base of the space of functions of form (7.4). Then by Theorem 7.1 the operator

P̃ϕ = P11ϕ+

k∑
1

(ϕ, gj)uj , (ϕ, g) =

∫
Γ

ϕ(t)g(t)|dt|,

is invertible Lp(Γ) → hp(D) and the Dirichlet problem u+ = f reduces to the equivalent Fredholm
equation of the second kind

ϕ+ P ∗
11ϕ+

k∑
1

(ϕ, gj)u
+
j = f. (7.6)

If ϕ is a solution of this equation, then the first pair in (6.11) defines the solution u of the Dirichlet
problem and the respective conjugate function.

As we see from the proof of Theorems 3.1 and 5.1, the solvability of the Dirichlet problem for the
Lamé system reduces to that of a singular integral equation on Γ, which does not allow to consider this
problem in the class C(D) in the framework of this approach. It is known [11] that the construction
of classical double layer potentials is based on the fundamental matrix of solutions for the original
elliptic system. For the Lamé system versions of matrices of this type were suggested in [10], but the
double layer potentials constructed with their help also reduce the main boundary value problems for
the Lamé system to singular integral equations on the boundary. An advantage of the generalized
double layer potentials under consideration u = P11ϕ is the possibility they give to reduce the problem
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to the Fredholm Eq. (7.6) which is free from the aforementioned drawback. Note that these potentials
are related to the version Re[(2πi)−1b ln zJ ] of the fundamental matrix of the Lamé system.

We turn our attention to he operator P22 and, similarly to the above, first describe its whole kernel.

Lemma 7.2. Under the hypotheses of Lemma 7.1 the kernel kerP22 of the operator P22 consists of
functions ϕ such that in notation (2.30) one has

ϕ
∣∣
Γj

= ξj + λj(xξ
0 + yξ1)

∣∣
Γj
, 1 ≤ j ≤ m− σ(D), (7.7)

ϕ
∣∣
Γm

= λm Im
(
cψ0

∣∣
Γm

)
, σ(D) = 1, (7.8)

where ξj ∈ R
2, λj ∈ R and the function ψ0 is defined as in Lemma 5.1 with respect to D̃m.

In particular, kerP22 ⊇ kerP11 and dimkerP22 = 3m− 2σ(D).

Proof. It is similar to that of Lemma 7.1. Let P22ϕ = 0, so that for the integral of the Cauchy type

φ = I(c−1ϕ) and ψ = Ĩ(c−1ϕ) in D and D̃, respectively, we have the relations

Re cφ = 0 (7.9)

and φ+ − ψ− = c−1ϕ. The last complex equality due to (7.9) is equivalent to two real ones:

Im cψ− = Im cφ+, (7.10)

ϕ = −Re cψ−. (7.11)

The converse is also true: if some functions φ and ψ in the class Hp satisfy (7.9) and (7.10), then
ϕ = −Re cψ− ∈ kerP22. In fact, then we have φ+ −ψ− = c−1ϕ and the Cauchy formula (3.3) applied

to φ in the domain D and to ψ in the connected components of D̃ yields equalities

φ = I(c−1ϕ), ψ = Ĩ(c−1ϕ),

the first of which together with (7.9) means P22ϕ = 0.
The further arguments will be given separately for the two cases of the bounded and unbounded

domains.
1) Let the domain D be unbounded, Then by Theorem 2.2 from (7.9) follows φ = 0 and (7.10)

becomes the equality Im cψ− = 0. Then by Theorem 5.2 in each component D̃j of the open set D̃

the function Im cψ identically equals zero. By Theorem 2.2 we conclude that in the domain D̃j the
function iψ(z) is a polynomial of form (2.29), i.e., in the notation of Lemma 2.3 one has

ψ(z) = i(ηj + λjzJe), z ∈ D̃j , (7.12)

with some ηj ∈ C
2 and λj ∈ R. It remains to note that ϕ = −Re cψ− for functions of form (7.11) are

described on Γj by equality (7.7).
2) Let the domain D be bounded. Then Eq. (7.9) defines the polynomials φ = p of form (7.12):

p(z) = η + λzJe, z ∈ D.

In the case j ≤ m−1 problem (7.10) for the function ψ in the bounded domain D̃j can be rewritten in
the form Re ci(ψ − p)− = 0 so that ψ − p is defined by the right-hand side of (7.12). Since Re cp = 0,
for the function ϕ = −Re cψ− we have expression (7.7).

As for the unbounded domain D̃m, equation (7.10) with respect to φ0 = −iψ in this domain can be
written in the form

Re cφ−
0 = Re c(−ip)

∣∣
Γm

.

By Lemma 2.3 we can apply Lemma 5.1 to the problem under consideration, which yields the existence
of a unique function ψ = iφ0 satisfying this boundary condition. Accordingly, ϕ = −Re cψ− on Γm is
defined by formula (7.8).
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Note that under the assumption Γ ∈ C1,ν function (7.8) belongs to the class C1,μ(Γ) for any μ < ν.
The class of functions of this type is briefly denoted as C1,ν−0(Γ).

Consider representation of conjugate functions by potentials P22ϕ. As in the case of solutions (7.4)
of the Lamé system we see that the functions of the form

v =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m−1∑
j=1

Re cLjηj, σ(D) = 1,

ξ +
m−1∑
j=1

Re cLjηj, σ(D) = 0,

Re cηj = 0, ξ ∈ R
2, (7.13)

cannot be represented by the potential P22ϕ.

Theorem 7.2. Under the hypotheses of Theorem 7.1 there exists a finite dimensional space V ⊆
C1,ν−0(D) of dimension 3m−2σ(D)−1 containing functions of the form (7.13) such that any function
v ∈ hp(D) conjugate to some (generally multivalued) solution of the Lamé system is representable in
the form

v = P22ϕ+ v0 (7.14)

with some ϕ ∈ Lp(Γ) and v0 ∈ V so that v0 in this representation is uniquely determined by v.
If v ∈ X(D), where X denotes any symbol C, Cμ, C1,μ, μ < ν, then also ϕ ∈ X(Γ).

Proof. It is completely analogous to that of Theorem 7.1. Since the composition of P22 with the oper-
ator of the Dirichlet problem (5.12) is a Fredholm operator 1+P ∗

22 of index zero, due to Theorem 5.2
we conclude that the operator P22 is Fredholm and its index equals σ(D). Therefore its image imP22

is closed and has the codimension equal to k = dim(kerP22) − σ(D). Due to Lemma 6.2 similar
arguments hold for the operator P22 acting from X(D) into X(Γ) as well. In particular, in C1,μ(D)
there exists a subspace V of dimension k containing functions (7.13) such that decomposition (7.14)
holds for functions v ∈ (D). By dimension arguments this decomposition also takes place in hp(D).

The second assertion of the Theorem is proved with the help of Lemma 4.1 in a way completely
similar to the preceding one.

As above, Theorem 7.2 allows one to reduce the Dirichlet problem for conjugate functions to an
equivalent system of Fredholm boundary equations. Some changes are required only in the case
σ(D) = 1 of a bounded domain D we consider here. Put k = dim(kerP22) − 1 and introduce bases
g1, . . . , gk+1 and v1, . . . , vk, respectively, in the spaces kerP22 and V . Consider the operator

Nϕ = ϕ+ P ∗
22ϕ+

k∑
1

(gj , ϕ)v
+
j + (gk+1, ϕ)n,

where, as we recall, the function n = (n1, n2) denotes the exterior unit normal. Evidently, the functions
ϕ + P ∗

22ϕ = (P22ϕ)
+ and v+j satisfy the condition of orthogonality to n. Therefore, if Nϕ = 0, then

(gk+1, ϕ) = 0; due to Theorem 7.2 we also have relations N22ϕ = 0 and (gj , ϕ) = 0, 1 ≤ j ≤ k,
whence ϕ = 0. Thus the operator N is invertible, and the function Nϕ is orthogonal to n if and only
if (gk+1, ϕ) = 0. Therefore under the assumption (f, n) = 0 the solution ϕ of equation Nϕ = f yields
the solution of the Dirichlet problem by the formula

v = P22ϕ+

k∑
1

(gj , ϕ)vj .
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8. Structure of Matrices Hkr(ξ)

Using notation (1.7), introduce the quadratic forms

ω(ξ) = (ξ1 + ν1ξ2)(ξ1 + ν2ξ2) = ξ21 + sξ1ξ2 + tξ22 ,

2ω1(ξ) = sξ21 + 2tξ1ξ2 + s̄tξ22 ,

Ω(ξ) =

(
[(t− 1)ξ1ξ2 + sξ21 ] t|ξ|2

−|ξ|2 (t− 1)ξ1ξ2 − sξ22

)
.

(8.1)

Evidently, it suffices to describe the matrix function

Gkr(ξ) = |ξ|−2|ω(ξ)|2Hkr(ξ), (8.2)

which is homogeneous of order 2.

Theorem 8.1. The matrices Gkr are defined by the formulas

G11(ξ) = Im[ω1(ξ) + ω(ξ)(bΔb−1)], (8.3)

where in parallelism with the two cases (i) and (ii) we put

(i) Δ =
1

2

(
ν1 − ν2 0

0 ν2 − ν1

)
, (ii) Δ =

(
0 1
0 0

)
,

and

G22(ξ) = Im

(
sξ21 + tξ1ξ2 tξ21 + s̄tξ1ξ2
sξ1ξ2 + tξ22 tξ1ξ2 + s̄tξ22

)
, (8.4)

G21(ξ) = |ξ|−2 Re [ω(ξ)Ω(ξ)] Im(cb−1) +G22(ξ)Re(cb
−1),

G12(ξ) = |ξ|−2 Im(bc−1)Re [ω(ξ)Ω(ξ)] + Re(bc−1)G22(ξ).
(8.5)

Proof. We prove the first equality (8.3) for the cases (i) and (ii) separately.
(i). We put

h(ξ, ν) =
−ξ2 + νξ1
ξ1 + νξ2

,

then we have

(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1 = diag[h(ξ, ν1), h(ξ, ν2)]. (8.6)

By definition of the matrix Δ this implies

(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1 =

h(ξ, ν1) + h(ξ, ν2)

2
+

h(ξ, ν1)− h(ξ, ν2)

ν1 − ν2
Δ.

It is easy to see that

h(ξ, ν1) + h(ξ, ν2)

2
=

ω0(ξ)

2ω(ξ)
,

h(ξ, ν1)− h(ξ, ν2)

ν1 − ν2
=

|ξ|2
ω(ξ)

, (8.7)

where ω0(ξ) = (−ξ2 + ν1ξ1)(ξ1 + ν2ξ2) + (−ξ2 + ν2ξ1)(ξ1 + ν1ξ2).
Therefore

2|ξ|−2|ω(ξ)|2b[(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1]b−1 = |ξ|−2ω0(ξ)ω(ξ) + 2ω(ξ)(bΔb−1). (8.8)

It is easy to check that

Imh(ξ, ν) =
|ξ|2 Im ν

|ξ1 + νξ2|2 , (8.9)

so that by definition (8.1)

Im[h(ξ, ν1) + h(ξ, ν2)] =
|ξ|2ω1(ξ)

|ω(ξ)|2 .
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Together with the first equality (8.7) this leads to the relation

Im[(ω0(ξ)ω(ξ)] = |ξ|2 Im[ω1(ξ)]

for quadratic forms. Therefore according to definitions (6.5), (8.2) the imaginary part of equality (8.8)
coincides with (8.3).

(ii). By definition of the matrix Δ in this case

(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1 = h(ξ, ν)

(
1 +

ξ1
−ξ2 + νξ1

Δ

)(
1 +

ξ2
ξ1 + νξ2

Δ

)−1

,

so that

(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1 = h(ξ, ν) +

|ξ|2
ω(ξ)2

Δ.

Putting νk = ν in the first relation (8.7), we obtain the equality

h(ξ, ν) =
ω1(ξ)

2ω(ξ)
,

which similarly to the previous case (i) leads to (8.3).
We prove the remaining formulas of the theorem. Equality (8.8) holds for the matrix c as well.

Since the matrix d, which appears in (2.25), commutes with Δ, the matrix cΔc−1 in the right-hand
side of this equality can be replaced by the matrix c0. A direct check shows that in both cases (i) and
(ii) the product

c0Δc−1
0 =

1

2

(
s 2t
−2 −s

)
.

Thus we have

2|ω(ξ)|2c[(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1]c−1 = ω0(ξ)ω(ξ) + 2ω(ξ)(c0Δc−1

0 ).

By definition of the quadratic form ω0 in (8.7) we see that it can be written in notation (1.7) as
ω0(ξ) = 2(t − 1)ξ1ξ2 + s(ξ21 − ξ22). A direct check shows that the expression ω0(ξ) + 2|ξ|2c0Δc−1

0
coincides with the matrix 2Ω(ξ) in (8.1), so that

|ω(ξ)|2c[(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1]c−1 = Ω(ξ)ω(ξ). (8.10)

Due to (6.5), (8.2) we get

G22(ξ) = |ξ|−2 Im[Ω(ξ)ω(ξ)], (8.11)

which immediately results in (8.4). Exactly in the same way, by (8.10) equality

G21(ξ) = |ξ|−2|ω(ξ)|2 Im[c(−ξ2 + ξ1J)(ξ1 + ξ2J)
−1c−1(cb−1)]

can be rewritten in the form

G21(ξ) = |ξ|−2 Im[Ω(ξ)ω(ξ)(cb−1)],

whence due to (8.11) the first formula (8.5) follows. The second formula is proved similarly.

Substituting into (8.3)–(8.5) the respective expressions of Lemma 2.2 for the matrices b and c,
we can calculate the elements of the matrices Gkr. This can be done most simply with the help of
the following bilinear forms of polynomials introduced for each of the two cases of roots νj of the
characteristic equation of the Lamé system:

(i) [f, g] =
f(ν1)g(ν2)− f(ν2)g(ν1)

ν1 − ν2
, (ii) [f, g] = f ′(ν)g(ν) − f(ν)g′(ν),

(i) {f, g} =
f(ν1)g(ν2) + f(ν2)g(ν1)

2
, (ii) {f, g} = f(ν)g(ν).

(8.12)

In our notation Lemma 2.2 leads to the following expressions for the matrices under consideration.
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Lemma 8.1. If α ∈ A1, then one has

bΔb−1 =
1

[p3, p2]

( −{p2, p3} −{p2, p2}
{p3, p3} {p2, p3}

)
,

cb−1 =
1

[p3, p2]

( −[p3, q3] −[p2, q3]
[p3, q2] [p2, q2]

)
,

bc−1 =
1

[q3, q2]

( −[p2, q2] −[p2, q3]
[p3, q2] [p3, q3]

)
.

(8.13)

If α ∈ A2, then one has

bΔb−1 =
1

[p1, p3]

( −{p1, p3} −{p3, p3}
{p1, p1} {p1, p3}

)
,

cb−1 =
1

[p1, p3]

(
[p1, q1] [p3, q1]
−[p1, q4] −[p3, q4]

)
,

bc−1 =
1

[q1, q4]

(
[p3, q4] [p3, q1]
−[p1, q4] −[p1, q1]

)
.

(8.14)

Finally, in the case α ∈ A0 one has

bΔb−1 =

√
α1α2 − α3√

α2α3

(
i 0
0 −i

)
, cb−1 = α3

( −i
√

α1/α3 −1

1 −i
√

α2/α3

)
,

bc−1 =
1√

α1α2 − α3

( −i
√

α2/α3 1

−1 −i
√

α1/α3

)
.

(8.15)

Proof. In accordance with the two cases of the roots, relate to the pair of polynomials f1, f2 the matrix

(i) W (f1, f2) =

(
f1(ν1) f1(ν2)
f2(ν1) f2(ν2)

)
, (ii) W (f1, f2) =

(
f1(ν) f ′

1(ν)
f2(ν) f ′

2(ν)

)
.

It is easy to see that for its determinant we have the expression

(i) detW (f1, f2) = (ν1 − ν2)[f1, f2], (ii) detW (f1, f2) = −[f1, f2],

so that the invertibility of this matrix is ensured by the condition [f1, f2] �= 0.
According to Lemma 2.2, in this notation we can write

b = W (p2,−p3), c = W (−q3, q2), α ∈ A1,
b = W (−p3, p1), c = W (−q1, q4), α ∈ A2.

(8.16)

A simple calculation shows that in both cases (i) and (ii), the same equalities hold:

W (f1, f2)Δ[W (g1, g2)]
−1 =

1

[g1, g2]

( {f1, g2} −{f1, g1}
{f2, g2} −{f2, g1}

)
,

W (f1, f2)[W (g1, g2)]
−1 =

1

[g1, g2]

(
[f1, g2] −[f1, g1]
[f2, g2] −[f2, g1]

)
.

Substituting expressions (8.16) into these formulas, we arrive at the validity of formulas (8.13) and (8.14).
As for (8.15), these equalities are obtain directly from (1.15) and (2.23).

It is important to note that by Lemma 2.1 for α ∈ A1 ∩ A2 the respective matrices in (8.13)
and (8.14) coincide. Explicit expressions for the elements of these matrices are obtained by calculation
of forms (8.12) for polynomials (1.6) and (2.20). In particular, formulas (8.3)–(8.5) together with (8.13)
show that the kernels Pkr(n, ξ) depend only on α ∈ A1 ∪A2 and are continuous functions of variables
αj .

523



Starting from concrete expressions of polynomials (1.6) and (2.20), we can easily calculate the
elements of the matrices on the right-hand side of (8.13) and (8.14). Since the form [, ] is skew
symmetric and the form {, } symmetric, it suffices to know the values of these forms on the basic
elements zi, 0 ≤ i ≤ 3. These values depend only on the simplest symmetric combinations of (1.7).
In particular, the elements of matrices (8.13) can be calculated by the formulas

[p3, p2] = α3(α3 + α4)− 2α5α6 + (α3α5 − α2α6)s+ [2α2
5 − α2(α3 + α4)]t,

[q3, q2] = β2
4 − β4β6s+ (β2

6 − 2β1β4)t+ β1β4s
2 − β1β6st+ β2

1t
2,

[p2, q2] = 2α5β4 + α3β6 + (α2β4 − α3β1)s− (α2β6 + 2α5β1)t,
[p2, q3] = −α3β4 + α3β6s− α3β1(s

2 − t) + (α2β4 + 2α5β6)t− 2α5β1st− α2β1t
2,

[p3, q2] = (α3 + α4)β4 + α6β6 + (α5β4 − α6β1)s− [α5β6 + (α3 + α4)β1]t,
[p3, q3] = −α6β4 + α6β6s− α6β1(s

2 − t) + [α5β4 + (α3 + α4)β6]t
−(α3 + α4)β1st− α5β1t

2,

{p2, p2} = α2
3 + 4α2

5t+ α2
2t

2 + 2α3α5s+ α2α3(s
2 − 2t) + 2α2α5st,

{p3, p3} = α2
6 + (α3 + α4)

2t+ α2
5t

2 + (α3 + α4)α6s+ α5α6(s
2 − 2t)

+(α3 + α4)α5st,
2{p2, p3} = 2α3α6 + [2α5α6 + α3(α3 + α4)]s + 4(α3 + α4)α5t
+(α2α6 + α3α5)(s

2 − 2t) + [α2(α3 + α4) + 2α2
5]st+ 2α2α5t

2.

In the case of an orthotropic medium the above formulas for the matrices G(ξ) are essentially
simplified. In this case either α ∈ A1 ∩A2 and one can use each group of equalities (8.13) and (8.14),
or one has α ∈ A0. Let α ∈ A1 ∩ A2, i.e., α5 = α6 = 0 and α3 + α4 �= 0. Then also β5 = β6 = 0, so
that the preceding formulas take the form

[p3, p2] = α3(α3 + α4)− α2(α3 + α4)t, [q3, q2] = β2
4 + β1β4(s

2 − t)− β1β4t+ β2
1t

2,

[p2, q2] = (α2β4 − α3β1)s,
[p3, q3] = −(α3 + α4)β1st,
[p2, q3] = −α3β4 − α3β1(s

2 − t)
+α2β4t− α2β1t

2,
[p3, q2] = (α3 + α4)β4 − (α3 + α4)β1t,

2{p2, p3} = α3(α3 + α4)s+ α2(α3 + α4)st,
{p2, p2} = α2

3 + α2
2t

2 + α2α3(s
2 − 2t),

{p3, p3} = (α3 + α4)
2t.

Since β1 = α2α3, β4 = −α3α4, due to (1.22), (1.25) after elementary transformations we get

[p3, p2] = (α3 + α4)(α3 +
√
α1α2), [q3, q2] = α3(α3 + α4)(α1α2 − α2

4),

[p2, q2] = −iρ0α2α3(α3 + α4),
[p3, q3] = iρ0α2α3(α3 + α4)ρ

2,
[p2, q3] = [p3, q2]
= α3(α3 + α4)(

√
α1α2 − α4),

2{p2, p3} = iρ0(α3 + α4)(α3 −√
α1α2),

{p2, p2} = (α3 + α4)
2,

{p3, p3} = −(α3 + α4)
2ρ2.

As a result, for matrices that appear in (8.13) and (8.13) we obtain the following expressions:

bΔb−1 =
1

2(α3 +
√
α1α2)

( −iρ0(α3 −√
α1α2) −2(α3 + α4)

−2ρ2(α3 + α4) iρ0(α3 −√
α1α2)

)
,

cb−1 =
α3

α3 +
√
α1α2

( −iρ0α2ρ
2 −(

√
α1α2 − α4)√

α1α2 − α4 −iρ0α2

)
,

bc−1 =
1

α1α2 − α2
4

(
iρ0α2 −(

√
α1α2 − α4)√

α1α2 − α4 iρ0α2ρ
2

)
.

Hence after elementary calculations

G11(ξ) =
ρ0

α3 +
√
α1α2

(
ρ2(α2ξ

2
1 + α3ξ

2
2) (α3 + α4)ξ1ξ2

ρ2(α3 + α4)ξ1ξ2 α3ξ
2
1 + α1ξ

2
2

)
,
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G22(ξ) = ρ0

(
ξ21 ρ2ξ1ξ2
ξ1ξ2 ρ2ξ22

)
,

G21(ξ) =
α3ρ0

α3 +
√
α1α2

(
ρ2ξ1ξ2g1(ξ) −ρ4α2ξ̂

2 − δξ21
ρ2[α2ξ̂

2 + δξ22 ] ξ1ξ2g2(ξ)

)
,

G12(ξ) =
ρ0

α1α2 − α2
4

(
−ξ1ξ2g1(ξ) ρ2[ρ2α2ξ̂

2 − δξ22 ]

−ρ2α2ξ̂
2 + δξ21 −ρ2ξ1ξ2g2(ξ)

)
,

where for brevity δ =
√
α1α2 − α4, ξ̂

2 = ξ21 − ρ2ξ22 and we put

gj(ξ) = α2(ρ
2 + 1)ξ̂2|ξ|−2 + (−1)j [α2ρ

2
0ξ

2
j |ξ|−2 − δ], j = 1, 2.

These formulas are even simpler in the case of an isotropic medium, where relations (1.26): α1 =
α2 = 2α3 + α4 or, equivalently, ρ = 1, ρ0 = 2. In particular, δ = 2α3, gj(ξ) = 2(−1)j(α1 − α3),

ξ̂2 = ξ21 − ξ22 . In this case we have the multiple root ν = i and the inequality α1 > α3. In terms of the
positive constant κ = (α1 + α3)/(α1 − α3) this yields

cb−1 =
α3

κ

( −i(κ + 1) −(κ − 1)
κ − 1 −i(κ + 1)

)
, bc−1 =

1

4α3

(
i(κ + 1) −(κ − 1)
κ − 1 i(κ + 1)

)
,

G11(ξ) = |ξ|2 + 1

κ
G1(ξ), G22(ξ) = |ξ|2 +G1(ξ),

G21(ξ) =
α3

κ
[(κ − 1)|ξ|2 + 2G2(ξ)]E, G12(ξ) =

1

4α3
[(κ − 1)|ξ|2 − 2G2(ξ)]E,

where we put

G1(ξ) =

(
ξ21 − ξ22 2ξ1ξ2
2ξ1ξ2 ξ22 − ξ21

)
, G2(ξ) =

(
κ(ξ21 − ξ22) −2ξ1ξ2
−2ξ1ξ2 ξ21 − ξ22

)
, E =

(
0 −1
1 0

)
.

Thus according to definitions (6.5), (6.6), and (8.2) the operators Pkr (k, r = 1, 2) can be written
in the form

P11 = P +
1

κ
P1, P22 = P + P1,

P21 =
α3

κ
[(κ − 1)P + 2P2]E, P12 =

1

4α3
[(κ − 1)P − 2P2]E,

where

Pjϕ)(z) =
1

π

∫
Γ

Re[n(t)(t− z)]

|t− z|4 Gj(t− z)ϕ(t)|dt|.

Respectively, according to (6.11) each pair of equalities

u = Pϕ+
1

κ
P1ϕ, v =

α3

κ
(κ + 1)Qϕ+

α3

κ
[(κ − 1)P + 2P2]Eϕ,

u =
1

4α3
(κ + 1)Qϕ +

1

4α3
[(κ − 1)P − 2P2]Eϕ, v = Pϕ+ P1ϕ

defines the solution u of the Lamé system and its conjugate function v.

525



9. Dirichlet Problem in a Piecewise Homogeneous Medium

We illustrate the above results on the Dirichlet problem for the Lamé system with piecewise constant
coefficients. Let a bounded simply connected domain D in the plain have a smooth contour Γ1 ∈ C1,ν ,
0 < ν < 1, as its boundary and contain a simple smooth contour Γ0 of the same class that divides
this domain into a simply connected subdomain D0 and a doubly connected one D1. Consider in D
the Lamé system (1.1) with piecewise constant coefficients taking constant values aij = akij, k = 0, 1,

in the domain Dk. The sense of notation αj = αk
j , as well as u = uk, v = vk for the vectors u, v and

σ = σk for the stress tensor, is similar.
Let nk = (nk

1 , n
k
2) denote the exterior unit normal vector on ∂Dk (with respect to the domain Dk),

in particular, on the contour Γ0 = ∂D0 ∩ ∂D1 the vectors n0 and n1 are opposite. The solution u of
system (1.1) in the domain D will be understood as the function u such that its restriction uk belongs
to the class C1(Dk ∩ Γ0), k = 0, 1, and is a classical solution of (1.1) in each domain Dk, and on Γ0

it satisfies the contact conditions

(u0 − u1)
∣∣
Γ0

= 0, (σ0n0 + σ1n1)
∣∣
Γ0

= 0. (9.1)

In particular, the function u is continuous in the domain D.
The contact conditions mean that under an additional assumption of integrability of the partial

derivatives ∂u/∂xj , where x1 = x, x2 = y, the function u satisfies the identity

2∑
i,j=1

∫
D

aij
∂u

∂xj

∂ϕ

∂xi
dx = 0, ϕ ∈ C∞

0 (D).

In other words, the function u is a generalized solution of system (1.1) in the domain D written in the
divergence form

2∑
i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
= 0.

This fact immediately follows from (2.13), (9.1) by means of partial integration.
In terms of the conjugate function v the second contact condition in (9.1) can be integrated. Let

(vk)′s denote the derivative on Γ0 in the clockwise direction. Then, putting n = n0 = −n1 on Γ0,
by (2.13), (2.14) we have the relation σkn = (vk)′s, and as a result (9.1) becomes

(u0 − u1)
∣∣
Γ0

= 0, (v0 − v1)
∣∣
Γ0

= ξ (9.2)

with some constant ξ ∈ R
2.

Consider the Dirichlet problem

u
∣∣
Γ1

= f (9.3)

in the domain D for the solution u ∈ C(D) of system (1.1) in the above sense.
It is well known [6] that this problem is uniquely solvable in the Sobolev class W 2

1 (D). The unique-

ness of the solution is proven directly. In fact, under the assumption u ∈ C1(Dk) by Green’s Formula
we have

2∑
i,j=1

∫
Dk

aij
∂u

∂xj

∂u

∂xi
dx =

2∑
i,j=1

∫
∂Dk

(
aij

∂u

∂xj
nk
i

)
uds.

If u satisfies the homogeneous boundary condition (9.3), then the integral over Γ1 in this equality for
k = 1 disappears, and after summation of these equalities due to (2.13), (9.1) we obtain the relation

2∑
i,j=1

∫
D

aij
∂u

∂xj

∂u

∂xi
dx = 0. (9.4)
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Therefore, in each domain Dk the function uk is a trivial solution, i.e., there exist such constants
ckj , k = 0, 1, j = 1, 2, 3, that

uk1(x, y) = ck3y + ck1 , uk2(x, y) = −ck3x+ ck2 .

Substituting these expressions into (9.2) and into the homogeneous boundary condition (9.3), we get
ckj = 0.

Note that in the doubly connected domain D1 the conjugate function v1 is, generally speaking,
multivalued and can get a nonzero increment while tracing Γ0. On the other hand, in a simply
connected domain D0 the function v0 is always single-valued. Therefore under contact conditions (9.2)
the function v1 will be single-valued as well.

The main purpose of this section consists in equivalent reduction of problem (1.1), (9.3) to a system
of Fredholm integral equations on Γ0 ∪ Γ1, which will be uniquely solvable due to the uniqueness
theorem.

Note that matrix (2.19) is invertible in each domain Dk. This fact can be extended to the case of
two pairs of matrices b and c.

Lemma 9.1. Let matrices αk, k = 0, 1, of form (1.2) be positive definite, and let matrices bk, ck

correspond to αk. Then we have

det

(
b0 b1

c0 c1

)
�= 0. (9.5)

Proof. Suppose the contrary. Then there exists a nonzero vector η = (η0, η1) ∈ C
4 such that

b0η0 + b1η1 = 0, c0η0 + c1η1 = 0.

In particular,

Re

(
b0

η0

t+ i
+ b1

η1

t− i

)
= Re

(
c0

η0

t+ i
+ c1

η1

t− i

)
= 0, t ∈ R.

Let G0 and G1 denote the upper and lower half-planes, respectively. Consider in G = G0 ∪G1 the
analytic vector function

ψ(z) =

{
η0(z + i)−1, z ∈ D0,
η1(z − i)−1, z ∈ D1,

in terms of which the previous equality becomes

Re(b0ψ0 + b1ψ1)
∣∣
R
= Re(b0ψ0 + b1ψ1)

∣∣
R
= 0. (9.6)

Let νkj , j = 1, 2, be the roots of the characteristic equation pk1p
k
2 − (pk3)

2 = 0 that correspond to

the matrix αk. Consider Jk-analytic functions φk(x, y) in the domain Dk related to ψk by (2.32)
and (2.33). Here we take into account the fact that for Im ν > 0 the transform x+ iy → x+ νy takes
the half-plane Dk to itself and leaves fixed its boundary points x ∈ R. Here φk(x) = ψk(x). Therefore,
the relation (9.6) also holds for the functions φk. But then for the function u = Re bϕ satisfying the
Lamé system in the domain Dk with the elasticity matrix αk and for its conjugate function v = Re cφ,
the following contact relations hold:

(u0 + u1)
∣∣
R
= (v0 + v1)

∣∣
R
= 0

on the axis R. As above, hence we conclude that equality (9.4) holds for the function u on the whole
plane D = C. In its turn, this is possible only for u = 0, which leads to a contradiction. This proves
assertion (9.5).

Consider the formulation of the Dirichlet problem (9.2), (9.3). Denote by a superscript k the
operators P,Q and Pij from Section 6 with respect to the domain Dk, k = 0, 1, to the exterior normal

nk on ∂Dk and to the elasticity matrix αk. The notation P k∗, Qk∗ and P k∗
ij for the boundary operators

has a similar sense. According to Theorem 7.1 any solutions uk ∈ C(Dk) of the Lamé system in the
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domain Dk (such that for k = 1 the conjugate function v1 is single-valued) are representable in the
form

u0 = P 0
11ϕ

0, u1 = P 1
11ϕ

1 (9.7)

with some vector functions ϕ0 ∈ C(Γ0) and ϕ1 ∈ C(Γ0 ∪ Γ1) so that u0 = u1 = 0 in these representa-
tions implies

ϕ0 = ϕ1
∣∣
Γ1

= 0, ϕ1
∣∣
Γ0

∈ R
2. (9.8)

For the sake of brevity, put d = cb−1. Then by (6.11) we have

vk = − Im dkQkϕk + P k
21ϕ

k, k = 0, 1. (9.9)

Therefore due to Lemma 6.2 boundary conditions (9.2), (9.3) are reduced to an equivalent system of
equations with respect to (ϕ0, ϕ1, ξ) defined by the equalities

ϕ0 − ϕ1 + P 0∗
11ϕ

0 − P 1∗
11ϕ

1 = 0 on Γ0,

−(Im d0)Q0∗ϕ0 + (Im d1)Q1∗ϕ1 + (Re d0)ϕ0 − (Re d1)ϕ1

+P 0∗
21ϕ

0 − P 1∗
21ϕ

1 = ξ on Γ0,

ϕ1 + P 1∗
11ϕ

1 = f on Γ1.

(9.10)

From the viewpoint of the solvability it is convenient to consider instead of this system the one with
respect to the pair (ϕ0, ϕ1) only, which is defined by the equalities

ϕ0 − ϕ1 + P 0∗
11ϕ

0 − P 1∗
11ϕ

1 = 0 on Γ0,

−(Im d0)Q0∗ϕ0 + (Im d1)Q1∗ϕ1 + (Re d0)ϕ0 − (Re d1)ϕ1

+P 0∗
21ϕ

0 − P 1∗
21ϕ

1 +
∑

j=1,2
lj
∫
Γ0

ϕ1(t)lj |dt| = 0 on Γ0,

ϕ1 + P 1∗
11ϕ

1 = f on Γ1,

(9.11)

where ϕ1(t)lj denotes the scalar product in R
2 with basic elements l1 = (1, 0) and l2 = (0, 1).

Lemma 9.2. The system of equations (9.11) has only the zero solution in the class ϕ0 ∈ C1,μ(Γ0)
and ϕ1 ∈ C1,μ(Γ0 ∪ Γ1), 0 < μ < ν.

Proof. The functions ϕ0 ∈ C1,μ(Γ0) and ϕ1 ∈ C1,μ(Γ0 ∪ Γ1), 0 < μ < ν, satisfy system (9.10) with
f = 0 if and only if the relations (9.8) and ξ = 0 hold.

In fact, by Lemma 6.2 functions uk = P k
11ϕ

k belong to C1,μ(Dk) and define the solution of the
homogeneous Dirichlet problem in the domain D. Therefore, as it was shown above, these function
equal zero. Therefore by Theorem 7.1 relations (9.8) hold. Due to Lemmas 7.1, 7.2 we also conclude
hence that v1 = P21ϕ

1 = 0. Therefore the constant ξ in (9.10) also equals zero. The converse statement
is obvious, since (9.8) implies P k

11ϕ
k = 0.

Now let the pair (ϕ0, ϕ1) be a solution of the homogeneous system (9.11). Then by the previous
proposition relations (9.8) and ηl1 = ηl2 = 0 hold, where η ∈ R

2 denotes the restriction of ϕ1 to Γ0.
Consequently, ϕ0 = ϕ1 = 0.

For definiteness, put n = n0 = −n1 on Γ0, and for the sake of brevity,

p(n, ξ) = |ξ|−2 Re(nξ), q(n, ξ) = |ξ|−2 Im(nξ), n, ξ ∈ C.
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Then due to (6.1)–(6.3) system (9.11) can be represented in our notation in the following explicit form:

ϕ0(t0)− ϕ1(t0) +
1

π

∫
Γ0

p[n(t), t− t0]
∑
k=0,1

Hk
11(t− t0)ϕ

k(t)|dt|−

− 1

π

∫
Γ1

p[n1(t), t− t0][H
1
11(t− t0)ϕ

1(t)|dt| = 0, t0 ∈ Γ0,

Re[d0ϕ0(t0)− d1ϕ1(t0)]− 1

π

∫
Γ0

q[n(t), t− t0] Im[d0ϕ0(t) + d1ϕ1(t)]|dt|+

+
1

π

∫
Γ0

p[n(t), t− t0]
∑
k=0,1

Hk
21(t− t0)ϕ

k(t)|dt|−

− 1

π

∫
Γ1

[p(n1(t), t− t0)H
1
21(t− t0)− q(n1(t), t− t0)](Im d1)ϕ1(t)|dt|+

+l1

∫
Γ0

ϕ1(t)l1|dt|+ l2

∫
Γ0

ϕ1(t)l2|dt| = 0, t0 ∈ Γ0,

ϕ1(t0) +
1

π

∫
Γ1

p[n1(t), t− t0]H
1
11(t− t0)ϕ

1(t)|dt|−

− 1

π

∫
Γ0

p[n(t), t− t0][H
1
11(t− t0)ϕ

1(t)|dt| = f(t0), t0 ∈ Γ1.

This system can be briefly rewritten in the operator form. For this purpose, we put

ϕ0 = (ϕ0, ϕ1)
∣∣
Γ0
, ϕ1 = ϕ1

∣∣
Γ1
,

and let operators P ∗
0 and Q∗

0 be defined as in (6.1), (6.2) with respect to Γ0, in the space of vector
functions ϕ0 they act component-wise. Thus similarly to (6.3) we can write

P ∗
0 − iQ∗

0 = S0 (9.12)

with the respective Cauchy singular operator S0. Further we introduce integral operators K0,K1 and
K01,K10 by the formulas

(K0ϕ0)
0(t0) =

1

π

∫
Γ0

p[n(t), t− t0]
∑
k=0,1

Hk
11(t− t0)ϕ

k
0(t)|dt|,

(K0ϕ0)
1(t0) =

1

π

∫
Γ0

p[n(t), t− t0]
∑
k=0,1

Hk
21(t− t0)ϕ

k
0(t)|dt|+

+l1

∫
Γ0

ϕ1
0(t)l1|dt|+ l2

∫
Γ0

ϕ1
0(t)l2|dt|,

(K01ϕ1)
0(t0) =

1

π

∫
Γ1

p[n1(t), t− t0][H
1
11(t− t0)− q(n1(t), t− t0)](Im d1)ϕ1(t)|dt|,

(K01ϕ1)
1(t0) =

1

π

∫
Γ1

p[n1(t), t− t0]H
1
21(t− t0)ϕ1(t)|dt|, t0 ∈ Γ0

(9.13)
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and

(K1ϕ1)(t0) =
1

π

∫
Γ1

p[n1(t), t− t0]H
1
11(t− t0)ϕ1(t)|dt|,

(K10ϕ0)(t0) =
1

π

∫
Γ0

p[n(t), t− t0][H
1
11(t− t0)ϕ

1
0(t)|dt|, t0 ∈ Γ1.

(9.14)

In this notation system (9.11) will take the form

(ReD)ϕ0 − (ImD)Q∗
0ϕ0 +K0ϕ0 −K01ϕ1 = 0, ϕ1 +K1ϕ1 −K10ϕ0 = f (9.15)

with the matrix

D =

(
1 −1

d0 −d1

)
=

(
b0 b1

c0 c1

)(
(b0)−1 0

0 −(b1)−1

)
,

which by Lemma 9.1 is invertible.
According to [13], the operator S0 in (9.12) possesses the property S2

0 = 1. Since it commutes with
the operator of multiplication by constant matrices, we conclude hence that the operator

(ReD)ϕ0 + i(ImD)S0 = [D(1 + S0) +D(1− S0)]/2

is invertible, and its inverse is

(ReD−1)ϕ0 + i(ImD−1)S0 = [D−1(1 + S0) +D
−1

(1− S0)]/2.

Therefore, writing the first equation of system (9.15) in the form

[(ReD) + i(ImD)S0 − i(ImD)P ∗
0 +K0]ϕ0 −K01ϕ1 − ξ0 = 0,

we obtain

ϕ0 + [(ReD−1) + i(ImD−1)S0][−i(ImD)P ∗
0ϕ0 +K0ϕ0 −K01ϕ1] = 0,

or, after separating the real part,

ϕ0 + [(ReD−1)− (ImD−1)Q∗
0][K0ϕ0 −K01ϕ1] + (ImD−1)(ImD)(P ∗

0 )
2ϕ0 = 0.

As a result, we arrive to the system of Fredholm equations equivalent to (9.14)

ϕ0 + K̃0ϕ0 − K̃01ϕ1 = 0, ϕ1 +K1ϕ1 −K10ϕ0 = f (9.16)

with the operators

K̃0 = [(ReD−1)− (ImD−1)Q∗
0]K0 + (ImD−1)(ImD)(P ∗

0 )
2,

K̃01 = [(ReD−1)− (ImD−1)Q∗
0]K01.

10. Regularity of Matrix Kernels of Integral Operators

Consider in more detail the structure of matrix kernels of operators in (9.16) including the depen-
dence of their regularity upon that of the contours Γj . For this purpose, write the operators P0 and
S0 in the complex form, setting

(P ∗
0ϕ0)(t0) =

1

πi

∫
Γ0

p∗0(t0, t)
t− t0

ϕ0(t)dt, p∗0(t0, t) =
Im[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)
,

(Q∗
0ϕ0)(t0) =

1

πi

∫
Γ0

q∗0(t0, t)
t− t0

ϕ0(t)dt, q∗0(t0, t) =
Im[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)
,

(10.1)
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where dt = i(n1 + in2)|dt| is the complex differential corresponding to anti-clockwise orientation of
the contour, and we set n = n1 + in2, ξ = ξ1 + iξ2. We treat operators (9.13) similarly:

(K0ϕ0)(t0) =
1

πi

∫
Γ0

k0(t0, t)

t− t0
ϕ0(t)dt, k0(t0, t) =

=
Re[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)

(
H0

11(t− t0) H1
11(t− t0)

H0
21(t− t0) H1

21(t− t0)

)
+

t− t0
n(t)

(
0 0
E1 E2

)
,

(K1ϕ1)(t0) =
1

πi

∫
Γ1

k1(t0, t)

t− t0
ϕ1(t)dt,

k1(t0, t) =
Re[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)
H1

11(t− t0), t0, t ∈ Γ1,

(10.2)

where the matrices Ej ∈ R
2×2 are defined by equalities

E1 =

(
1 0
0 1

)
, E2 =

(
0 1
1 0

)
,

and

(K01ϕ1)(t0) =
1

πi

∫
Γ1

k01(t0, t)

t− t0
ϕ1(t)dt,

k01(t0, t) = =
Re[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)

(
H1

11(t− t0)
H1

21(t− t0)

)
− Im[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)

(
Im d1

0

)
,

(K10ϕ0)(t0) =
1

πi

∫
Γ0

k10(t0, t)

t− t0
ϕ0(t)dt,

k10(t0, t) =
Re[n(t)(t̄− t̄0)]

n(t)(t̄− t̄0)
H1

11(t− t0), t0 ∈ Γ1, t ∈ Γ0.

(10.3)

Further we make use of the following auxiliary result.

Lemma 10.1. Let a function h(ξ), ξ = ξ1 + iξ2, be infinitely differentiable for ξ �= 0, homogeneous
of order zero and even. Then on the regular contour Γ of the class Cm,ν, where m is a natural number
and 0 < ν < 1, the function k(t1, t) = h(t1− t) belongs to the class Cm−1,ν(Γ×Γ) and for t1 = t takes
the value h[in(t)], where n(t) = n1(t) + in2(t) is the unit normal to Γ.

Proof. It suffices to prove the lemma in a neighborhood of a fixed point (t0, t0) ∈ Γ×Γ. Parameterize
the contour in this neighborhood in the form z = z(s), |s| ≤ δ, where s is the arc length parameter
measured from the point t0. Then the function

α(s1, s) =
z(s)− z(s1)

s− s1
=

1∫
0

z′[sτ + s1(1− τ)]dτ

belongs to the class Cm−1,ν in the square |s1|, |s| ≤ δ, and is separated from zero in absolute value
and takes the value z′(s) for s1 = s. Therefore the function k[z(s1), z(s)] = h[α(s1, s)] also belongs to
this class and its value at s1 = s coincides with h[z′(s)] = h[in(s)]. This implies the assertion of the
lemma for the function k(t1, t) in the neighborhood of the contour under consideration.

This Lemma and (10.1)–(10.3) imply that under the hypothesis Γj ∈ Cm,ν , m ≥ 1, the functions

p∗0, q
∗
0, k0 ∈ Cm−1,ν(Γ0 × Γ0), k1 ∈ Cm−1,ν(Γ1 × Γ1), (10.4)
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and

p∗0(t, t) = 0, q∗0(t, t) = −i, kj(t, t) = 0, j = 0, 1. (10.5)

As for the continuous functions k0,1(t0, t) and k1,0(t0, t), as functions of the variable t0 they belong
respectively to Cm,ν(Γ0) and to Cm,ν(Γ1) uniformly in t.

Now consider the operator products Q∗
0K0 and (P ∗

0 )
2 that appear in expression (9.16) for the

operator K̃0. According to (10.1), (10.2) we have:

(Q∗
0K0ϕ)(t1) =

1

πi

∫
Γ0

q∗0(t1, t0)dt0
t0 − t1

1

πi

∫
Γ0

k0(t0, t)ϕ(t)dt

t− t0
, t1 ∈ Γ0.

Due to (10.5) it is possible to change the order of the two integrations here, where the first one is
singular [13], so that

(Q∗
0K0ϕ)(t1) =

1

πi

∫
Γ0

ϕ(t)dt
1

πi

∫
Γ0

q∗0(t1, t0)k0(t0, t)dt0
(t0 − t1)(t− t0)

.

Since
t− t1

(t0 − t1)(t− t0)
=

1

t0 − t1
− 1

t0 − t
,

this finally yields

(Q∗
0K0ϕ)(t1) =

1

πi

∫
Γ0

[k∗(t1, t, t1)− k∗(t1, t, t)]ϕ(t)dt
t− t1

, t1 ∈ Γ0, (10.6)

where

k∗(t1, t, t2) =
1

πi

∫
Γ0

q∗0(t1, t0)k0(t0, t)dt0
t0 − t2

.

Lemma 10.2. Let Γ0 ∈ Cm+1,ν, where m is a nonnegative integer and 0 < ν < 1. Then the function
k∗(t1, t, t2) in all three variables belongs to the class Cm,ν−ε for each ε > 0, i.e.,

k∗(t1, t, t2) ∈ Cm,ν−0(Γ0 × Γ0 × Γ0). (10.7)

Proof. According to (10.4), the function k(t1, t, t0) = q∗(t1, t0)k0(t0, t) belongs to the class Cm,ν−0(Γ0×
Γ0 × Γ0); therefore for m = 0 the assertion of the Lemma follows from properties [13] of parameter-
dependent singular integrals.

In the general case m ≥ 1 we make use of the formula of differentiation of the singular integral k∗
in all variables. It is convenient to differentiate the function ϕ on Γ0 in the complex parameter of the
contour, i.e., as the limit

ϕ′(t0) = lim
t→t0, t∈Γ0

ϕ(t) − ϕ(t0)

t− t0
.

The partial derivatives are understood similarly. It is well known [13] that a singular integral p∗ can
be differentiated in the parameter under the integration sign:

∂k∗

∂t1
(t1, t, t2) =

1

πi

∫
Γ0

∂k

∂t1
(t1, t, t0)

dt0
t0 − t2

,
∂k∗

∂t
(t1, t, t2) =

1

πi

∫
Γ0

∂k

∂t
(t1, t, t0)

dt0
t0 − t2

.

We assert that a similar formula holds in the last variable as well:

∂k∗

∂t2
(t1, t, t2) =

1

πi

∫
Γ0

∂k

∂t0
(t1, t, t0)

dt0
t0 − t2

. (10.8)
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In fact, consider inside the contour Γ0 the analytic function in the variable z

φ(t1, t, z) =
1

πi

∫
Γ0

k(t1, t, t0)dt0
t0 − z

.

Partial integration shows that

∂φ

∂z
(t1, t, z) =

1

πi

∫
Γ0

∂k

∂t0
(t1, t, t0)

dt0
t0 − z

.

By the Sohocki–Plemelj Formula [13] for the boundary values of these functions we have

φ+(t1, t, t2) = k(t1, t, t2) +
1

πi

∫
Γ0

k(t1, t, t0)dt0
t0 − t2

,

(
∂φ

∂z

)+

(t1, t, t2) =
∂k

∂t2
(t1, t, t2) +

1

πi

∫
Γ0

∂k

∂t0
(t1, t, t0)

dt0
t0 − t2

.

Differentiating the first equality in t0 and comparing the result with the second equality, we arrive at
the validity of (10.8).

The assertion (10.7) of the lemma follows now directly by induction in m from the differentiation
formulas.

In a completely similar way we establish an analogous result for the operator (P ∗
0 )

2:

[(P ∗
0 )

2ϕ](t1) =
1

πi

∫
Γ0

[k∗0(t1, t, t1)− k∗0(t1, t, t)]ϕ(t)dt
t− t1

, t1 ∈ Γ0, (10.9)

where by Lemma 10.2 the function

k∗0(t1, t, t2) =
1

πi

∫
Γ0

p∗0(t1, t0)p
∗
0(t0, t)dt0

t0 − t2

belongs to the class Cm,ν−0(Γ0 × Γ0 × Γ0).

Therefore by (10.2) and (10.6), (10.9) the operator K̃0 in (9.16) acts according to the formula

(K̃0ϕ)(t0) =
1

πi

∫
Γ0

k̃0(t0, t)ϕ(t)dt

t− t0
, t0 ∈ Γ0, (10.10)

where under the assumption Γ ∈ Cm+1,ν the function

k̃0(t0, t) ∈ Cm,ν−0(Γ0 × Γ0), k̃0(t, t) = 0. (10.11)

The operator K1 possesses a similar property with respect to the contour Γ. Thus (4.10) is a system
of Fredholm equations. Before formulating the central result for it, consider the following typical
situation related to this system for an integral operator similar to (10.10):

(Kϕ)(t0) =
1

πi

∫
Γ0

k(t0, t)ϕ(t)dt

t− t0
, t0 ∈ Γ. (10.12)

Lemma 10.3. Under the hypotheses of Lemma 3.1 let the operator K be compact in the space Cm,μ(Γ),
m ≥ 1. Then any solution ϕ ∈ C(Γ) of the equation ϕ+Kϕ = f with the right-hand side f ∈ Cm,μ(Γ)
also belongs to f ∈ Cm,μ(Γ).
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Proof. According to Lemma 3.1, the operator K is compact in each space C(Γ), Cμ(Γ), and any
solution ϕ ∈ C(Γ) of the equation ϕ +Kϕ = f with the right-hand side f ∈ Cμ(Γ) also belongs to
f ∈ Cμ(Γ). In addition, the following Fredholm alternatives hold for this equation:

(1) the homogeneous equation ϕ+Kϕ = 0 has a finite number n of linearly independent solutions
ϕ1, . . . , ϕn ∈ C(Γ);

(2) the homogeneous associated equation ψ+K ′ψ = 0, where the operatorK ′ is obtained from (10.10)
by changing k(t0, t) with −k(t, t0) under the integration sign, has the same number n of linearly
independent solutions ψ1, . . . , ψn ∈ C(Γ);

(3) the inhomogeneous equation ϕ+Kϕ = f is solvable if and only if∫
Γ

f(t)ψj(t)|dt| = 0, 1 ≤ j ≤ n. (10.13)

Note that in fact the functions ϕj and ψj belong to Cμ(Γ).
Now let the operator K be compact in Cmμ(Γ). Then by the Riesz theorem the Fredholm alter-

natives also hold for the equation ϕ +Kϕ = f in the class Cm,μ(Γ), i.e., the homogeneous equation
has n0 ≤ n linearly independent solutions in this class and there exist such n0 linearly independent
functionals over Cm,μ(Γ) that the fact that they vanish at the function f is necessary and sufficient
for the solvability of the inhomogeneous equation ϕ + Kϕ = f . But, since conditions (10.13) are
necessary for the solvability of this equation in the class Cm,μ(Γ) as well, this implies the inequality
n ≤ n0. Thus we have n0 = n, so that assertions 1–3 hold with respect to the class Cm,μ as well. In
its turn, the second part of the lemma follows immediately.

Theorem 10.1. Let Γ0,Γ1 ∈ C1,ν. Then system of equations (9.16) is uniquely solvable in the class
ϕ0 ∈ C(Γ0) ϕ1 ∈ C(Γ1), and f ∈ Cm,μ(Γ1), m = 0, 1, 0 < μ < ν, implies ϕ0 ∈ Cm,μ(Γ0) ϕ1 ∈
Cm,μ(Γ1). If in addition Γj ∈ Cm+1,ν, m ≥ 2, then the previous assertion also holds for m ≥ 2.

Proof. According to (10.10), the operator K̃0 satisfies the hypotheses of the first part of Lemma 10.3,
and so does the operator K1 on the contour Γ1. In addition, by Lemma 6.2 these operators are also
compact in the space C1,μ(Γ1). Therefore the first assertion of the Theorem follows from Lemma 10.3
applied to the system of equations on the contours Γj and Lemma 9.1. Suppose further that Γj ∈
Cm+1,ν . Then the function k̃(t0, t) that defines the operator K̃0 in (10.10) has property (10.11).

Therefore the operator K̃0 is compact in the space Cn,μ(Γ1), which can be easily shown by induction
in m with the help of the differentiation formula obtained in the proof of Lemma 10.2. The situation
with the operator K1 is completely similar, and the claim follows now from Lemma 10.3.
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