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A B S T R A C T

A new approach to increase the tensile performance of high entropy alloys (HEAs) by producing a duplex ul-
trafine-grained (UFG) structure was reported in this work. A novel HEA based on the CoCrFeNiMn system with
substantial amounts of Al and C was used for the illustration of this approach. In the as-cast condition the alloy
had almost entirely a single face-centered cubic (fcc) phase structure with an insignificant amount of M23C6

carbides. After cold rolling and annealing at 800–1000 °C an increased amount of fine second phases, namely
M23C6 carbides and B2 phase, effectively pinned boundaries of recrystallized fcc grains. As a result, a duplex UFG
structure composed of the recrystallized fcc grains and M23C6 and B2 particles was produced. The alloy with the
UFG structure demonstrated attractive mechanical properties. For example, after annealing at 900 °C the alloy
had the yield strength of 785MPa, the ultimate tensile strength of 985MPa, and elongation to fracture of 32%.
The phase composition of the alloy in different conditions was compared with the equilibrium phase diagram
obtained using a Thermo-Calc software. Strengthening mechanisms were qualitatively analyzed, and some
possibilities for further improvement of strength of the alloy were discussed.

1. Introduction

Since their introduction in 2004, so-called high entropy alloys
(HEAs) - multicomponent alloys of 5 or more principal elements taken
in (nearly) equiatomic concentration - have become a highly attractive
research field in materials science [1–4]. Although the main re-
searcher's attention was initially focused on alloys with a single solid
solution phase structure, it is unclear yet if these concentrated solid
solutions principally differ from their dilute counterparts [4–7]. But it is
believed that HEAs with more complex, multiphase structures can
possess unique properties superior to that of the conventional alloys
[4,8,9]. For instance, alloys with attractive combinations of room
temperature strength and ductility, elevated temperature strength, or
high wear resistance have already been demonstrated [10–22].

The most well-studied HEAs family is alloys which are based on 3d
transition metals like Cr, Mn, Fe, Co and Ni [4]. A typical and quite
thoughtfully investigated representative of this family is an equiatomic
CoCrFeNiMn alloy (also known as the Cantor alloy) [23–26]. This alloy
has a single disordered face-centered cubic (fcc) structure stable at
temperatures> 900 °C [25,27–32] and therefore is widely considered
as a “model” single phase HEA. In addition, the CoCrFeNiMn alloy has

attractive mechanical properties; namely very high ductility and frac-
ture toughness at room temperature [24,26], which yet increases even
more under cryogenic condition. Nevertheless, the strength character-
istics of the alloy are quite low [24,31].

Many efforts have been undertaken to improve the strength of the
CoCrFeNiMn and similar alloys, and precipitation hardening was found
to be a particularly effective approach [10,33–36]. Elements like Al and
Ti are often used to produce strengthening precipitates. For example,
proper heat treatment of a single fcc phase CoCrFeNi alloy containing
4 at% of Al and 2 at% of Ti resulted in strong precipitation strength-
ening by L12 phase particles [10]. The alloy demonstrates the ultimate
tensile strength of ~ 1100MPa with elongation of ~ 40% after the
optimal processing.

However, there are other options than precipitation hardening. It is
well established that the CoCrFeNiMn alloy has a very high Hall-Petch
coefficient, about ~ 0.5 GPa× μm−.5 [24,37]. This means that grain
refinement can be an effective tool for enhancement strength of the
alloy as well. Indeed, a decrease in recrystallized grain size from
144 µm to 4.4 µm increases the yield strength of the alloy from
~ 175MPa to ~ 375MPa. It might be suggested therefore that grain
refinement to, for example, an ultrafine level (grain size d < 1 µm) can
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further improve mechanical properties of the alloy.
Some earlier reports demonstrated promising mechanical char-

acteristics of the equiatomic CoCrFeNiMn alloy with the ultrafine-
grained (UFG) structure (d≈ 0.5 µm) [37,38]. In these works cold
working followed by annealing at temperatures ≥ 650 °C was used to
produce the UFG structure. Given relatively fast kinetics of re-
crystallization and grain growth in the single-phase CoCrFeNiMn alloy
[39,40], a very precise control over the annealing condition is needed
for preserving the fine grain size. Therefore, the approach used in
[37,38] might be rather elusive for practical application. Moreover,
annealing of the CoCrFeNiMn alloy at low temperatures can result in
the precipitation of second phases like the sigma-phase [27–30] that
can drastically deteriorate ductility [27,41].

Another strategy to produce the UFG structure in the CoCrFeNiMn
system HEA with sufficient amounts of Al and C was used in the present
work. The alloy was annealed at 800–1000 °C following cold rolling.
The annealing resulted in the precipitation of Al, C-rich second phase(s)
particles with a high volume fraction due to which fcc grains growth
was effectively inhibited. As a result, a duplex UFG structure was pro-
duced. Mechanical properties of the alloy with the duplex UFG struc-
ture were studied.

2. Materials and methods

In this work, the program alloy was fabricated via the self-propa-
gating high-temperature synthesis (SHS)-casting technique. The use of
highly exothermic thermite-type SHS mixtures makes it possible to
achieve temperatures high enough (above 2500 °C) to obtain molten
combustion products and, as a result, cast products (ingots). Previous
studies have demonstrated that the SHS process under high gravity
conditions is optimal for the chemical homogeneity of the produced
ingot and easy removal of the slag (Al2O3) [42,43]. The high gravity
SHS-casting has been already successfully used to produce different 3d
transition metals HEAs [43–45]. The synthesis of the program alloy was
carried out in a centrifugal SHS setup [46] under artificial gravity of
50–60 G. The initial products were taken in the form of a mixture of
powders including oxides of the target elements, Al (both as the metal
reducer and alloying element), and pure C (graphite powder). The size
and purity of the powders used are specified in Table 1. Prior to the
synthesis, the powders were mechanically mixed for 20min. The mix-
ture was placed in a graphite mold of 80mm diameter. The inner sur-
face of the graphite mold was covered with Al oxide (Al2O3) to ensure
the minimal interaction between the mold and the melt.

The obtained ingot was measured 40mm diameter× 7mm height.
The result of the chemical analysis (the concentrations of the metallic
elements were measured by energy dispersive spectrometry (EDX) over
area ≈ 1×1mm2, the concentration of carbon was measured using a
LECO analyzer) of the obtained ingot is given in Table 2. Samples for
microstructural characterization and further thermomechanical pro-
cessing were cut from the as-cast ingot by an electric discharge ma-
chine. The samples for the thermomechanical processing were mea-
sured 4×5×22mm3. These samples were cold rolled to the final
thickness of ≈ 0.32mm (a thickness reduction of 92%) with a reduc-
tion per pass of 5–10%. Some of the cold-rolled samples were annealed

at 800 °C, 900 °C, or 1000 °C for 30min. For the annealing, the samples
were placed in a preheated oven and held for the desired amount of
time; cooling was carried on laboratory air.

Structures of the alloy in different conditions (as-cast, cold-rolled to
92% reduction, annealed at 800–1000 °C) were studied by scanning
(SEM) and transmission (TEM) electron microscopy. The samples for
scanning electron microscopy were prepared by careful mechanical
polishing. All microstructural observations of the cold-rolled and an-
nealed specimens were performed at the mid-thickness rolling plane.
The SEM studies were performed using an FEI Quanta 600 FEG mi-
croscope equipped with an EDX detector. The samples for the TEM
observations were produced by mechanical thinning of discs (measured
3mm diameter×~ 100 µm thickness) followed by twin-jet electro-
polishing in a mixture of 95% C2H5OH and 5% HClO4 at the 27 V po-
tential. The TEM investigations were performed using a JEOL JEM-
2100 microscope with an accelerating voltage of 200 kV equipped with
an EDX detector. The grain size was measured using SEM/TEM images
per standard linear interception method. At least 300 grains per each
condition were analyzed. The fraction of the second phase(s) was
measured from SEM-BSE images using a Digimizer Image Analysis
software and a binarization procedure and from TEM bright-field
images using a grid point counting method.

Microhardness measurements and tensile tests were performed to
estimate mechanical properties of the alloy in different conditions. The
microhardness was measured at room temperature using 300 g load. At
least 10 measurements for each data point were made. Tensile flat dog-
bone specimens with the gauge measured 6× 3×0.3mm3 were cut by
the electric discharge machine. The long axis of the specimens was
aligned with the rolling direction. These specimens were further pulled
at a constant crosshead speed of 0.36mm/min in an Instron 5882 test
machine to fracture. Elongation to fracture was determined by mea-
surements of the spacing between marks designating the gauge length
before and after the test. Three samples for each condition were tested.

3. Results

Fig. 1 illustrates the initial (as-cast) structure of the alloy. The XRD
pattern shows the presence of the major fcc phase (a= 3.596 nm) and
some peaks from presumably M23C6 carbides (Fig. 1a). The SEM-BSE
image demonstrates a relatively coarse-grained (the average grain size
d≈80 µm) predominantly single-phase structure (Fig. 1b). However,
some fine, elongated second phase particles were detected at the grain
boundaries (a higher magnification is inserted in Fig. 1b). Also, some
pores can be observed as dark, irregularly shaped objects in Fig. 1a
(some of them are shown with arrows). The TEM investigations
(Fig. 1c) have confirmed that the second phase particles were M23C6

type carbides, while the matrix had a disordered fcc structure. The
carbides measured 180 ± 120 nm length× 45 ± 25 nm width can be
found both at grain boundaries and inside fcc grains. The volume
fraction of the carbides was ~ 0.03. The TEM-based EDX has revealed
that the particles were primarily composed of Cr (~ 64 at% (out of
metallic elements; C concentration was not measured by TEM-EDX)).
The microhardness of the as-cast alloy was 167 HV.

Cold rolling to a high thickness reduction had resulted in significant
microstructure refinement (Fig. 2). A typical heavily deformed micro-
structure with high dislocation density was observed; the micro-
structure mostly composed of subgrains with irregular shape and blurry
wide boundaries (Fig. 2a). Occasionally twinned areas can be found
(some of them are identified with arrows in Fig. 2b). The suppression of

Table 1
Ingredients used for the SHS-casting procedure.

Ingredients The particle size d, µm Purity, %

NiO < 40 99.0
Cr2O3 < 20 99.2
Co3O4 < 10 99.6
Fe2O3 < 50 99.3
MnO2 < 30 99.7
Al < 140 98.0
C < 50 99.8

Table 2
Chemical composition of the studied alloy (in at%).

Co Cr Fe Ni Mn Al C

21.55 18.73 21.44 21.44 10.01 5.31 1.52
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twinning can be attributed to the presence of Al and C in agreement
with some recent data [22,44]. The carbide particles (not shown) were
not affected by deformation. No changes in phase composition were
detected by the XRD analysis (Fig. 1a). Cold rolling resulted also in an
increase in the microhardness of the alloy to 478 HV, i.e. ~ 3 times
higher than that of the as-cast condition.

Annealing of the rolled alloy at temperatures 800–1000 °C resulted
in partial (at 800 °C, Fig. 3a) or complete (at 900 °C and 1000 °C, Fig. 3b
and d) recrystallization of the fcc matrix phase. After annealing at
800 °C the recrystallized fraction and the size of the recrystallized
grains (according to the SEM data) were 0.85 and 0.55 ± 0.22 µm,

respectively, (Table 3). An increase in the annealing temperature to
900 °C or 1000 °C resulted in an increase in grain size to
1.03 ± 0.35 µm or 1.75 ± 0.85 µm, respectively. Recrystallized grains
contained numerous annealing twins.

Besides recrystallization of the fcc phase, annealing resulted in the
precipitation of a significant amount of second phase(s) particles (seen
as small equiaxed dark areas in Fig. 3). The estimated fraction of the
second phase(s) decreased from 0.199 after annealing at 800 °C to
0.142 after annealing at 1000 °C (Table 3). On the other hand, the
average size of the second phase(s) particles increased from
0.24 ± 0.10 µm to 0.56 ± 0.27 µm when temperature increased from
800 °C to 1000 °C. In the partially recrystallized condition (annealing at
800 °C) the second phase(s) were predominantly found in the re-
crystallized regions (Fig. 3c). The particles located at the grain
boundaries were generally coarser than the particles inside re-
crystallized grains (see the high magnification insert in Fig. 3b).

It worth noting that the size of the recrystallized grains depended on
the presence of the second phase particles at grain boundaries. Due to
some heterogeneity in the second phase particles distribution after
annealing at 900 or 1000 °C, the grain size also had an obvious differ-
ence. For example the microstructure at the top of Fig. 3b is evidently

Fig. 1. Structure of the program alloy in the as-cast condition: (a) – XRD pat-
tern, (b) – SEM-BSE image, (c) – TEM bright-field image with corresponding
selected area electron diffraction patters (SAEDs). Note that the XRD patterns
for other conditions are also presented in Fig. 1a.

Fig. 2. Microstructure of the program alloy after cold rolling to 92% thickness
reduction; TEM bright-field images. Deformation twins are indicated with ar-
rows in Fig. 2b.
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finer than that in the bottom that can be associated with a non-uniform
distribution of the second phase particles in different parts of the mi-
crostructure. A similar situation can be observed after annealing at
1000 °C (compare the grain size and the second phase particles fraction
in the left lower and right lower corners of Fig. 3c).

To gain insight into the structure of the alloy after annealing, TEM
studies were performed (Fig. 4). TEM has confirmed the response of the
fcc matrix to the annealing observed earlier via SEM (Fig. 3, Table 3):
incomplete recrystallization at 800 °C (Fig. 4a) and complete re-
crystallization and continuous growth of the recrystallized grains at
higher temperatures (Fig. 4b and c and Table 3). In the unrecrystallized
areas obvious signs of the recovery development was observed (com-
pare Fig. 4a and Fig. 2). Note that the size of the recrystallized grains
determined using either SEM or TEM was within the error margin.
However, the average size of the second phase(s) determined by TEM
was noticeably lower, and the fraction of the second phase(s) was
higher than the corresponding values obtained by SEM (Table 3). Most
probably, this discrepancy can be attributed to the presence of very fine
particles with the size of several tens nanometers (Fig. 4) which cannot
be readily distinguished by SEM.

The second phase(s) particles can be found inside grains or at
boundaries of fcc grains, including triple junctions (Fig. 4). Also, after
high-temperature annealing some relatively coarse particles can be
identified as individual “grains” as they have boundaries with several
adjacent fcc grains (point #3 in Fig. 4c). Selected area electron dif-
fraction patterns (SAEDs) were used to identify the crystal structure of
the second phases. It was found that after annealing in the interval
800–1000 °C, the alloy was composed of the fcc matrix (labeled as #1 in
Fig. 4), M23C6 type carbides (labeled as #2) and B2 phase (labeled as
#3). The same fcc, M23C6 carbides, and B2 phases were detected by
XRD (Fig. 1a). In general, the B2 particles were coarser, tended to have
a polygonal shape, and were often found at grain boundaries of the fcc
phase, while the carbides were usually finer, rounded, and located in-
side fcc grains. Nevertheless, the accurate distinguishing between the
B2 phase and the carbide particles based on their morphology was not
possible. Therefore, the size and the fraction of the second phases were
measured jointly (i.e. the fraction of second phase(s) in Table 3 re-
presents both carbide and B2 phases fraction).

The chemical compositions of the structural constituents (i.e. the
fcc, B2, and M23C6 carbide phases) determined by TEM-EDX, are shown
in Table 4. The concentration of carbon was not analyzed as the energy
resolution of the EDX system does not allow a correct analysis of the
light elements. The measured composition of the fcc phase has retained
rather close to the nominal one (Table 1), however it was depleted of Al
and enriched in Co and Fe (~ 24–26 at% each). The carbides were
primarily composed of Cr (≈ 63 at%), and depleted of other metallic
elements. The B2 phase, in turn, was enriched with Ni (~ 35–37 at%),
Mn (~ 14–17 at%), and Al (~ 14–21 at%), and depleted of the rest of
the elements. The chemical composition of the carbides did not change
after annealing at the studied temperatures. In turn, the fcc matrix and
the B2 phase particles changed their composition depending on the
annealing temperature; the partitioning of elements increased with
decreasing the temperature. For example, the concentration of Al in the
fcc phase decreased from 3.4 to 1.7 at% with a decrease in annealing
temperature from 1000 to 800 °C; at the same time in the B2 phase the
percentage of Al increased from 14.5 to 21.2 at%.

Tensile tests were used to evaluate mechanical properties of the
alloy after cold rolling and subsequent annealing. The engineering
stress-strain curves are shown in Fig. 5, and the resulting tensile
properties are summarized in Table 5. After cold rolling with a high
thickness reduction (92%) the alloy demonstrated very high strength
(the ultimate tensile strength was 1545MPa) and simultaneously very
limited strain hardening capacity resulting in very low ductility; the
total elongation was only 4%. The high strength of the cold-worked
alloy can be attributed to dislocation and grain (twin) boundary
strengthening in accordance with previous results [47,48]. The strength

Fig. 3. SEM-BSE images of the studied alloy after cold rolling to 92% thickness
reduction and subsequent annealing for 30min at (a) − 800 °C, (b) − 900 °C,
(c) − 1000 °C.
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of the alloy gradually decreased and ductility increased with an in-
crease in the annealing temperature. For instance, the yield strength
decreased from 850MPa to 530MPa and elongation to fracture rose
from 20% to 35% when the annealing temperature increased from
800 °C to 1000 °C. Note that the annealed alloy had high ductility de-
spite still rather limited strain hardening capacity (Fig. 5). For example

after annealing at 900 °C the uniform elongation was 26%, although the
difference between the yield strength and the ultimate tensile strength
was only 200MPa (785MPa and 985MPa, respectively). The presence
of a plateau straight after the yield point of the specimen annealed at
900 °C should also be mentioned. In general, the alloy after annealing
demonstrated quite balanced mechanical properties: the ultimate ten-
sile strength of 825–1060MPa and the total elongation of 20–35%.

Table 3
Microstructure parameters of the studied alloy after cold rolling to 92% thickness reduction and subsequent annealing for 30min at 800 °C, 900 °C, and 1000 °C.

Annealing temperature fcc grain size, μm Second phase(s) particle size, μm Volume fraction of second phase(s), %

SEM TEM SEM TEM SEM TEM

800 °C 0.55 ± 0.22 0.66 ± 0.19 0.24 ± 0.10 0.10 ± 0.05 19.9 22.8
900 °C 1.03 ± 0.35 0.92 ± 0.42 0.37 ± 0.18 0.20 ± 0.11 17.3 18.7
1000 °C 1.75 ± 0.85 1.48 ± 0.39 0.56 ± 0.27 0.32 ± 0.15 14.1 16.9

Fig. 4. TEM bright-field images of the program alloy after cold rolling to 92%
thickness reduction and subsequent annealing for 30min at (a) − 800 °C, (b)
− 900 °C, (c) − 1000 °C. SAEDs taken from the constitutive phases indicated
with number are also shown. The chemical composition of the structural con-
stituents indicated with numbers is given in Table 4.

Table 4
Chemical compositions of the structural constituents of the program alloy after
cold rolling to 92% thickness reduction and subsequent annealing at
800–1000 °C for 30min.

Structural constituent Co Cr Fe Ni Mn Al

# Designation 800 °C
1 fcc 25.2 18.4 26 18.4 10.3 1.7
2 M23C6 9.2 63.6 10.7 8.8 6.4 1.3
3 B2 11.8 5.1 8.1 37.1 16.7 21.2

900 °C
1 fcc 24.9 17.7 25.1 18.8 10.8 2.7
2 M23C6 10 63.4 11.5 7.9 6.5 0.7
3 B2 13.7 6.4 8.8 36.0 15.9 19.2

1000 °C
1 fcc 24.3 17.8 24.2 19.3 11 3.4
2 M23C6 9.3 63.2 11.5 8.2 6.9 0.9
3 B2 16.6 8.2 11.9 34.8 14.0 14.5

Fig. 5. Engineering tensile stress-strain curves of the program alloy in different
conditions: cold rolled to 92% (CR) and cold rolled and then annealed at 800 °C,
900 °C, or 1000 °C.

Table 5
Tensile mechanical properties of the program alloy in different conditions: cold
rolled to 92% (CR) and cold rolled and then annealed at 800 °C, 900 °C, or
1000 °C.

Condition YS, MPa UTS, MPa UE, % EF,%

CR 960 1545 2.5 4
CR+ annealing 800 °C 850 1060 16 20
CR+ annealing 900 °C 785 985 26 32
CR+ annealing 1000 °C 530 825 30 35

N.D. Stepanov et al. Materials Science & Engineering A 728 (2018) 54–62

58



4. Discussion

The obtained results demonstrated that cold rolling and subsequent
annealing of the initially predominantly single fcc phase high entropy
alloy containing a large amount of Al and C resulted in: (i) the pre-
cipitation of a large fraction of the second phases, namely, the M23C6

type carbides and the B2 phase and (ii) recrystallization of the fcc
phase, thereby promoting the formation of a specific, duplex-type
equiaxed structure with the size of both the fcc grains and second
phases particles falling into the UFG region. Moreover, the alloy with
the UFG duplex structure exhibited an attractive combination of me-
chanical properties. Although the formation of a fine-grained duplex
structure in HEAs has already been reported [49–51], in these earlier
studies the initial materials were dual-phase. The current investigation
was focused on an almost single-phase alloy with the fraction of the
second phases ~ 0.03 in the initial condition (Fig. 1). The phase
transformations, recrystallization behavior, and strengthening me-
chanisms of the alloy are analyzed in details below.

Conventionally, phase diagrams are utilized for understanding of
phase transformations in the alloys. Although the phase diagrams are
usually available for binary and ternary systems, CALPHAD approach
implemented in several commercial software packages can be used to
produce phase diagrams for more complex systems. In the present work
a Thermo-Calc software with a TCHEA2 database developed especially
for high entropy alloys was used to calculate the equilibrium phase
diagram for the program alloy. The obtained phase diagram is shown in
Fig. 6.

The investigated alloy started to solidify at 1340 °C through a single
fcc phase. The solidification terminated at 1285 °C; the as-solidified
structure was composed of the primary fcc phase with a small amount
of M7C3 carbides (~ 1.8%) which appeared at the last stages of the
solidification. The M7C3 carbides were almost stoichiometric Cr7C3

carbides with a minor presence of some other elements. During further
decrease in temperature, the fraction of the carbides slowly increased
reaching 0.036 at 1100 °C. At almost the same temperature (1098 °C),
the precipitation of an Al, Ni-rich B2 phase occurred. The fraction of
this phase grew steadily reaching ≈ 0.2 at 800 °C. Also, the transfor-
mation of the M7C3 carbides to M23C6 occurred at temperatures of
~800–850 °C; yet they were still composed almost exclusively of Cr and
C. The fraction of the M23C6 carbides reached ≈ 0.07 at 800 °C. Note
that the amount of C in the fcc phase was very low (≤ 0.3 at%) and did
not change pronouncedly at T < 1100 °C, while the Al concentration
gradually decreased starting from the solvus temperature of the B2
phase (~ 1100 °C).

The experimental phase composition reasonably agreed with the
Thermo-Calc predictions although there was an apparent difference.
The as-cast alloy was composed of the fcc matrix with a small fraction
(0.03) of the M23C6 carbides (Fig. 1c), while the phase diagram (Fig. 6)
suggested the fcc+M7C3 structure. Since no signs of M7C3 carbides
were found after annealing at 800–1000 °C (Fig. 1a), therefore only the
M23C6 type carbides are suggested to be stable in the present alloy, like
that in a similar alloy with lower Al and C content [45]. This contra-
diction can be associated with a more complex chemical composition of
the carbides (Table 3) in comparison with the almost stoichiometric
binary Cr7/23C3/6 carbides predicted by the Thermo-Calc.

The precipitation of a large fraction of the B2 and carbide particles
after annealing at 800 °C, 900 °C or 1000 °C (Figs. 3 and 4, Table 3) was
in excellent agreement with the equilibrium phase diagram (Fig. 6).
Moreover, the observed amount of the second phases correlated well
with the thermodynamic predictions; for instance the experimental
fraction after annealing at 800 °C was ~ 0.20–0.23 (Table 3), while the
calculated one was ~ 0.27. Some decrease in the fraction of the second
phases with an increase in the annealing temperature (Table 3) also
agreed with the equilibrium predictions. These observations suggested
that the phase composition of the alloy after the short-term annealing
was rather close to the equilibrium one(s) possibly due to high density
of defects (dislocations, subgrain boundaries, and twin boundaries) in
the cold-rolled material which most likely (i) accelerated diffusion and
(ii) served as the preferred nucleation sites. The equilibrium phase
diagram (Fig. 6) suggested also that after annealing (i) the fraction of
the B2 particles was considerably greater than that of carbides; (ii) the
observed changes in the fraction of the phases with annealing tem-
perature were primarily associated with the B2 phase. Although the
separate evaluation of the volume fractions of the M23C6 and B2 phase
particles was not performed (Table 3), the chemical analysis of the
constitutive phases (Table 4) showed rather strong changes in the
composition of both the fcc and B2 phases with annealing temperature
(the content of Al was particularly susceptible), while the composition
of the M23C6 carbides had barely changed.

Microstructure analysis of the alloy after annealing at 800–1000 °C
(Figs. 3 and 4) suggested that the B2 and M23C6 particles precipitation
is closely interrelated with recrystallization of the fcc phase. On the one
hand, due to the fast grain-boundary diffusion the particles nucleated at
(sub)grains grew more intensively in comparison with the particles
nucleated within grains (see, for example, the insert in Fig. 3b). On the
other hand, a high amount of the second phases pinned grain bound-
aries thereby restricting their migration [52]. In the areas with a lower
fraction of the second phase particles the recrystallized grain size is
noticeably larger than that in the present of pinning particles (Fig. 3b).
Although the obtained data is insufficient to quantify the effect of the
second phases on the recrystallization processes in the fcc phase, this
influence can be estimated by the comparison of the recrystallized fcc
grain size obtained in the current study with the grain sizes reported for
the equiatomic CoCrFeNiMn alloy after annealing under similar con-
ditions (80–90% cold rolling followed by an hour annealing at
800–1000 °C) [24,30,39,53] (Fig. 7). TEM data (Table 3) was used for
the investigated alloy.

Fig. 7 clearly shows that the fcc grain size in the program duplex
alloy was considerably lower than that in a nearly single fcc phase
CoCrFeNiMn alloy [30]. The difference was at least ~ 3–4 times (with
the data of [53] at 800 °C and 900 °C), reaching in some cases an order
of magnitude. Partially, this difference can be attributed to different
processing conditions; for instance lower annealing time in the current
study (30min vs 1 h in [24,30,39,53]). However, longer annealing itself
cannot be responsible for such an increase in the grains size. For ex-
ample, an increase in annealing time from 0.5 to 1 h resulted in some
increase in the grain size from 5.2 to 6.9 µm in the CoCrFeNiMn alloy,
i.e. the grain size increased only by ~ 1.5 times. Therefore, it seems
reasonable to suggest that the duplex structure of the alloy is mainly
responsible for the grain size preserving. But the present work cannot

Fig. 6. Equilibrium phase diagram of the program alloy produced by the
Thermo-Calc software. The chemical composition of the alloy was taken from
Table 2.
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give an exact information on what fraction and sizes of the second
phase(s) particles provide more efficient pinning effect; this question
requires additional studies.

The specific UFG duplex structure of the alloy should be responsible
for encouraging mechanical properties, namely, high strength of the
alloy (Fig. 5, Table 5). Apparently, the strength of the alloy should
benefit from both a fine size of the fcc grains and the presence of a large
fraction of the hard B2 and M23C6 particles. Besides, after annealing at
800 °C a significant fraction of unrecrystallized material with high
dislocation density and fine grain (twin) boundary spacing remained
(Figs. 3a and 4a). To estimate the contribution of all potential
strengthening factors, a rule of mixture was used [54]:

= + +YS V V YS V YS V YS(1– – )* * *SP Unrec fcc Unrec Unrec SP SP (1)

where YS – is the yield strength of the alloy; V SP – is the volume
fraction of the second phases; V Unrec – is the unrecrystallized volume
fraction; YS fcc – is the yield strength of the recrystallized fcc phase; YS
Unrec – is the yield strength of the unrecrystallized material and YS SP

denotes the yield strength of the second phases. In turn, the yield
strength of the recrystallized fcc phase depending on the grain size can
be expressed as:

= +YS σ K d*fcc HP0 (2)

where σ0 is the friction stress, KHP is the Hall-Petch coefficient, and d is
the recrystallized fcc grain size. The values of σ0 and KHP were taken
from [24] for the “pure” CoCrFeNiMn alloy (σ0 =125MPa; KHP

=494MPa*μm−0.5). Since there is no reliable data on the yield
strength of the unrecrystallized areas as soon as the second phases in
the annealed alloy, therefore, the following assumptions were made: (i)
the yield strength of the cold-rolled alloy (Table 5) was used as the yield
strength of the unrecrystallized areas, i.e. the effect of recovery on
strength of the unrecrystallized areas was neglected; (ii) the yield
strength of the alloy with somewhat similar composition and almost a
single B2 phase structure (Al28Co20Cr11Fe15Ni26, 1253MPa, [55]) was
used as YSSP. The values of d and V SP were taken from Table 2 (TEM
data), the VUnrec value was 0.15 at 800 °C and 0 at 900 °C and 1000 °C.
The results of the calculations using Eqs. (1) and (2) are shown in Fig. 8.

The comparison of the experimental data (Table 5) and the values of
the yield strength calculated using Eqs. (1)–(2) shows good agreement
(Fig. 8). The analysis of the contributions of the different structural
constituents suggests that strength of the alloy is mostly due to the
ultrafine-grained fcc phase (in accordance with Eq. (2)). Meanwhile the
second phase particles provide both direct strengthening (Fig. 8) and
indirect strengthening by pinning fcc grain boundaries [56], while the
unrecrystallized areas do not produce any noticeable strengthening due
to their low fraction. However, the higher is the yield strength the lower

is the ductility of the alloy, most probably, due to lower work hardening
capacity (Table 5). Yet in all conditions the alloy demonstrated rather
weak work hardening capacity (Δ(UTS-YS) ≈ 200–300MPa (Table 5)).
Most probably this is due to suppression of twinning in the presence of
Al and C (see the cold-rolled structure, Fig. 2). Fine grains after an-
nealing can make the alloy even less prone to twinning [38,57,58].

To sum up, the present study has demonstrated a relatively simple
method to produce a duplex UFG structure in the 3d transition element
based HEA that resulted in an attractive combination of strength and
ductility. In general, the possibility to transform a coarse-grained single
phase microstructure of the alloy into a fine-grained duplex one allows
varying mechanical behavior of the alloy in a wide range which is
promising for potential applications. Based on the current results and
data of some other works, it might be suggested that properties of the
duplex UFG HEAs can be further increased not only by tailoring the fcc
grain size and the fraction of the second phase(s), but also by adjusting
solid solution strengthening [59,60], control over the deformation
mechanisms [61,62], and (probably) precipitation strengthening [35].
However, further studies are required to establish composition-struc-
ture-properties relationships in duplex UFG HEAs in more details and to
determine the alloys and processing conditions resulting in the best
combination of strength and ductility.

5. Conclusions

In the present work, microstructure and mechanical properties of
the high entropy alloy composed of Co, Cr, Fe, Ni (18.7–22.5 at% each),
Mn (10.0%), Al (5.3%), and C (1.5%) in the as-cast condition and after
cold rolling (92% thickness reduction) with subsequent annealing at
800–1000 °C were studied. Following conclusions were drawn:

1) The as-cast alloy was composed of coarse fcc grains with a small
fraction of the M23C6 carbides. Cold rolling resulted in the sub-
structure development and strong refinement of the fcc matrix. In
addition, the microhardness of the alloy increased from 167 HV in
the as-cast condition to 478 HV after cold rolling.

2) Annealing of the cold-rolled alloy resulted in the precipitation of the
B2 and M23C6 particles. The B2 phase was enriched with Ni and Al,
while the carbides were primarily composed of Cr. The aggregate
fraction of the second phases decreased from 22.8% to 16.9% and
the size of the particles increased from 0.10 µm to 0.32 µm when the
annealing temperature increased from 800 °C to 1000 °C. The pre-
cipitation of the B2 and M23C6 phases after annealing was found to
be in agreement with the equilibrium phase diagram for the alloy
constructed using the Thermo-Calc software.

3) Annealing also resulted in recrystallization of the heavily-deformed

Fig. 7. Semilog dependence of grain size in the program alloy and in the
equiatomic CoCrFeNiMn alloy on annealing temperature.

Fig. 8. Contributions of different structural constituents to the yield strength of
the program alloy as a function of annealing temperature.
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fcc phase – partial at 800 °C and complete at 900 °C and 1000 °C. The
recrystallized grain size increased from 0.55 µm to 1.75 µm with an
increase in the annealing temperature from 800 °C to 1000 °C. The
small size of the fcc grains was attributed to the pinning effect of the
second phase particles. The combination of the fine fcc grains and
the large fraction of the second phase particles resulted in the for-
mation of a duplex UFG structure in the alloy after annealing.

4) The cold-rolled alloy had high strength (the ultimate tensile strength
was 1545MPa) but low ductility (the elongation to fracture was
only 4%). Annealing resulted in a gradual increase of ductility with
an increase in temperature together with some decrease in strength.
Yet a combination of high strength and ductility can be achieved
after annealing. For example, after annealing at 800 °C the alloy had
the yield strength of 785MPa, the ultimate tensile strength of
985MPa, and the elongation to fracture of 32%. The high strength
of the alloy with the duplex UFG structure was primarily attributed
to the small fcc grain size.
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