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Abstract—Two major arrangements describing the oil-by-water displacement process, i.e., Muskat’s model
without taking into account the surface tension on the free boundary and the Buckley–Leverett model based
on the surface tension, are considered. These arrangements were subject to theoretical and numerical study,
which made it possible to uncover their self-contradictoriness. The focus was on construction of a numerical
solution at the microlevel using the direct method with pressure correction.
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1. The oil-by-water displacement process is com-
monly described by two models: Muskat’s model
without taking into account the surface tension on the
boundary [1] and the Buckley–Leverett model taking
into account the surface tension on the boundary [2].
They are based on Darcy’s law for an absolutely hard
rock skeleton. In 1980, L. Tartar in [3] using the aver-
aging technique showed that Darcy’s law could be
derived from the Stokes equations in a periodically
hard skeleton, when the size of the periodicity cell
tended to zero. Today, it is possible to apply the
approaches focused on the construction and justifica-
tion of mathematical models of moving f luids in envi-
ronments with a microstructure, which are based on
the following steps:

(1) exact description of moving f luids at the micro-
scopic level (on a pore scale) by the classical equations
of continuum mechanics;

(2) mathematically substantiated averaging of the
resulting problem and corresponding implementation
of the transition from the microlevel to the macrolevel.

Unfortunately, this scheme can be implemented
only for single-phase f lows [4], so it is particularly
important to carry out numerical experiments.

2. Let us consider the two-dimensional oil-by-
water displacement process in an absolutely hard skel-
eton. A one-dimensional model of perfect soil is taken
as the microstructure: in a rectangle with the unit
height there is a system of noncontacting parallel cap-
illaries with a rectangular cross section, whose dimen-
sionless width ε tends to zero in such a way that the
volume porosity remains constant. At the microlevel,
the displacement process is modeled in a single capil-
lary:

Ω = {x = (x1, x2): –1 < x1 < 1, –ε < x2 < ε}

with a moving free surface Γ(t) subdividing it into two
subregions such as Ω−(t) and Ω+(t). Further consider-
ations are performed in dimensionless variables:

where L and T specify the characteristic length of the
capillary and the characteristic time of the process,
respectively,  is the unit pressure (for instance, one
atmosphere), and  is the unit density (for instance,
water density).

Inside the capillary, the f luid motion is described
by the Stokes equations:

, (1)

, (2)

where  and  are the velocity vector and the ten-
sion tensor, respectively, to the left and to the right of
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the border line Γ(t),  and  are the

dimensionless density and viscosity of f luids, and
 is the strain velocity tensor. Velocities are sub-

ject to adhesion conditions throughout the capillary,
while pressure is specified in the inlet to which water is
supplied and in the outlet from which oil is taken from:

. (3)

The conditions on the free boundary are specified
depending on whether its surface tension is taken into
account or not.

Displacement without surface tension. In this case,
the consistency of velocities and the normal constitu-
ent of the tension tensor is required on the border line
Γ(t):

, (4)

where n is the unit normal to the surface Γ(t).
Displacement with surface tension. In this case, the

border conditions on the free surface are written as fol-
lows:

(5)

where n still specifies the unit normal to the free
boundary Γ(t), R is its curvature radius, t is the unit
vector of the tangential direction to the border line
surface, and  is the surface tension coefficient.

3. Numerical experiments were conducted by direct
solution through the pressure correction by tracing the
front [5]. The free boundary was constructed by step-
wise recalculation with relevant interpolation. The fol-
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lowing averaging was used to transit from microscale
to macroscale:

(1) the displacement task (1)–(3) is solved in the
total arrangement under the condition of (4) or (5) for
one rectangular capillary with hard walls;

(2) the obtained solution is periodically replicated
orthogonally to the capillary axis with simultaneous
reduction of its cross section  in such a way that the
total area occupied by the capillaries remains
unchanged, thus providing the specified porosity;

(3) a function with two variables is constructed; it
describes the f low in the limit case ( ); due to
symmetry of the task, the limit function depends on
only one spatial variable, i.e., the capillary length .

In case of no tension on the boundary, the results
of the numerical experiment are given in Fig. 1. Time
variations in the form of the boundary between two
unmixable f luids in the capillary are shown on the left.
The boundary within the capillary is drawn as far as
desired due to no surface tension and adhesion condi-
tion for the walls. In this case, below the contact
(adhesion) points and above the end of the expanded
“tongue,” there are areas where a volume fraction of
water is equal to one and zero, respectively. The mix-
ing zone formed between these areas is characterized
by a constant decrease in the volume fraction of water
from one to zero. The resulting averaging of the pro-
cess by the capillary replication with the given porosity
is shown on the right. It is seen clearly that the zone
formed expands, while the water concentration
decreases.

Tension on the free boundary. The calculation
results are given in Fig. 2 for the arrangement with
account for the surface tension. As before, the time
variations in the form of the boundary are shown on

ε

ε → 0

1x

Fig. 1. Numerical modeling of oil-by-water displacement without taking into account surface tension. On the left, change in the
border line in one capillary; on the right, f low averaging by periodic replication of the capillary.
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the left. It is evident that the occurrence of surface ten-
sion changes the f low nature considerably. In this
case, the conditions for the tension tensor on bound-
ary (5) include the surface tension coefficient and cur-
vature radius. Description of the displacement process
follows from the second condition of (5):

(1) under zero pressure drop in the capillary, the
curvature radius is infinite, i.e., the boundary is
described as a straight line segment;

(2) under increase in pressure, the curvature radius
decreases, but while it is more than half of the capillary
width, the boundary remains unchanged;

(3) under the critical pressure value,1 when the cur-
vature radius becomes less than half the thickness of
the capillary, drops replacing f luid start forming and
“shooting,” and their diameter decreases under an
increase in pressure.

4. One-dimensional arrangements for Muskat’s
model and the Buckley–Leverett model allow analyt-
ical solutions.

Muskat’s model. In the region , two different f lu-
ids occupy subregions  separated by the boundary

. Their velocity  and pressure  are consistent
with the system of equations of filtration theory
(Darcy’s law):

(6)

1 This value depends on the tension coefficient and channel
width.
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On the unknown contact boundary , the con-
ditions are as follows:

, (7)

where k is the permeability coefficient,  and  are
the f luid viscosity and density, and  is the given exter-
nal force. The task is completed by the boundary
materiality requirement (the boundary moves along
with the f low):

,

where  is the boundary movement velocity, under
the initial conditions

and under the limit conditions

, (8)

where  are surfaces where f luid is pumped and
taken, while  is the surface limiting the f luid f low
area.

In the case of one spatial variable, the region  is a
segment of the real axis, while the boundary

 is specified by one point. The set
task is solved explicitly, and the boundary movement

 is defined by the following equation:
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Fig. 2. Numerical modeling of oil-by-water displacement taking into account surface tension. On the left, change in the border
line in one capillary; on the right, f low averaging by periodic replication of the capillary.
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These relations are indicative of the fact that Mus-
kat’s model in one dimension describes the so-called
“piston” displacement, without the mixing zone.
Consequently, it should not be obtained by averaging
of the considered idealized model, and therefore, it is
incorrect to describe the filtering process even in such
a simple environment.

The Buckley–Leverett model. Let us consider
again the region , which consists of two nonintersec-
tion regions  separated by the boundary . In
each subregion, the velocity, pressure, and concentra-
tion s of the f luid pumped from the left from the vol-
ume with a “minus” index are related by the following
system of equations:

and the condition relating pressures,

.

Functions  and  specifying permeability
and capillary pressure, respectively, depending on the
concentration s, are considered to be predetermined.

The automodel solution for this model demon-
strated in Fig. 3 is given in [6]. It differs substantially
from the solution obtained by one-dimensional
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numerical averaging. Moreover, it is characterized by a
nonphysical artifact, i.e., f low in the direction oppo-
site to the pressure difference, which is impossible in
the one-dimensional case.

5. Numerical one-dimensional averaging of the
two-phase f low in a rectangular capillary with hard
walls made it possible to determine the characteristic
features for two typical arrangements: with surface
tension on the free boundary and without it. In the
case of no surface tension, the mixing zone is formed
and expanded and water concentration in it is con-
stantly reduced from one to zero. In the case of surface
tension, two flow conditions are possible: the free
boundary is fixed, if the pressure of the supplied f luid
is balanced by the surface tension; increase in pressure
results in separation of f luid drops supplied from the
free boundary and their further distribution along the
capillary. Consequently, the expanding mixing zone is
formed here as well, but now with a constant water
concentration dependent on the number of drops
detached from the free boundary. Meanwhile, analyt-
ical solutions obtained for the same idealized geome-
try of the pore space using Muskat’s model and the
Buckley–Leverett model yield a completely different
structure of the f low, thus raising serious doubts as to
their physical correctness.
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Fig. 3. Automodel solution for the Buckley–Leverett one-
dimensional model. The artefact that should be noted:
flow against the pressure direction at the initial moment of
time.
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