Structure and hardness of B2 ordered refractory AlNbTiVZr0.5 high entropy alloy after high-pressure torsion

a Laboratory of Bulk Nanostructured Materials, Belgorod State University, Belgorod 308015, Russia
b Karlsruhe Institute of Technology, Institute of Nanotechnology, Karlsruhe, Germany

ARTICLE INFO

Keywords:
High entropy alloys
High-pressure torsion
B2 phase
Laves phase
Disordering
Young’s modulus

A B S T R A C T

High-pressure torsion (HPT) at room temperature was applied to an AlNbTiVZr0.5 refractory high entropy alloy. In the initial as-cast condition the alloy was composed of a coarse-grained B2 matrix phase and a continuous network of C14 Laves phase particles with the volume fraction of 19%. HPT resulted in the formation of a nanocrystalline structure in the B2 matrix with an average size of grains/subgrains of 25 nm after 5 revolutions. The B2 phase also underwent significant disordering during HPT. The Laves phase network was broken and individual particles became much thinner in comparison with those in the initial condition. Microhardness measurements have revealed typical of HPT gradient along the radius which decreased with increasing the number of revolutions. It was also found that the nanohardness of the B2 phase increased after HPT while the nanohardness of the Laves phase decreased. A strong decrease in the Young’s modulus of the B2 phase was also found. Factors governing structure and properties evolution of the alloy during HPT were discussed.

1. Introduction

The so-called high entropy alloys (HEAs) attract a lot of attention from the researchers worldwide in recent years [1–4]. According to the original definition, HEAs are the alloys which composed of at least 5 elements in approximately equiatomic proportions [5]. The HEA concept provides enormous capabilities for novel alloys development for advanced applications [4,6]. Many produced HEAs have been considered as promising structural materials due to high strength, ductility, fracture and impact toughness [1,7–12]. One of the particularly attractive features of some HEAs is their high strength at elevated temperatures. For instance, HEAs composed of refractory elements (usually referred to as refractory HEAs) can have the superior specific strength to widely-used Ni-based super-alloys at temperatures up to 1000–1200 °C [13–20].

In most studies, HEAs are examined either in the as-cast condition or after heat treatment. Thermomechanical processing which can eliminate casting defects or refine the microstructure is generally used for highly ductile HEAs, which can be easily processed at room temperature [21–23]. The refractory HEAs usually possess limited ductility at low temperatures [13–20]. The only known exception is the HfNbTaTiZr alloy that can be cold-rolled to high thickness reductions at room temperature [24–27].

Processing of alloys with poor workability at low temperatures can be performed using special metal-working techniques. One of these techniques is high-pressure torsion (HPT) which is attractive due to the following capabilities: (i) processing of even brittle materials at room temperature; (ii) imposing almost unlimited strain; (iii) formation of an ultra-fine grained or even nanocrystalline structure as a result of such severe straining [28]. The application of HPT to various HEAs was already reported in some recent manuscripts [23,29–32]; however, highly-ductile alloys were used in the most studies. Processing of refractory HEAs by HPT is almost unexplored [33,34].

In the present work, we report structure and hardness of the refractory AlNbTiVZr0.5 alloy after HPT processing. The alloy has demonstrated attractive mechanical properties both at room and elevated temperatures [35,36]. The structure of the alloy is composed of the (i) B2 ordered matrix phase and (ii) second Laves phase particles [36]. The effect of HPT on ordered structures or second phases evolution in HEAs has never been reported so far.

2. Materials and methods

The alloy with a nominal composition of AlNbTiVZr0.5 (the subscript indicates the molar fractions of the corresponding element; if the molar fraction is unity the subscript is omitted) was produced by arc
melting of the elements in a low-pressure, high-purity argon atmosphere inside a water-cooled copper cavity. The purities of the alloying elements were no less than 99.9 at%. The size of the produced ingot was \(\approx 6 \times 12 \times 40 \text{ mm}^3 \). The chemical composition of the alloy measured by energy dispersive spectroscopy (EDS) closely corresponded to the nominal chemical composition (Table 1).

The XRD analysis was performed using a RIGAKU diffractometer with \(\alpha \) radiation. A PowderCell software (v. 2.4) was used for the quantitative phase analysis. The obtained XRD data was also used for the calculation of a long-range order parameter (LROP) by comparing intensities of the fundamental and superlattice reflections. A detailed description of the procedure can be found elsewhere [36].

The chemical composition of the structural constituents of the AlNbTiVZr\(_{0.5}\) alloy in the initial (as-cast) condition, a \(\approx 35 ^\circ \text{C} \) and an applied voltage of 29.5 V in a mixture of 600 ml of methanol, 360 ml of butanol and 60 ml of perchloric acid. The TEM examinations were performed using a JEOL JEM-2100 microscope at an accelerating voltage of 200 kV.

Both microhardness measurements and nanoindentation tests were used to study mechanical properties evolution of the AlNbTiVZr\(_{0.5}\) alloy during HPT. The microhardness was measured in a transversal section in 5 different areas: in the central part of the disc and then per 1 mm away from the center. Each of the presented values represents the average of at least 10 measurements. Nanoindentation was performed in a transversal section of the specimens at the half of the radius using a Shimadzu DUH-211 s Dynamic Ultra Micro Hardness Tester with a 136-degree Vickers diamond pyramid under a 50 mN load and a speed 6.6620 mN/s applied for 5 s. Both the Vickers nanohardness and Young’s modulus of constitutive phases were determined during nanoindentation. Specific attention was paid to ensure that the indents were fully located inside the desired phases and did not overlap the other one. Only accurate indentation results were taken for the further consideration. The size of the indents inside the B2 and Laves phases was 2.5–3.3 \(\mu \text{m} \) and 1.4–2.0 \(\mu \text{m} \), respectively. Each of the presented values was the average of at least 5 measurements.

Table 1

The chemical composition of the structural constituents of the AlNbTiVZr\(_{0.5}\) alloy in the initial (as-cast) condition in comparison with the actual chemical composition of the alloy.

<table>
<thead>
<tr>
<th>Element, at%</th>
<th>Al</th>
<th>Nb</th>
<th>Ti</th>
<th>V</th>
<th>Zr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matrix</td>
<td>21.1</td>
<td>22.8</td>
<td>24.8</td>
<td>23.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Second phase particles</td>
<td>27.4</td>
<td>13.2</td>
<td>11.2</td>
<td>21.1</td>
<td>27.1</td>
</tr>
<tr>
<td>Alloy composition</td>
<td>23.4</td>
<td>21.0</td>
<td>22.0</td>
<td>21.7</td>
<td>11.2</td>
</tr>
</tbody>
</table>

3. Results

Fig. 1 shows the structure of the AlNbTiVZr\(_{0.5}\) alloy in the initial (as-cast) condition. The structure was presented by coarse irregularly shaped matrix phase grains (labeled as 1 in Fig. 1a) and almost continuous chains of second phase particles (labeled as 2 in Fig. 1a) separating matrix grains. The average size of the matrix grains was \(\approx 25 \mu \text{m} \), and the average size (thickness) of the second phase particles was \(\approx 2.5 \mu \text{m} \). The volume fraction of the second phase particles was 19%. The results of the EDX analysis demonstrated that the particles were enriched with Al and Zr, and depleted of Nb and Ti (Table 1). The matrix phase had the composition close to the nominal concentrations. The results of the TEM analysis demonstrated that the matrix phase had a B2 ordered structure, while the second phase particles were a C14 (hexagonal) Laves phase (Fig. 1b).

The XRD pattern of the AlNbTiVZr\(_{0.5}\) alloy in the initial (as-cast) condition (Fig. 2a) also demonstrated the presence of two phases: the B2 and C14 Laves phase. Much higher intensity of the B2 diffraction maximums was in agreement with the B2 structure of the matrix phase according to the TEM results (Fig. 1b). The XRD analysis had not revealed any noticeable changes in the phase composition of the AlNbTiVZr\(_{0.5}\) alloy during HPT (Fig. 2a). The qualitative analysis demonstrated that the fractions of the B2 and Laves phases were 86.0 ± 0.3% and 14.0 ± 0.2%, respectively, in all conditions. However, the Bragg peaks belonging to both phases broadened with an increase in the revolutions numbers, most possibly due to both defects generation and...
microstructure refinement during deformation. In addition, the superlattice reflections of the B2 phase obviously weakened with an increase in the number of HPT turns that can be associated with deformation-induced disordering of the B2 phase. A dependence of the long-range order parameter (LROP) on the number of revolutions (Fig. 2b) also clearly demonstrated disordering during deformation. The dependence was non-monotonic: the LROP value rapidly dropped from 0.93 in the initial condition to 0.35 after 1 revolution, and then slowly decreased to 0.19 after 5 turns.

Fig. 3 illustrates the microstructure development in the AlNbTiVZr0.5 alloy during HPT as a function of both the number of turns and the area of examination (the center and the edge of the disc). After ¼ turns the microstructure of the alloy in the center of the disc (Fig. 3a) did not change considerably in comparison with the initial as-cast condition (Fig. 1a). With an increase in strain at the edge of the disc (Fig. 3b) more prominent changes became apparent. The continuous network of the second phase particles broke up, and some of the Laves particles softened (976 HV and 869 HV, respectively) after HPT (the nanohardness in the initial as-cast condition and after 5 HPT revolutions. After the maximum strain superlattice reflections were not observed in the selected area electron diffraction patterns.

The effect of HPT on mechanical properties of the AlNbTiVZr0.5 alloy was evaluated by microhardness measurements (Fig. 6). In the initial as-cast condition the microhardness of the alloy was 540 HV. As expected the microhardness during HPT increased with an increase in both the number of turns and the distance from the center. The hardness increased fast when the number of rotations increased from ¼ to ½ turns and then rather weak changes were observed near the edge (3-4 mm away from the center) with increased strain. However, at the center of the disc the microhardness increased gradually with an increase in the number of turns. Even after 5 rotations, the hardness in the center was noticeably lower (620 HV) than that near the edge (4 mm away from the center - 665 HV).

The individual response of the constitutive phases (the B2 matrix and Laves phase particles) to the HPT processing was characterized using nanoindentation (Fig. 7). Both the Vickers nanohardness (Fig. 7a) and Young’s modulus (Fig. 7b) evolution of the phases drastically differed from each other. Namely, HPT had opposite effects on the nanohardness of the B2 and Laves phases: the B2 matrix became harder after HPT (the nanohardness in the initial as-cast condition and after 5 HPT revolutions was 573 HV and 713 HV, respectively), while the Laves phase particles softened (976 HV and 869 HV, respectively) (Fig. 7a). In both cases, noticeable changes occurred when the number of turns increased from 0 to 1; further increase in strain had a weak effect on the nanohardness. The Young’s modulus of the Laves phase did not change during HPT significantly falling in the range of 128.9-126.1 GPa (Fig. 7b). In contrast the Young’s modulus of the B2 matrix gradually decreased during HPT from 128.5 GPa in the initial

![Fig. 2. Results of the XRD analysis of the AlNbTiVZr0.5 alloy in the initial (as-cast) condition and after HPT with a different number of revolutions (N), a – XRD diffraction patterns, b – long-range order parameter (LROP).](image-url)
4. Discussion

In the present work, the effect of HPT on the structure and mechanical properties of the refractory AlNbTiVZr0.5 HEA was studied. In the initial as-cast condition the alloy was composed of the B2 matrix phase and the Laves phase particles which formed a continuous network (Fig. 1). Although the structure and mechanical properties of HEAs after HPT were rather extensively studied, the majority of the examined alloys had simpler structures mostly consisted of a single random fcc or bcc solid solutions [23,29,33,34,37,38]. Therefore some aspects of the behavior demonstrated by AlNbTiVZr0.5 alloy have never been considered so far.

Two major effects of HPT on the B2 matrix phase structure of the AlNbTiVZr0.5 alloy were observed: (i) significant microstructure refinement with the formation of nano-sized grains/subgrains with an average size of 25 nm (Fig. 5c); (ii) pronounced decrease in the LROP value (Fig. 2b). HPT is known to be an effective tool for microstructure refinement of various materials, including hard-to-deform ones [28]. A number of works [28,39–42] reported the effect of HPT on ordered, intermetallic-based alloys including those with the B2 structure. A common point for both disordered alloys and ordered alloys/intermetallic compounds was a possibility to produce very fine (even nanocrystalline) grains using HPT. The grain size attained in the present study is also comparable to that reported for other refractory HEAs with
a disordered bcc structure like HfNbTaTiZr or AlNbTiV (≈ 50 nm [33,34]). Although disordering of initially ordered alloys due to HPT is also well-known, this phenomenon has never been reported for HEAs. The result of the present work suggests rather similar behavior between HEAs and “usual” ordered alloys, however somewhat faster kinetics of the disordering can be noted in the former case. For example, the LROP in Ni3Al sharply decreased with an increase in the number of revolutions from 0 to 2, and afterward did not change [39]. In our case the AlNbTiVZr0.5 alloy reached the saturation stage already after the first revolution (Fig. 2b). This is probably due to a not perfectly ordered structure (LROP equaled to 0.93) of the initial multicomponent B2 phase of the AlNbTiVZr0.5 alloy (Table 1), where atoms of the one species most probably can occupy the different sites of the lattice [4].

The TEM images can also suggest rather heterogeneous character of the disordering: the superlattice reflections first disappeared in the alloy inside the shear bands (Fig. 5b). Further microstructure evolution in the alloy was associated with the propagation of the shear bands and involvement of the major part of the specimen into deformation thereby decreasing the LROP. A similar phenomenon was earlier reported for the L12 compounds like Cu3Al and Ni3Al [43,44] deformed by HPT. Local disordering in bands (or veins) of in L12 compounds was proposed to be a prerequisite for the nanostructure formation due to increased dislocation mobility in the disordered structure. The inhomogeneity of

Fig. 4. The apparent thickness of the Laves phase particles in the AlNbTiVZr0.5 alloy depending on the number of HPT revolutions (N) in different areas.

Fig. 5. TEM bright-field images of the AlNbTiVZr0.5 alloy microstructure after HPT: a – 0.25 turns; b – 1 turn; c – 5 turns.

Fig. 6. Dependence of the microhardness of the AlNbTiVZr0.5 alloy on the distance from the center of the disc after different numbers of revolutions (N).

Fig. 6. Dependence of the microhardness of the AlNbTiVZr0.5 alloy on the distance from the center of the disc after different numbers of revolutions (N).
the disordering process in the studied AlNbTiVZr0.5 alloy can be the reason why local TEM investigations discovered only disordered bcc phase after 5 revolutions (Fig. 5c) while the XRD pattern taken over much larger area still demonstrated weak superlattice B2 reflection (Fig. 2a).

HPT also significantly affected the Laves phase particles in the AlNbTiVZr0.5 alloy. The initial continuous network of the Laves phase was broken at the initial stages of deformation and then the individual particles underwent significant flattening; the development of both processes resulted in an elongated shape of the Laves phase particles (Figs. 3 and 4). The Laves phase particles morphology changed heterogeneously due to an apparent effect of an imposed strain gradient along the section of the disc [28]. Most likely, the development of the shear bands in the B2 matrix intensified also the fragmentation and flattening of the Laves phase particles.

It should be noted, that some decrease in the thickness of the Laves phase particles can be associated with a stereological factor. A two-dimensional section does not give the true thickness of a lamella lying at an arbitrary angle to the plane of such a section [45,46]. At small strains this angle may be quite large, and the apparent thickness is, therefore, large as well. On the other hand, large strains tend to rotate the lamellae to coincidence with a plane normal to the compression axis (Fig. 3d–f). In such instances the lamellae are close to normal to the section plane, and an axial section does yield a reasonable approximation of the actual platelet thickness.

The presented SEM images (Fig. 3) suggested good strain compatibility between both phases since no signs of cracks/voids were observed at the interphases. This is not surprising since the Young’s moduli values of both phases in the initial as-cast condition were very similar to each other (Fig. 7b). In addition, no changes in fractions or chemical compositions of the phases after HPT were found (Figs. 2a and 4). In many alloys, HPT resulted in phase transformations like dissolution/precipitation of second phases [47,48]. Possibly, suggested “sluggish” diffusion in HEAs [3] makes the structure of the AlNbTiVZr0.5 alloy more stable, however there is not published experimental proves on slower diffusion in refractory HEAs.

Mechanical properties of the AlNbTiVZr0.5 alloy were also significantly affected by HPT. The microhardness measurements revealed typical dependencies: hardness increased with the number of turns until saturation was reached; strengthening occurred much faster at the edge of the disc than in the center (Fig. 7). The latter is associated with the well-known strain gradient along the radii of the HPT-processing discs [28].

The hardening of the alloy is attributed to an increase in hardness of the B2 phase (Fig. 7a) in accordance with the Hall–Petch relationship due to significant microstructure refinement (Fig. 5). On the other hand disordering (Fig. 2b) can result in some softening of the B2 phase [49].

The observed decrease in the Young’s modulus of the B2 phase (Fig. 7b) can also be associated with disordering of the B2 phase (Fig. 2b). This suggestion is in agreement with the results reported in [50,51] where a decrease in the Young’s modulus of ordered compounds like the L12 phase was ascribed to a decrease in the LROP. In addition, it is well established that HPT produces a strong simple shear texture in metals and alloys [52,53]. Changes in texture can also contribute to mechanical properties including elastic modulus of the B2 phase after HPT [54,55].

In turn, the Laves phase particles become softer after HPT (Fig. 7a). Although softening of pure metals and alloys during HPT has been already reported [56,57], the reasons why the Laves phase particles softened after HPT of the AlNbTiVZr0.5 alloy are unclear at the moment and require additional studies.

5. Conclusions

In the present work, the evolution of microstructure and mechanical properties of the AlNbTiVZr0.5 refractory high entropy alloy was studied. Following conclusions were drawn.

1) The AlNbTiVZr0.5 alloy produced by arc melting was composed of coarse grains of the B2 ordered matrix phase separated by a network of the C14 Laves phase particles. The Laves phase particles were enriched with Al and Zr and depleted of Ti.

2) The HPT processing resulted in refinement of the as-cast structure of the AlNbTiVZr0.5 alloy. For instance, the average size of grains/subgrains of the B2 matrix after 5 turns was 25 nm. The formation of the nanocrystalline structure was primarily attributed to shear banding. The network of the Laves phase was broken and the individual particles become much thinner in comparison with the initial condition. In addition to microstructure refinement, pronounced disordering of the B2 phase occurred. Disorder progressed locally and was associated with propagation of shear bands.

3) The microhardness of the AlNbTiVZr0.5 alloy increased from 550 HV to maximum of 665 HV after 5 HPT rotations. Measurements of the nanohardness of individual phases had revealed that the hardness increased due to structure refinement of the B2 phase while the Laves phase became softer during HPT. A pronounced decrease in the Young’s modulus of the B2 phase from 128.5 GPa in the initial
condition to 106.7 GPa after 5 rotations was found. The change of the elastic modulus was primarily attributed to disordering of the B2 phase.

Acknowledgements

The authors gratefully acknowledge the financial support from the Russian Science Foundation Grant No. 14-19-01104. The authors are grateful to the personnel of the Joint Research Center, eTechnology and Materials, Belgorod State University, for their assistance with the instrumental analysis. The authors are also grateful to Dr. M.A. Tikhonovsky for supplying the ingot of the investigated alloy.

References

