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It has been shown that polarization radiation of charged particle beams generally includes an incoherent form
factor caused by a finite transverse size of a beam. Consequently, a widespread opinion that the form factor
characterizes only coherent radiation of charge particle bunches is generally invalid. The reason for the exis-
tence of incoherent form factor is the interaction of charged particles with the target edge in the direction per-
pendicular to their trajectory. The incoherent form factor exists for diffraction radiation, Smith–Purcell radi-
ation, and other types of polarization radiation in the case of transversely limited targets: transition radiation,
parametric X-ray radiation, and Cherenkov radiation. It has been shown that the difference of the incoherent
form factor from unity increases with a decrease in the ratio of the impact parameter to the transverse size of
the bunch. Furthermore, it has been shown that the transverse part of the coherent form factor differs from
unity to the same extent as the incoherent form factor.
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1. INTRODUCTION
The emission of electromagnetic waves by charged

particles has numerous applications. This includes the
emission of electromagnetic radiation in various
ranges at compact accelerators, synchrotrons, and
free-electron lasers and the diagnostics of beams of
electrons, protons, and other charged particles at
accelerators and colliders.

The spectral–angular distribution of radiation
from a beam is usually represented in the form [1, 2]

(1)

where

(2)

is the energy emitted by one particle in the infinitesi-
mal frequency range  into the infinitesimal solid
angle interval ,  is the form factor describing
the properties of the beam, ω is the radiation fre-
quency, k is the wave vector,  is the unit vector
in the direction of the wave vector, c is the speed of
light in vacuum,  is the position vector of the
observation point, and  is the Fourier trans-
form of the radiation field from one particle. In many
works, the form factor is written in the form [1, 3, 4]

(3)

where N is the number of particles in the bunch and
 is the coherence factor or coherent form factor,

which is the Fourier transform of the particle distribu-
tion function  in the beam [5, 6]:

(4)

Since the form factor in Eq. (3) includes the sizes, pro-
file, and internal structure of the beam, it was called
the structure factor in old works [1]. Individually, the
authors of [6] refer to  as the structure factor
and to  as the form factor.

The first term in Eq. (3) describes incoherent radi-
ation when the intensities of radiation from individual
particles are added. The second term originates from
interference of fields and describes coherent radiation.
Since the number of charged particles in a bunch at
modern colliders reaches N = 1011, the factor  is in
practice very large; consequently, the behavior of the
coherence factor  as a function of the angle and
frequency is of key importance.

Formulas (3) and (4) are usually justified as
follows. Each moving charged particle is described by
a certain current density so that all points of its
trajectory can be considered as sources of a radiation
field. In view of the superposition principle, total radi-
ation can be calculated as the sum of radiation fields
from individual particles of the beam. Let the distribu-
tion of particles in the beam be described by the func-
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tion , where  is the position vector of a particle.
The radiation field from the nth particle with the posi-
tion vector  differs from the field  from the
particle located at the origin of the coordinate system
only in the phase incursion denoted as .
Thus, the total radiation field from N particles is given
by the expression

(5)

Since the spectral–angular distribution of radia-
tion is proportional to the square of the intensity of the
radiation field averaged over the position of particles
in the beam, then

(6)

where the angle brackets stand for averaging over the
positions of all particles in the bunch. Therefore,

(7)

which coincides with Eqs. (1)–(4), where .
The derivation and form of Eq. (7) are valid always

when radiation originates directly from charged parti-
cles, e.g., for synchrotron and undulator radiation, as
well as bremsstrahlung and related types of radiation.

However, in addition to the radiation from a
charged particle, which is due to its accelerated
motion, there is a polarization radiation mechanism.
In this case, radiation is directly emitted by matter
excited by the field of the particle. In this case, accord-
ing to the approach by I.M. Frank and V.L. Ginzburg
[7], the particle itself can be considered as uniformly
moving but only if the energy loss of the particle can be
neglected compared to its kinetic energy. The polar-
ization mechanism is responsible for Cherenkov, tran-
sition, and parametric X-ray radiation, as well as dif-
fraction radiation (when particles move near the edge
of a target) and Smith–Purcell radiation (when parti-
cles move over the surface of a diffraction grating),
which are directly associated with the existence of the
edge of a target [8].

The authors of the overwhelming majority of works
and monographs use Eq. (7) for all these types of radi-
ation. Indeed, the consideration above Eq. (5) can be
easily generalized to polarization radiation as follows.
Instead of directly emitting charged particles of a
beam, one can consider a surface on which polariza-
tion currents are induced by the dynamically varying
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field of fast charged particles. In this case, radiation
from different points of this surface is summed simi-
larly and Eq. (5) remains valid. We note that this con-
sideration in the case of transition radiation from a
finite-thickness plate infinite in the directions perpen-
dicular to the trajectory of particles coincides with the
results of the exact theory of transition radiation
obtained directly from the solution of Maxwell’s equa-
tions [1]. This is expectable because the derivation of
Eqs. (5) and (7) is based only on the superposition
principle, which is valid for systems of noninteracting
particles within linear electrodynamics.

However, we show in this work that Eq. (7) is gen-
erally invalid for a whole class of phenomena caused by
the proximity of the edge of a target in the case of
polarization radiation from charged particle beams.

2. FORM FACTOR IN POLARIZATION 
RADIATION

As an example, we consider qualitatively the gener-
ation of diffraction radiation as a process of scattering
of the Coulomb field of a moving charged particle.
Describing the Coulomb field as a set of virtual pho-
tons with the momentum q, we apply the energy and
momentum conservation laws as in [9]. We note that
the violation of the mass shell relation for virtual pho-
tons does not violate the energy and momentum con-
servation laws when virtual photons reach the mass
shell by means of a scatterer (medium), in our case, in
the process of transformation of the Coulomb field of
charged particles in the field of the electromagnetic
wave of radiation with the wave vector k. Examples of
application of this technique of qualitative estimates to
problems of radiation from charged particles can be
found, e.g., in well-known works [3, 10, 11].

We consider a particle moving near the edge of a
target in the form of a screen (plane-parallel plate),
cylindrical rod, etc. Let the particle move along the
x axis in which the target is limited, the z axis be per-
pendicular to the target surface, and the properties of
the target surface along the y axis be uniform, i.e., the
projection of the momentum on this axis be con-
served. Taking into account the momentum and
energy conservation laws within the equivalent photon
method, we have

(8)

We also write the dispersion relation following from
the explicit form of the Coulomb field of charged par-
ticles (zero argument of the delta function of the Fou-
rier transform of the Coulomb field of the particle
moving at the velocity v):

(9)
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Since , we obtain

(10)

where ,  is the dimensionless velocity
of a charged particle emitting radiation, and γ =

 is the Lorentz factor of particles. We note
that Eq. (10) is obtained under the assumption that the
coordinate axes were such that the x axis coincides
with the positive direction of the velocity of the parti-
cle (so that ) and the assumption that radiation
is detected only in the upper half-plane (the negative
sign is chosen in front of the square root in ). An
expression for the total radiation field is written in the
form similar to Eq. (5) as the sum of fields of radiation
from all points of the emitting target surface:

(11)

We emphasize that the condition  correspond-
ing to the homogeneity (large sizes) of the target along
the y axis (the y size should be noticeably larger than
both the respective size of the bunch and the charac-
teristic transverse size of the field of moving charged
particles ) is significant for the applicability of
Eq. (11) because the momentum conservation along
the y axis allows removing the axial symmetry of the
problem; as a result, all particles of the bunch are
equivalent as sources of radiation except for their dis-
tance to the target surface. The condition  is
not satisfied for targets with small y sizes; conse-
quently, Eq. (11) is invalid and this case requires a sep-
arate consideration.

The calculation of the spectral–angular distribu-
tion of radiation yields the following expression simi-
lar to Eq. (6):

(12)

Here, the asterisk * stands for complex conjugation. A
significant difference of Eq. (12) from Eq. (6) is a
complex phase ; as a result, Eq. (12) instead of
widely used Eq. (7) gives

(13)

where

(14)

= + +2 2 2
x y zq q q q

 
 
  
 

ω ω= , , − + γ β ,
β γβ

2 2 21y yk i n
c c

q

= ω/cn k β = ν/c

− β21/ 1

ω = νxq

zq

=
,ω = , ω − ⋅ . r1

1

'( ) ( ) exp( )
N

n
n

iE r E r q

=y yq k

γβλ π/2

=y yq k

= ,
≠

=

−

=

,ω ,ω= − ⋅
ω Ω ω Ω

+ − ⋅ ⋅ .




1

2 2
21

1

1

1

( ) ( ) '| exp( )|

' 'exp( )exp( * )
m
m n

N
N

n
n

N N

n m
n

d W d W i
d d d d

i i

n n q r

q r q r

⋅ r'nq

,ω ,ω= ,
ω Ω ω Ω

2 2
1( ) ( )Nd W d W F

d d d d
n n

= + −inc coh( 1) .F NF N N F
Here,

(15)

(16)

are the incoherent and coherent form factors, respec-
tively. In Eqs. (15) and (16), the vector q is given by
Eq. (10) in terms of the components of the wave vector
k of the radiation field and the velocity of the charged
particle v, and  is the particle distribution func-
tion in the beam with respect to the center of the
bunch.

Expressions (13)–(16) are derived here from the
qualitative description of the phenomenon in terms of
equivalent photons and from fundamental conserva-
tion laws. Furthermore, these results coincide with the
results of the direct calculation based on Maxwell’s
equations in the vacuum ultraviolet and X-ray ranges
for the calculation of radiation from a single charged
particle (theory of diffraction radiation in [12] and the
theory of Smith–Purcell radiation [9]) and for the cal-
culation of radiation from bunches of particles with
both a uniform distribution of particles [13–15] and a
Gaussian distribution [16]. The dependence of the
radiation field of type (11) also occurs for ideally con-
ducting targets, i.e., in the long-wavelength part of the
spectrum (see [17, 18]). Indeed, within a quite general
approach of the matching method, the dependence of
the properties of the radiation field on the current den-
sity appears through boundary conditions. Since the
dependence of type (11) directly is contained in the
Fourier transform of the current density, it is also pres-
ent in the radiation field.

In contrast to the phase in Eq. (7), the phase in
Eq. (11) is complex because the polarization mecha-
nism of radiation generation is fundamentally differ-
ent from bremsstrahlung mechanism when radiation is
directly caused by a change in the magnitude or direc-
tion of the velocity of the charged particle. This is
physically due to the following feature: the source of
polarization radiation is matter excited by the field of
charged particles, and the characteristics of radiation
directly depend on the configuration of this polarizing
field. However, for the complex value of the phase in
Eq. (11) to be manifested, the target edge in the direc-
tion perpendicular to the trajectory of the particle
beam should be at a finite distance.

Indeed, when the beam moves near the target edge,
particles in the beam are located at different distances
from the edge because of finite transverse sizes of the
beam. Since the Fourier component of the Coulomb
field decreases exponentially at a characteristic scale
of  (λ is the radiation wavelength), charged
particles located at different distances from the target
edge make different contributions to the polarization
of the target material. Mathematically, this means that
the phase in Eq. (11) is complex for any processes
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Fig. 1. (Color online) (a) Functions  and

 determining the correct and incorrect behaviors
of the transverse part of the coherent form factor, respec-
tively. (b) Function  determining the incoherent
form factor.

2 2
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involving polarization radiation whose characteristics
depend on the existence of the target edge; the imagi-
nary part of this phase corresponds to the exponential
decrease in fields polarizing matter.

This is valid not only for diffraction radiation and
Smith–Purcell radiation but also for Cherenkov, tran-
sition, and parametric X-ray radiation near the target
edge. In the overwhelming majority of current works
even concerning diffraction radiation and Smith–
Purcell radiation, Eq. (7) is used in calculations
instead of Eqs. (13)–(16). However, even this invalid
approach can give adequate results when the trans-
verse size of the beam is negligibly small.

3. ESTIMATE OF THE CONTRIBUTION
OF THE INCOHERENT FORM FACTOR

To demonstrate differences in the form factors of
radiation in the calculations by Eqs. (3) and (14), we
discuss diffraction radiation from (a) a cylindrical
bunch with a uniform distribution of electrons and
(b) a Gaussian electron bunch.

(a) Let the cylindrical bunch with the length l and
radius  contain N uniformly distributed particles.
Here and below, the coordinate system is chosen such
that the bunch moves along the x axis and the z axis is
perpendicular to the target surface. It is convenient to
specify the unit vector of radiation observation as

(17)
Integration over the volume of such a bunch in Eq. (4)
gives [1]

(18)

where  is the Bessel function of the first
kind and .

At the same time, integration over the volume of
the bunch in Eqs. (15) and (16) yields the correct for-
mulas

(19)

(20)

where  and  is the modified

Bessel function of the first kind. In contrast to
Eq. (18), Eq. (20) is independent of the angles of radi-
ation that appear in Eq. (18) through the ky and kz
components of the wave vector k.

The derived expressions are valid for particles of
any energy if the loss on radiation is much smaller than
the energy of the particle.
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For particles with a high energy, i.e., with 
and  , diffraction radiation is concentrated
near the  plane containing the trajectory of the
particle and the normal vector to the target surface.
The characteristic angle of diffraction radiation is

, and the components of the unit observation
vector are  and . Then, the comparison
of the coherent form factors (18) and (20) indicates
that they differ only in the type of the Bessel function.
These two Bessel functions behave similarly only at a
small argument, as seen in Fig. 1а: at  or,
in other words, at

(21)

the coherent form factors given by Eqs. (18) and (20)
are noticeably different.

In turn, the difference of the incoherent form fac-
tor given by Eq. (19) from unity is obvious under the
condition (see Fig. 1b)

(22)

It is noteworthy that an increase in the functions in
Fig. 1 according to Eqs. (19) and (20) is generally lim-
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Fig. 2. (Color online) Wavelength dependence of the spec-
tral–angular distribution of diffraction radiation of a cylin-
drical bunch for (а) incoherent radiation from the bunch
with the radius r0 = 40 μm and length  mm and
(b) coherent radiation from the bunch with the radius r0 =
50 μm and length l = 50 μm. The dark solid and red dashed
lines correspond to Eqs. (13) and (1), respectively. All lines

are obtained with the parameters , , ,

,  eV (beryllium), impact parameter
h = 50 μm, dielectric function of the target material

, and plate width a = 165 μm.

= .0 16l

= 810N γ = 410 ϕ = 0
−θ = γ 1 ω = .� 26 1p

ε ω = − ω ω2 2( ) 1 /p
ited by a decreasing exponential, which always appears
in the spectral–angular distribution of radiation from
a single particle in the presence of the target edge:

(23)

where h is the impact parameter, i.e., the shortest dis-
tance between the center of the bunch and the target
surface. In this case, a geometric constraint occurs: it
is clear that the transverse size of the bunch should be
smaller than the distance between its center and the
target surface, i.e.,

(24)
We note that condition (24) in the practical case of
particles with ultrarelativistic energies is taken with the
more stringent form h ≫ r0, because beams are usually
separated by distances noticeably exceeding the trans-
verse size of the beam in order to prevent the induction
of radioactivity in targets by the halo of the beam.
However, beams with moderate energies, in particular,
relativistic ones, are in practice guided maximally
close to the target (diffraction grating in the case of
generation of Smith–Purcell radiation), so that a sig-
nificant heating of the target occurs [19, 20].

The radiation intensity decreases exponentially
with an increase in the parameter ρh (see Eq. (23)).
The maximum value of this parameter is

(25)

but the parameter h can be increased in the relativistic
case by a factor of b > 1 until the exponential suppres-
sion is not too large and the sensitivity of the detector
is enough to detect radiation. In this case, there is the
range of the parameters,

(26)

where radiation is still quite intense and can be
detected experimentally, the effect of the incoherent
form factor cannot be neglected, and the correct
inclusion of the (transverse component) coherent
form factor is necessary.

Figure 2a shows the wavelength dependence of the
spectral–angular distribution of diffraction radiation
from a cylindrical bunch calculated by (black solid
line) Eq. (13) and (red dashed line) Eq. (1). The spec-
tral–angular distribution of radiation from a single
electron was taken from [14] for the X-ray frequency
range. The length of the electron bunch was chosen
such that radiation is incoherent. Figure 2b shows the
spectral–angular distributions calculated by Eqs. (1)
and (13) for coherent radiation.

When the particle moves parallel to the grating,
Smith–Purcell radiation is concentrated in the 
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2
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plane containing the trajectory of the particle and the
normal vector to the target surface. The characteristic
angles of Smith–Purcell radiation are determined by
the dispersion relation [21]

(27)

where d is the period of the grating and s is a positive

integer. Then, after the substitution of 

and  into Eq. (18), it is seen
that the difference between the transverse components
of coherent form factors—incorrect (18) and correct
(20)—both for Smith–Purcell radiation and for dif-
fraction radiation discussed above is determined by
mathematically different functions at any size of the
bunch. A similar conclusion can be made on the dif-
ference of the incoherent form factor from unity.
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Fig. 3. (Color online) Wavelength dependence of the spec-
tral–angular distribution of diffraction radiation from a
Gaussian bunch for (а) incoherent radiation from the
bunch with the characteristic transverse sizes σy = σz =
40 μm and length σx = 0.16 mm and (b) coherent radiation
from the bunch with the characteristic transverse sizes
σy = σz = 50 μm and length σx = 50 μm. The dark solid and
red dashed lines correspond to Eqs. (13) and (1), respec-
tively. The plate width is a = 65 μm and the other parame-
ters are the same as in Fig. 2.
(b) Let the particles in the bunch have Gaussian
distributions in all three directions. Integration in
Eq. (4) for such a bunch gives

(28)

where , , and  are the characteristic sizes of the
bunch in the respective directions.

It is substantial that integration in Eqs. (15) and
(16) is performed over the entire space, and limits can
correspond only to the region of nonzero values of the
distribution function of particles . The function

 for the Gaussian beam is mathematically defined
in the entire space. Consequently, strictly speaking,
Eqs. (15) and (16) describe the form factor of the
Gaussian beam, where some particles f ly above the
target surface and the other particles below it. In this
case, radiation can be more intense if the center of the
bunch moves very close to the surface. Such radiation
can be described more strictly as done in [16]. How-
ever, for the qualitative consideration of the effect, it is
sufficient to limit the distribution function:

(29)

The distribution function given by (29) is normalized
to unity, so that the probability of intersection of the
target by particles of the bunch is zero and integration
in Eqs. (15) and (16) over  is performed from the
target edge –h to infinity. A simple integration gives

(30)

(31)

where

(32)

is the error function. Since ρ is proportional to ω, it
seems that Eqs. (30) and (31) tend to infinity at an
unlimited increase in the frequency. However, this
does not occur. Indeed, using the known asymptotic
formula

(33)
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one can reduce Eq. (30) to the form

(34)

When deriving Eq. (34), it is necessary to take into
account that the geometry of the problem imposes the
constraint  and that  in the limit

. The growing exponential  is compen-
sated by the factor , which is always present in the
spectral–angular distribution of radiation from a sin-
gle particle with the impact parameter h. A similar
consideration is also applicable to Eq. (31).

An expression for the Gaussian bunch similar to
Eq. (15) was presented in [22] but without any justifi-
cation, the distribution function was normalized to
unity in the entire space, and integration was per-
formed over a half-space.
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Figure 3 shows dependences similar to those in
Fig. 2 for diffraction radiation from the Gaussian
bunch. It is seen that there is a wavelength range where
the correct calculation gives a significantly different
spectral–angular distribution of radiation.

We note that the above consideration is also appli-
cable to a modulated beam [23, 24] or the measure-
ment of polarization radiation [25].

4. CONCLUSIONS
To summarize, the incoherent form factor, along

with the transverse part of the coherent form factor,
appears when beams with finite transverse sizes move
near the target edge. These physical effects occur
because the Coulomb field of moving charged parti-
cles is limited in the transverse direction by a scale of

; therefore, particles of the bunch located at
different distances from the target edge make different
contributions to the polarization of the target material.
The effect has been revealed without complex calcula-
tions used in the theory of diffraction or Smith–Pur-
cell radiation [3, 8, 17, 18, 22, 26, 27]. This is natural
because this effect is due not to complicated methods
of solution of boundary-value problems of electrody-
namics but to a simple and clear physical circum-
stance: the Coulomb field of moving charged particles
is limited in the transverse direction in the  vari-
ables. Similarly, the effect itself later named after
S.J. Smith and E.M. Purcell [21], who experimentally
discovered it, was predicted by I.M. Frank from simple
qualitative arguments [28].

We note that when analyzing radiation from the
bunch at the wavelength λ exceeding the size of the
bunch ,

(35)
(short bunch), both incoherent and coherent form
factors depend on the same parameters, and it is pos-
sible that incoherent radiation will always be negligibly
small compared to coherent radiation where the inco-
herent form factor is noticeably different from unity.
For this reason, the analysis of the incoherent form
factor in the case of short bunches is meaningful only
in comparison with the coherent form factor.

In the case of long bunches,

(36)
the coherent form factor (as well as coherent radia-
tion) is suppressed, so that the incoherent form factor
can and should be analyzed separately.

To conclude, we attract attention to an important
item. In this work, the calculation has been performed
for a limited class of targets. As we mentioned below
Eq. (11), the description of coherent effects in terms of
the form factor can be inapplicable for an arbitrary tar-
get, e.g., for a point one. A correct calculation method
for the most general case is the calculation of radiation

γβλ π/2

, ω( )r

σx

σ < λx

σ > λ,x
fields with the subsequent averaging of the square of
their magnitude over all particles in the bunch. The
parameters of a particular target determine whether
the form factor will be separated in the result.

The existence of the incoherent form factor makes
it possible in principle to perform noninvasive diag-
nostics of the transverse sizes of bunches in terms of
incoherent radiation, which was thought to be funda-
mentally impossible because it was always accepted by
default that the incoherent form factor is unity. Fur-
thermore, even in the diagnostics of bunches of
charged particles in terms of coherent radiation such
as diffraction, Smith–Purcell, Cherenkov, and transi-
tion radiation, the inclusion of the transverse compo-
nent of the form factor can be important in the mea-
surement of not only the transverse sizes of the beam
but also the longitudinal sizes because both the longi-
tudinal and transverse parts of the form factor contrib-
ute to the experimentally measured quantities.
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