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The research of some physical processes relies on solving of equations with the Laplace operator,
which (by means of separation of variables in curvilinear coordinate systems) leads to differential
equations containing singularity. If there is a symmetry of some sort, then such equations turn into
the Euler–Poisson–Darboux (EPD) equation and the Legendre equation.

Initial problems for the classic and abstract EPD equation were studied in a series of papers and the
results are presented in [1] (Chap. 1). The further results in this direction were obtained in author’s
papers [2, 3].

In this paper we will consider some additional conditions and solvability of corresponding problems
for one more abstract singular equation,namely, the Legendre equation.

Let A be a closed operator in Banach space E with domain D(A) which is dense in E. When k > 0
let us consider Legendre equation

Lku(t) ≡ u′′(t) + k coth t u′(t) + (k/2)2u(t) = Au(t), t > 0. (1)

Differential operator Lk in the left-hand side of Eq. (1) occurs when solving the Laplace equation in
elongated ellipsoid of revolution coordinates ([4], P. 138). If A is a scalar multiplication operator, then
the spherical functions considered in [5] (P. 53) satisfies Eq. (1) where k = 2. We also note papers [6–11]
that study partial differential equations with singular operator of the considered type.

As follows from result in [12], the correct formulation of the initial conditions for abstract Legendre
equation (1) consists in setting the initial conditions

u(0) = u0, u′(0) = 0, (2)

in the point t = 0. Herewith, if k ≥ 1, then the initial condition u′(0) = 0 is removed, which is a
characteristic for a number of equations with a singularity in coefficients when t = 0.

When k = 0, problem (1), (2) is uniformly correct if and only if operator A is a generator of cosine-
operator-function (COF) C(t) and we will write down this fact as A ∈ G0 (see terminology in [13, 14]).

In [12] there are conditions on operator A which provide correct solvability of problem (1), (2). We
will denote by Gk the set of operators A with which problem (1), (2) is uniformly correct, the resolving
operator of this problem we will denote by Pk(t) and call it the operator Legendre function (OLF).

OLF Pk(t) which was introduced in [12] was used by the author in [15] when establishing the criterion
of stabilization of the Cauchy problem for abstract differential first-order equation solution. It can also
be used for solution of the weight Cauchy problem for Legendre equation. If 0 < k < 1, then there is
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2 GLUSHAK

a correct statement of the initial conditions which is more general than in (2). Let us consider initial
conditions

u(0) = u0, lim
t→0

(
sinh t

t

)k

u′(t) = u1. (3)

When u0, u1 ∈ D(A) and A ∈ Gk ⊂ G2−k , the unique solution to the Cauchy problem (1), (3) has
the form [12]

u(t) = Pk(t)u0 +
1

1 − k

(
sinh t

t

)1−k

P2−k(t)u1.

Note that if A ∈ Gk and k ≥ 1, then problem (1), (3) is not correct. In what follows we study another
statements of additional conditions, which allow us to establish the unique solvability of corresponding
problems for the loaded Legendre equation.

1. The Cauchy problem for weakly loaded Legendre equation. Let us consider equation

u′′(t) + k coth t

(
u′(t) − cosh2−k(t/2)

cosh t
u′(0)

)
+

k2

4
u(t) = Au(t), t > 0, (4)

which, unlike Eq. (1), contains the value of the derivative of an unknown function in point t = 0. We will
call Eq. (4) the weakly loaded Legendre equation (see terminology in the introduction to monographs
[16, 17]). The growing interest in research of loaded differential equations is caused by an expanding
number of their applications and the fact that loaded equations form a distinct class of functional-
differential equations with specific problems. The review of papers on the loaded differential equations
can be also found in [16, 17].

It is significant that in Eq. (4) there is a load given when t = 0 and this fact changes the statement
of the initial problem. Unlike weight problem (1), (3), when k > 0 we will establish the correctness of
Cauchy problem

u(0) = u0, u′(0) = u1 (5)

for weakly loaded Eq. (4) and specify the resolving operator explicitly.

Further we will assume that g(t) = cosh t. Let us consider the fractional integral of function f(t) with
respect to function g(t) = cosh t ([18], P. 248)

Iα
g f(t) =

1
Γ(α)

∫ t

0
(cosh t − cosh s)α−1 sinh s f(s) ds.

We also assume that μk = 2k/2Γ(k/2+1/2)√
π Γ(k/2)

and use notation P ′
k(t)u0 = (Pk(t)u0)′ for brevity.

Theorem 1 ([12]). Let operator A be a generator of COF C(t), u0 ∈ D(A). Then problem (1), (2) is
uniformly correct, i.e., A ∈ Gk , and the corresponding OLF can be represented as

Pk(t)u0 = μk sinh1−k t

∫ t

0
(cosh t − cosh s)k/2−1C(s)u0 ds = μk Γ(k/2) sinh1−k t Ik/2

g

[
C(t)
sinh t

]
u0,

(6)
and

P ′
k(t)u0 =

sinh t

k + 1
Pk+2(t)

(
A − k2

4
I

)
u0. (7)

According to Theorem 1, if u1 = 0, then function u(t) = Pk(t)u0 from (6) is the unique solution to
the Cauchy problem (4), (5).
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UNIQUELY SOLVABLE PROBLEMS FOR ABSTRACT LEGENDRE EQUATION 3

In particular case when operator A = (δ + 1/2)2, δ ∈ R is a multiplication by number operator, OLF
Pk(t) can be expressed through attached Legendre function of the first kind P β

δ (·) ([19], P. 661)

Pk(t) = Γ(1 − β)
(

1
2

sinh t

)β

P β
δ (cosh t), β =

1 − k

2
.

Hereinafter we will need the following equations from [12], which was used in the proof of Theorem:

Lk

(
sinh1−k t u(t)

)
= sinh1−k t L2−ku(t), (8)

(
1

sinh t

d

dt

)−α

u(t) =
1

Γ(α)

∫ t

0
(cosh t − cosh s)α−1 sinh s u(s) ds = Iα

g u(t), α > 0; (9)

this is a definition of negative fractional exponent of the operator of weight differentiation, which with
respect to connection with fractional integral with respect to function g(t) = cosh t can be extended
([18], P. 248) on all α ∈ R; if u(0) = 0, then

Lk+2α

(
1

sinh t

d

dt

)α

u(t) =
(

1
sinh t

d

dt

)α

Lku(t), (10)

note that when α ∈ N condition u(0) = 0 is not applied.
Note that Eq. (10) means that we can apply to considered in this paper problems the method of

transformation operator which is used in [1] (Chap. 2) and is a main method in papers [7, 11].
From (8)–(10) we can obtain

Lk

(
sinh1−k t

(
1

sinh t

d

dt

)−k/2 u(t)
sinh t

)
= sinh1−k t L2−k

((
1

sinh t

d

dt

)−k/2 1
sinh t

d

dt

∫ t

0
u(τ) dτ

)

= sinh1−k t L2−k

((
1

sinh t

d

dt

)1−k/2 ∫ t

0
u(τ) dτ

)
= sinh1−k t

(
1

sinh t

d

dt

)1−k/2 d2

dt2

∫ t

0
u(τ) dτ

= sinh1−k t

(
1

sinh t

d

dt

)1−k/2(∫ t

0
u′′(τ) dτ + u′(0)

)

= sinh1−k t

(
1

sinh t

d

dt

)−k/2 u′′(t)
sinh t

+ sinh1−k t

(
1

sinh t

d

dt

)1−k/2

u′(0). (11)

Let us calculate the term
(

1
sinh t

d
dt

)1−k/2
u′(0) from (11). If 0 < k < 2, then by (9) we will get

(
1

sinh t

d

dt

)1−k/2

u′(0) =
1

sinh t

d

dt

(
1

sinh t

d

dt

)−k/2

u′(0)

=
1

sinh t

d

dt

(
1

Γ(k/2)

∫ t

0
(cosh t − cosh s)k/2−1 sinh s u′(0) ds

)

=
1

Γ(k/2 + 1) sinh t

d

dt

(
(cosh t − 1)k/2

)
u′(0) =

1
Γ(k/2)

(cosh t − 1)k/2−1u′(0).

If k = 2, then
(

1
sinh t

d
dt

)1−k/2
u′(0) = u′(0). Finally, if k > 2, then by (9)

(
1

sinh t

d

dt

)1−k/2

u′(0) =
1

Γ(k/2)
(cosh t − 1)k/2−1u′(0).

Thus, (11) can be rewritten as

Lk

(
sinh1−k t Ik/2

g

[
u(t)
sinh t

])
= sinh1−k t Ik/2

g

[
u′′(t)
sinh t

]
+

sinh1−k t

Γ(k/2)
(cosh t − 1)k/2−1u′(0). (12)
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4 GLUSHAK

Note that Eq. (12) is written for function u(t) = C(t)u0, u′′(t) = AC(t)u0, u′(0) = 0 and was used
in the proof of Theorem 1. As we will see further, this equation determines the multiplier in load u′(0) in
Eq. (4).

Now let us consider the Cauchy problem (4), (5) in the case when u0 = 0. Let νk = k2k/2−1. We

introduce the sine-operator-function (SOF) S(t) =
t∫
0

C(s) ds.

Theorem 2. If u0 = 0, u1 ∈ D(A) and operator A is a generator of COF C(t), then function
u(t) = Qk(t)u1, where

Qk(t)u1 = νk sinh1−k t

∫ t

0
(cosh t − cosh τ)k/2−1S(τ)u1 dτ = νk Γ(k/2) sinh1−k t Ik/2

g

[
S(t)
sinh t

]
u1

(13)
is a solution to problem (4), (5), and

Q′
k(t)u1 =

sinh t

k + 2
Qk+2(t)

(
A − k2

4
I

)
u1 +

u1

coshk(t/2)
. (14)

Proof. Let us verify that function Qk(t)u1 satisfies Eq. (4). In order to do this let us substitute function
u(t) = S(t)u1, u′′(t) = AS(t)u1, u′(0) = u1 in (11). After some elementary transformations we will get

LkQk(t)u1 = Lk

(
νk Γ(k/2) sinh1−k t Ik/2

g

[
S(t)
sinh t

]
u1

)

= νk Γ(k/2)
(

sinh1−k t Ik/2
g

[
AS(t)
sinh t

]
u1 +

sinh1−k t

Γ(k/2)
(cosh t − 1)k/2−1u1

)

= AQk(t)u1 +
k 2k (2 sinh2(t/2))k/2−1

sinh t
(
2 sinh(t/2) cosh(t/2)

)k−2
u1 = AQk(t)u1 + k coth t

cosh2−k(t/2)
cosh t

u1

and, consequently, function Qk(t)u1 satisfies Eq. (4).
Let us check that if the function satisfies initial conditions (5) when u0 = 0. Since when t is small,

there is the inequality

‖S(t)‖ ≤ M sinh t,

then, with respect to (13), when t → 0 we get

‖Qk(t)‖≤Mνk sinh1−k t

∫ t

0
(cosh t− cosh τ)k/2−1 sinh τ dτ=Mνk sinh1−k t

∫ cosh t

1
(cosh t−s)k/2−1 ds

= M 2k sinh1−k t (cosh t − 1)k/2 = M 23k/2 sinh1−k t sinhk(t/2) ≤ M1t → 0,

That is why function Qk(t)u1 satisfies the first condition from (5).

To check whether the function Qk(t)u1 satisfies the second condition from (5), we will derive formula
(14) for its derivative. In order to do this we will rewrite (4) as

1
sinhk t

(sinhk t u′(t))′ +
k2

4
u(t) = Au(t) +

k cosh2−k(t/2)
sinh t

u′(0).

Now let us substitute function Qk(t)u1 in this equation and integrate it after multiplying by sinhk t:

sinhk t Q′
k(t)u1 =

∫ t

0
sinhk s

(
A − k2

4
I

)
Qk(t)u1 ds + k

∫ t

0
sinhk−1 s cosh2−k(s/2) ds u1

=
∫ t

0
sinhk s

(
A − k2

4
I

)
Qk(t)u1 ds + k2k−1

∫ t

0
sinhk−1(s/2) cosh(s/2) ds u1
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UNIQUELY SOLVABLE PROBLEMS FOR ABSTRACT LEGENDRE EQUATION 5

=
∫ t

0
sinhk s

(
A − k2

4
I

)
Qk(t)u1 ds + 2k sinhk(t/2)u1.

Taking into account (13) and changing the order of integration, we will obtain

sinhk t Q′
k(t)u1 = νk

∫ t

0
sinh τ

∫ τ

0
(cosh τ − cosh y)k/2−1S(y)

(
A− k2

4
I

)
u1 dy dτ + 2k sinhk(t/2)u1

= νk

∫ t

0
S(y)

(
A − k2

4
I

)
u1

∫ t

y
sinh τ (cosh τ − cosh y)k/2−1dτ dy + 2k sinhk(t/2)u1

=
2νk

k

∫ t

0
(cosh τ − cosh y)k/2S(y)

(
A − k2

4
I

)
u1 dy + 2k sinhk(t/2)u1

=
2νk

kνk+2
sinhk+1 t Qk+2(t)

(
A − k2

4
I

)
u1 + 2k sinhk(t/2)u1.

That is why the derivative of function Qk(t)u1 has the form (14), and function Qk(t)u1 satisfies the
second condition from (5).

Theorem 3. Let u0, u1 ∈ D(A) and let operator A be a generator of COF C(t). Then function
u(t) = Pk(t)u0 + Qk(t)u1 is the unique solution to the Cauchy problem (4), (5).

Proof. The fact that function u(t) = Pk(t)u0 + Qk(t)u1 is a solution to problem (4), (5) is established
in Theorems 1 and 2. We will prove the uniqueness of solution to problem (4), (5) by contradiction. Let
u1(t) and u2(t) be the two solutions to problem (4), (5). Then function v(t) = u1(t) − u2(t) satisfies
Eq. (4) and conditions (5). By means of Theorem 1 v(t) ≡ 0, and this proves the uniqueness of the
solution and the theorem.

As it is established in [12], when u0 ∈ E uniformly with respect to t ∈ [0, t0], t0 > 0,

lim
k→0

Pk(t)u0 = C(t)u0.

Analogously, for u1 ∈ E we can obtain equation lim
k→0

Qk(t)u1 = S(t)u1. Consequently, there occurs

the “coupling” of the resulting solution in Theorem 3 and the well-known solution to the Cauchy
problem for abstract wave equation

lim
k→0

(
Pk(t)u0 + Qk(t)u1

)
= C(t)u0 + S(t)u1.

2. The boundary control problem for weakly loaded Legendre equation. We will seek solution
u(t) ∈ C2([0, 1], E) ∩ C((0, 1],D(A)) to Eq. (4), satisfying two final conditions, given for the sake of
convenience in point t = 1

u(1) = u2, u′(1) = u3. (15)

As it follows from Theorem 3, it suffices to define unknown initial elements u0, u1 in conditions (5)
over final conditions (15) to justify the solvability of problem (4), (15). Applying conditions (15) to
function u(t) = Pk(t)u0 + Qk(t)u1 and using Eqs. (6), (7), (13), (14) to find elements u0, u1 we will get
the system

Pk(1)u0 + Qk(1)u1 = u2, (16)

sinh 1
k + 1

Pk+2(1)
(

A − k2

4
I

)
u0 +

sinh 1
k + 2

Qk+2(1)
(

A − k2

4
I

)
u1 +

1
coshk 1/2

u1 = u3. (17)

It is convenient to rewrite Eqs. (16), (17) as a matrix equation

Bv = w, B : D(A) × D(A) −→ E × E, (18)
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6 GLUSHAK

where

v =

⎛
⎝u0

u1

⎞
⎠ , w =

⎛
⎝u2

u3

⎞
⎠ ,

B =

⎛
⎝B1 B2

B3 B4

⎞
⎠ =

⎛
⎝ Pk(1) Qk(1)

sinh 1
k+1 Pk+2(1)

(
A − k2

4 I
)

sinh 1
k+2 Qk+2(1)

(
A − k2

4 I
)

+ 1
coshk 1/2

I

⎞
⎠ ,

(19)

wherein all operators B1, B2, B3, B4 commute on D(A).

Thus the unique solvability of problem (4), (15) reduces to the problem of existence of inverse operator
matrix of operator matrix B : D(A) × D(A) → E × E, given by (19), defined on some subset from
E × E. As in scalar case, an important role is played by the determinant of operator matrix B, which we
will denote by Δ = B1B4 − B2B3.

Let x ∈ D(A), with respect to (6) and (13), after elementary transformations we will get

Δx = Pk(1)
(

sinh 1
k + 2

Qk+2(1)
(

A − k2

4
I

)
x +

1
coshk 1/2

x

)
− sinh 1

k + 1
Qk(1)Pk+2(1)

(
A − k2

4
I

)
x

=
1

sinhk 1
Pk(1)

∫ 1

0
sinhk s

(
A − k2

4
I

)
Qk(s)x ds +

1
coshk 1/2

Pk(1)x

− 1
sinhk 1

Qk(1)
∫ 1

0
sinhk s

(
A − k2

4
I

)
Pk(s)x ds

=
1

sinhk 1
Pk(1)

∫ 1

0
sinhk s

(
Q′′

k(s) + k coth s Q′
k(s) − k

cosh2−k(s/2)
sinh s

)
x +

1
coshk 1/2

Pk(1)x

− 1
sinhk 1

Qk(1)
∫ 1

0
sinhk s

(
P ′′

k (s) + k coth s P ′
k(s)

)
x

= Pk(1)Q′
k(1)x − k

sinhk 1
Pk(1)x

∫ 1

0
sinhk−1 s cosh2−k(s/2) ds +

1
coshk 1/2

Pk(1)x − Qk(1)P ′
k(1)x

= Pk(1)Q′
k(1)x − Qk(1)P ′

k(1)x. (20)

Let us introduce

Wk(t)x =

∣∣∣∣∣∣
Pk(t) Qk(t)

P ′
k(t) Q′

k(t)

∣∣∣∣∣∣x = Pk(t)Q′
k(t)x − P ′

k(t)Qk(t)x,

the Wronski operator determinant built over operator functions Pk(t) and Qk(t).

Thus, with respect to (20), the question of existence of inverse operator to Δ = B1B4 −B2B3 reduces
to existence of operator which is inverse to Wronski operator determinant Wk(1).

Lemma. Let k > 0, x ∈ D(A) and let operator A be a generator of COF C(t). Then the Wronski
operator determinant built over defined correspondingly by Eqs. (6), (13) operator functions Pk(t)
and Qk(t), equals

Wk(t)x =
k

sinhk t

∫ t

0

sinhk−1 τ

coshk−2 τ/2
Pk(τ)x dτ. (21)

Proof. Let us show that function Wk(t)x satisfies the equation

W ′
k(t)x + k coth t Wk(t)x =

k cosh2−k t/2
sinh t

Pk(t)x (22)

RUSSIAN MATHEMATICS Vol. 62 No. 7 2018



UNIQUELY SOLVABLE PROBLEMS FOR ABSTRACT LEGENDRE EQUATION 7

and initial condition

lim
t→0

Wk(t)x = x. (23)

Indeed,

W ′
k(t)x = P ′

k(t)Q
′
k(t)x + Pk(t)Q′′

k(t)x − P ′
k(t)Q

′
k(t)x − P ′′

k (t)Qk(t)x

= Pk(t)
(

Q′′
k(t) + k coth t Q′

k(t) −
k cosh2−k t/2

sinh t
I +

k2

4
Qk(t)

)
x

− Pk(t)
(

k coth t Q′
k(t) −

k cosh2−k t/2
sinh t

I +
k2

4
Qk(t)

)
x

− Qk(t)
(

P ′′
k (t) + k coth t P ′

k(t) +
k2

4
Pk(t)

)
x + Qk(t)

(
k coth t P ′

k(t) +
k2

4
Pk(t)

)
x

= Pk(t)AQk(t)x − Qk(t)APk(t)x − k coth t Wk(t)x +
k cosh2−k t/2

sinh t
Pk(t)x =

= −k coth t Wk(t)x +
k cosh2−k t/2

sinh t
Pk(t)x,

and therefore the function Wk(t)x satisfies Eq. (22).
When Pk(0)x = Q′

k(0)x = x, P ′
k(0)x = Qk(0)x = 0, function Wk(t)x also satisfies initial condition

(23), and the unique solution to problem (22), (23) is a function defined by equality (21).

According to the lemma, we need to study the invertibility of bounded operator

Wk(1)x =
k

sinhk 1

∫ 1

0

sinhk−1 τ

coshk−2 τ/2
Pk(τ)x dτ. (24)

Note that if k = 0, then W0(t)x = C(t)S′(t)x − C ′(t)S(t)x = C2(t)x − AS2(t)x = x and operator
W0(t) = I is always invertible, but in general case k > 0 it is not true, and the question of invertibility of
operator Wk(t) is very difficult. Hereinafter entire function

cosh ik(λ) =
kμk

sinhk 1

∞∑
j=0

aj(k)
(2j)!

λj =
kμk

sinhk 1

∫ 1

0
cosh s

√
λ

∫ 1

s
cosh2−k τ/2 (cosh τ − cosh s)k/2−1 dτ ds,

(25)

where aj(k) =
1∫
0

s2j
1∫
s

cosh2−k τ/2 (cosh τ − cosh s)k/2−1 dτ ds will play an important role.

Theorem 4. Let A be a bounded operator. For operator Wk(1) defined by Eq. (24) to be invertible
it is necessary and sufficient that on spectrum σ(A) of operator A condition

cosh ik(λ) �= 0, λ ∈ σ(A) (26)

be satisfied.

Proof. We substitute (6) in (24), after elementary transformations we get

Wk(1) =
kμk

sinhk 1

∞∑
j=0

1
(2j)!

Aj

∫ 1

0
cosh2−k τ/2

∫ τ

0
s2j (cosh τ − cosh s)k/2−1 ds dτ = cosh ik(A). (27)

Let Ω be an open set on complex plane containing spectrum σ(A) of bounded operator A, boundary
of which ∂Ω consists of finite number of rectifiable Jordan curves oriented in positive direction. Then by
representing the operator from right-hand side of (27) through resolvent R(λ) of operator A, we will get

Wk(1) =
1

2πi

∫
∂Ω

cosh ik(λ)R(λ) dλ. (28)
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Necessary and sufficient condition of invertibility of operator Wk(1) is absence of point λ = 0 in
spectrum σ(Wk(1)) of operator Wk(1). Eq. (28) means that operator Wk(1) is an analytic function of
operator A, Wk(1) = cosh ik(A). By the theorem on the mapping of the spectrum of a bounded operator
σ(Wk(1)) = cosh ik(σ(A)). Thus value λ = 0 is not a point of the spectrum of operator Wk(1) only when
function cosh ik(λ) does not vanishes on spectrum σ(A) or, what is the same, condition (26) is satisfied

W−1
k (1) =

1
2πi

∫
∂Ω

1
cosh ik(λ)

R(λ) dλ. (29) �

From Theorem 4 it follows that the location of zeros of function cosh ik(λ) defines the invertibility of
operator Wk(1) in the case of bounded operator A. In the case of unbounded operator A condition of
the form (26) will not be sufficient condition of invertibility, despite the zeros location will still play an
important role.

Let us consider the case when in Eq. (4) parameter k = 2. In this case

cosh i2(λ) =
2

sinh2 1
cosh λ − 1

λ2
, (30)

zeros of function cosh i2(λ) can be calculated using the formula

λj = j
πi

2
, j ∈ Z \ {0}, (31)

let us indicate the sufficient condition of invertibility of operator Wk(1) in the case of unbounded
operator A.

We denote by Υ0 the contour on complex plane consisting of straight line Re z = σ0 > ω (we pass
it bottom-up), ω is a C(t) COF growth exponent, Υ2

0 is a parabola, image Υ0 under mapping w = z2

(z ∈ Υ0, w ∈ Υ2
0).

There can be only finite number of zeros λj to the left of parabola Υ2
0, we will denote their set by Λ,

card(Λ) < ∞.

Condition 1. Let k = 2 and each zero λj of entire function cosh i2(λ), defined by Eq. (31), which lies
to the left of parabola Υ2

0, belong to resolvent set ρ(A) of operator A and there exists d > 0 such that
max
j∈Λ

‖R(λj)‖ ≤ d.

We assume that Condition 1 is satisfied. Since each zero λj ∈ Λ belongs to ρ(A), it belongs to ρ(A)
with circular neighborhood Ωj of radius 1/d, boundary of which (we pass it clockwise) we denote by γj

and let

Ξ = Υ2
0

⋃ ⋃
j∈Λ

γj .

Our problem reduces to a problem of existence of an operator defined on some subset of D(A) which
is inverse operator to the bounded operator given by Eq. (28) when k = 2 and continuously extended on
E. In order to do it when x ∈ E, λ0 ∈ C we introduce bounded operator

Hx =
1

2πi

∫
Ξ

R
(
z
)
x dz

cosh i2(z)(z − λ0)3
, H : E → E. (32)

Let us show that the integral in (32) converges absolutely when Condition 1 is satisfied. Indeed, by
virtue of the choice of contour Υ2

0, inequality [13]

‖λ R(λ2)‖ ≤ M

Re λ − ω
, Re λ > ω,

and the boundedness of function
(
cosh λ2 − 1

)−1 integral
∫

Υ2
0

R
(
z
)
dz

cosh i2(z) (z − λ0)3
= 2

∫
Υ0

λ R(λ2) dλ

cosh i2(λ2)
(
λ2 − λ0

)3 = 2
∫

Υ0

λ5 R(λ2) dλ(
cosh λ2 − 1

) (
λ2 − λ0

)3
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converges absolutely.

Theorem 5. Let operator A be a generator of COF C(t), x ∈ D(A4) and Condition 1 is satisfied.
Then operator Wk(1) has inverse operator W−1

k (1) : D(A3) → E.

Proof. Let x ∈ D
(
A

)
, σ0 < σ < Re ξ. Then by substituting operator Wk(1) defined by Eq. (28) in (32)

and applying the Hilbert identity

R(z)R(ξ2) =
R(z) − R(ξ2)

ξ2 − z
,

we get

HW2(1)x =
1

2πi

∫
Ξ

R
(
z
)

cosh i2(z)(z − λ0)3
1
iπ

∫ σ+i∞

σ−i∞
cosh i2

(
ξ2

)
ξR(ξ2)x dξdz

= − 1
2π2

∫
Ξ

∫ σ+i∞

σ−i∞

(
ξ cosh i2

(
ξ2

)
R

(
z
)
x

cosh i2
(
z
)
(z − λ0)3(ξ2 − z)

−
ξ cosh i2

(
ξ2

)
R

(
ξ2

)
x

cosh i2
(
z
)
(z − λ0)3(ξ2 − z)

)
dξ dz. (33)

The integral in (33) converges absolutely. By changing the order of integration we will obtain

HW2(1)x = − 1
2π2

∫
Ξ

∫ σ+i∞

σ−i∞

ξ cosh i2
(
ξ2

)
R

(
z
)
x dξdz

cosh i2
(
z
)
(z − λ0)3(ξ2 − z)

+
1

2π2

∫ σ+i∞

σ−i∞
ξ cosh i2

(
ξ2

)
R

(
ξ2

)
x

∫
Ξ

dz

cosh i2
(
z
)
(z − λ0)3 (ξ2 − z)

dξ. (34)

If we close integration contour Υ2
0 to the left without intersection with ∪

j∈Λ
γj , then the inner integral

in the second summand in (34) vanishes by virtue of choice of contour Ξ and the Cauchy theorem for
multiply connected domains. For calculations of the integrals in the first summand in (34) we will use
the Cauchy integral formula. Thus we get

HW2(1)x = − 1
2π2

∫
Ξ

∫
Υ

ξ cosh i2
(
ξ2

)
R

(
z
)
x dξ dz

cosh i2
(
z
)
(z − λ0)3(ξ2 − z)

= − 1
4π2

∫
Ξ

∫
Υ2

cosh i2
(
λ
)
R(z)x dλdz

cosh i2
(
z
)
(z − λ0)3(λ − z)

=
1

2πi

∫
Ξ

R(z)x dz

(z − λ0)3
=

1
2πi

∫
Υ2

0

R(z)x dz

(z − λ0)3

= −1
2
R′′(λ0)x = −R3(λ0)x.

Commuting operators H , W2(1), R3(λ0) are bounded and domain D(A) is dense in E, that is why
equation HW2(1)x = −R3(λ0)x is fair for x ∈ E, herewith HW2(1) : E → D

(
A3

)
. Consequently, the

operator

W−1
2 (1)x = −(λ0I − A)3Hx, W−1

2 (1) : D
(
A3

)
→ E, (35)

is an inverse operator for Wk(1). Indeed,

W2(1)W−1
2 (1)x = −W2(1)(λ0I − A)3Hx = −W2(1)H(λ0I − A)3x

= R3(λ0)(λ0I − A)3x = x, x ∈ D
(
A3

)
,

W−1
2 (1)W2(1)x = −(λ0I − A)3HW2(1)x = (λ0I − A)3R3(λ0)x = x, x ∈ E. �

In Theorems 4 and 5 we use the set on which operator Wk(1) has inverse operator W−1
k (1) which has

the form (29) in the case of bounded operator A and k > 0 and the form (35) in the case of unbounded
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operator A and k = 2. Thus by virtue of (20) we proved the existence of the inverse operator to Δ. By
solving matrix Eq. (18), like in the scalar case we will get⎛

⎝u0

u1

⎞
⎠ = Δ−1

⎛
⎝ B4 −B3

−B2 B1

⎞
⎠

⎛
⎝u2

u3

⎞
⎠ .

Thereby, by virtue of Theorems 4 and 5 we can obtain the following statements on solvability of the
boundary control problem considered in this Item in which function cosh ik(λ) from (25) plays a great
role.

Theorem 6. Let u2, u3 ∈ E, A be a bounded operator and condition cosh ik(λ) �= 0, λ ∈ σ(A) be
satisfied on spectrum σ(A) of operator A. Then problem (4), (15) has unique solution u(t) =
Pk(t)u0 + Qk(t)u1, where

u0 = W−1
k (1)

(
sinh 1
k + 2

Qk+2(1)
(

A − k2

4
I

)
u2 +

u2

coshk 1/2
− sinh 1

k + 1
Pk+2(1)

(
A − k2

4
I

)
u3

)
, (36)

u1 = W−1
k (1)

(
− Qk(1)u2 + Pk(1)u3

)
, (37)

and operator W−1
k (1) has the form (29).

Theorem 7. Let u2, u3 ∈ D(A4) and Condition 1 be satisfied. Then problem (4), (15) has unique
solution u(t) = P2(t)u0 + Q2(t)u1, where initial elements u0, u1 are defined in (36), (37) when
k = 2, and

W−1
2 (1)x = − 1

2πi

∫
Ξ

R
(
z
)
(λ0I − A)3x dz

cosh i2(z) (z − λ0)3
, x ∈ D(A3).

3. Nonlocal problem for the Legendre equation. We will seek solution u(t) ∈ C2([0, 1], E) ∩
C((0, 1],D(A)) to Eq. (1) that satisfies the nonlocal integral condition with fractional integral Iβ

g , β > 0
with respect to function g(t) = cosh t,

lim
t→1

Iβ
g

(
sinhk−1 t u(t)

)
= u4, (38)

and the condition

u′(0) = 0. (39)

Problem (1), (38), (39) with nonlocal conditions (38), (39), broadly speaking, is not correct. Let us
specify the conditions on operator A and element u4 ∈ E providing its unique solvability.

Among publications on solvability of nonlocal problems with integral condition for abstract differen-
tial first-order equations we will note papers [20] and [21]. The criterion of the uniqueness of solution is
established in [22]. The nonlocal problem for Euler–Poisson–Darboux equation is studied in [23].

The research on solvability of nonlocal problem (1), (38), (39) are based on locating of initial element
u0 in condition (2) using nonlocal condition (38).

We apply the fractional integral with respect to function g(t) = cosh t to function u(t) = Pk(t)u0,
multiplied by sinhk−1 t, where Pk(t) is defined by Eq. (6). Taking into account the semigroup property of
fractional integration and condition (38), we get

lim
t→1

Iβ
g

(
sinhk−1 t u(t)

)
= μk Γ(k/2) lim

t→1
Ik/2+β
g

[
C(t)
sinh t

]
u0

=
μk Γ(k/2)
Γ(k/2 + β)

∫ 1

0
(cosh 1 − cosh s)k/2+β−1C(s)u0 ds = u4.

RUSSIAN MATHEMATICS Vol. 62 No. 7 2018



UNIQUELY SOLVABLE PROBLEMS FOR ABSTRACT LEGENDRE EQUATION 11

As before, when establishing the solvability of nonlocal problem (1), (38), (39) we will use entire
function

ψk,β(λ) =
μk Γ(k/2)
Γ(k/2 + β)

∞∑
j=0

bj(k, β)
(2j)!

λj =
μk Γ(k/2)
Γ(k/2 + β)

∫ 1

0
cosh s

√
λ (cosh 1 − cosh s)k/2+β−1 ds,

where

bj(k, β) =
∫ 1

0
s2j(cosh 1 − cosh s)k/2+β−1 ds.

Theorem 8. Let A be a bounded operator and u4 ∈ E. In order for problem (1), (38), (39) to have
unique solution it is necessary and sufficient that condition ψk,β(λ) �= 0, λ ∈ σ(A) be satisfied on
spectrum σ(A) of operator A. Herewith u(t) = Pk(t)u0, where

u0 =
1

2πi

∫
∂Ω

1
ψk,β(λ)

R(λ)u4 dλ.

Proof is analogous to the proof of theorem 4.

Let us consider the case in which β = 1 − k/2, 0 < k ≤ 2:

ψk(λ) =
μk Γ(k/2) sinh

√
λ√

λ
,

zeros λj of function ψk(λ) can be calculated explicitly:

λj = −π2j2, j ∈ N.

Let us specify the sufficient solvability condition of nonlocal problem (1), (38), (39) in the case of
unbounded operator A.

Condition 2. Let each zero λj = −π2j2, j ∈ N of a function ψk(λ) belong to resolvent set ρ(A) and
there exists d > 0 such that sup

j=1,2,...
‖R(λj)‖ ≤ d.

Since each zero λj , j = 1, 2, . . . of function cosh ik(λ) belongs to ρ(A), it belongs to ρ(A) with a
circular neighborhood Ωj of radius 1

d , boundary of which (we pass it clockwise) we denote by γj . Let Υ0

be a contour on complex plane consisting of straight line (we pass it bottom-up) Re z = σ0 > ω, Υ2
0 be

a parabola, image Υ0 under mapping w = z2 (z ∈ Υ0, w ∈ Υ2
0), and Ξ = Υ2

0 ∪
j=1,2,...

γj .

We put λ0 ∈ ρ(A), Re λ0 > σ > σ0 and introduce bounded operator

Hv =
1

2πi

∫
Ξ

R
(
z
)
v dz

ψk(z)(z − λ0)2
, H : E → E. (40)

As in the proof of Theorem 5 we establish that the integral in (40) under Condition 2 converges
absolutely and there is valid

Theorem 9. Let operator A be a generator of COF C(t), x ∈ D(A3) and Condition 2 be satisfied.
Then problem (1), (38), (39) is uniquely solvable and the solution has he form u(t) = Pk(t)u0,
where u0 = (λ0I − A)2Hu4, and operator H is defined in (40).
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