_____ ФИЗИЧЕСКАЯ _____ ХИМИЯ

УДК 669.15-194.55

ПРИЧИНЫ ВЫСОКОГО СОПРОТИВЛЕНИЯ ПОЛЗУЧЕСТИ СОВРЕМЕННЫХ ВЫСОКОХРОМИСТЫХ СТАЛЕЙ МАРТЕНСИТНОГО КЛАССА

© 2015 г. В. А. Дудко, А. Н. Беляков, Р. О. Кайбышев

Представлено академиком РАН В.М. Счастливцевым 25.12.2014 г.

Поступило 26.03.2015 г.

В работе обсуждены причины высокой жаропрочности мартенситных сталей с 9% Сг на основании результатов исследования эволюции дислокационной структуры мартенсита в стали 10Х9В2МФБР в процессе ползучести при 650°С. Структура стали после отпуска характеризовалась значительными упругими микродеформациями кристаллической решетки, источником которых были дислокации с одинаковым знаком и дальнодействующие напряжения от дисклокационных границ реек. Повышенное сопротивление ползучести в жаропрочных сталях, содержащих 9% Сг, достигается благодаря действию как пороговых напряжений от карбонитридов M(C,N), так и от внутренних упругих напряжений.

DOI: 10.7868/S0869565215250131

Уникально высокая жаропрочность современных высокохромистых сталей мартенситного класса типа 10Х9В2МФБР при температурах до 650°С достигается комплексным легированием, которое обеспечивает устойчивость дислокационной структуры мартенсита при отпуске и ползучести благодаря твердорастворному и дисперсионному упрочнению [1, 2]. При отпуске в ферритной матрице сталей этого типа однородно выделяются карбонитриды M(C,N), а по границам реек, пакетов и бывших аустенитных зерен – карбиды М₂₃С₆ [1-3]. Именно введение карбонитридов размером от 10 до 30 нм в стали мартенситного класса с 9% Сг и 1% Мо позволило повысить температуру их эксплуатации на 100°С [2]. До настоящего времени считали [2, 3], что уникально высокая жаропрочность связана с тем, что карбонитриды подавляют миграцию границ реек. Однако в работе [1] было установлено, что наибольший вклад в суммарную силу, тормозящую миграцию границ, вносят зернограничные карбиды, тогда как зинеровская сила торможения от частиц M(C, N) в несколько раз меньше. Соответственно подавление миграции границ реек за счет зернограничных частиц не может быть причиной рекордной жаропрочности стали 10Х9В2МФБР, поскольку их удельный объем такой же, как в стали Р9 (0.1 мас. %C-9Cr-1Mo), которая может эксплуатироваться только до 520°С [2]. Цель настоящей работы — установить роль карбонитридов в ползучести стали 10Х9В2МФБР.

В работе впервые показано, что высокая жаропрочность сталей мартенситного класса типа 10Х9В2МФБР обусловлена тем, что наноразмерные частицы M(C, N) эффективно тормозят движение дислокаций при ползучести и предотвращают трансформацию дислокационных границ реек, которые являются источниками дальнодействующих полей упругих напряжений, в субзеренные границы. Таким образом, торможение дислокаций при ползучести обеспечивается одновременным действием двух механизмов, связанных с взаимодействием движущихся дислокаций с дисперсными частицами и полями упругих напряжений. До настоящей работы ни в одном материале не наблюдали одновременного действия двух механизмов пороговых напряжений. Именно высокие пороговые напряжения обеспечивают уникальное сопротивление ползучести сталей типа 10Х9В2МФБР. Представленный анализ существенно расширяет современные представления о физических механизмах прочности теплотехнических сталей.

В работе была исследована сталь 10Х9В2МФБР (Fe-0.1 мас. %C-0.17Si-0.54Mn-8.75Cr-0.21Ni-0.51Mo-1.60W-0.23V-0.07Nb). Термическая обработка состояла из нормализации от $1050 \pm 10^{\circ}$ С и последующего отпуска в течение 3 ч при 720 ± $\pm 10^{\circ}$ С. Детали методик испытаний на ползучесть и микроструктурных исследований описаны в работах [1, 4, 5].

Белгородский государственный национальный исследовательский университет E-mail: dudko@bsu.edu.ru

Daga Hanawarn	Отпуск	Степень деформации			
wasa, napamerp		1%	4%	8%	18%
Фаза Лавеса:					
размер, нм	—	215 ± 32	286 ± 43	313 ± 47	303 ± 47
доля, об. %	—	1.17	1.17	1.17	1.17
$Me_{23}C_6$:					
размер, нм	110 ± 25	140 ± 33	169 ± 39	158 ± 9	195 ± 39
доля, об. %	1.79	1.79	1.79	1.79	1.79
MeX:					
размер, нм	31 ± 15	31 ± 16	42 ± 9	36 ± 8	46 ± 24
доля, об. %	0.23	0.23	0.23	0.23	0.23
Поперечный размер реек (субзерен), нм	330 ± 25	330 ± 25	430 ± 60	710 ± 20	740 ± 50
Плотность дислокаций, $10^{14} \mathrm{m}^{-2}$	6.2 ± 0.7	3.6 ± 1.2	2.2 ± 0.7	1.0 ± 0.4	1.0 ± 0.4
Средняя разориентировка границ реек	2.7	2.6	2.1	2.3	2.7

Таблица 1. Параметры микроструктуры стали 10Х9В2МФБР после отпуска при 720°С и после ползучести при 650°С до различных степеней деформации

Параметры микроструктуры после отпуска и различных степеней деформации при 650°С и напряжении 118 МПа [1, 4] приведены в табл. 1. Несмотря на постепенный рост поперечного размера реек при ползучести, их средняя разориентировка не изменяется. Следовательно, дислокации, которые захватываются этими границами в процессе ползучести [6], взаимно аннигилируют.

Зависимости скорости деформации от напряжения при 650°С показаны на рис. 1. В интервале

Рис. 1. Зависимость скорости деформации от степени деформации в стали 10Х9В2МФБР при 650°С.

степеней деформации от 1 до 4% достигается минимальная скорость деформации (έ_{min}) при всех напряжениях. Анализ зависимости є́ min от приложенного напряжения (σ) показал, что она подчиняется степенному закону [2]: $\dot{\varepsilon}_{\min} = A(\sigma - \sigma_{th})^n$, где σ_{th} – пороговое напряжение, n – истинный показатель степени при напряжении. Этот закон описывает поведение при ползучести материалов, в которых пороговые напряжения препятствуют движению дислокаций. Рассчитанные величины n = 5.5 и $\sigma_{th} = 88$ МПа указывают на то, что сталь эксплуатируется в режиме горячей деформации, а ее высокое сопротивление ползучести обеспечивается исключительно присутствием пороговых напряжений. Величина пороговых напряжений несколько больше допустимых напряжений в этой стали для ресурса 10⁵ ч, что уникально для жаропрочного материала [2].

Обычно источником пороговых напряжений являются дисперсные частицы. В сталях типа $10X9B2M\Phi 5P$ карбиды $M_{23}C_6$ и фаза Лавеса расположены преимущественно по границам и не могут служить препятствием для подвижных дислокаций. Поэтому источником пороговых напряжений могут быть только частицы M(C, N). Величины теоретических пороговых напряжений, рассчитанные по известным моделям [7], приведены в табл. 2 вместе с экспериментально определенными значениями. Однако в высокохромистых сталях мартенситного класса в отличие от других жаропрочных материалов присутствуют внутренние упругие напряжения [2]. Они также могут тормозить движение дислокаций.

Касательные напряжения (τ_{lath}) внутри отдельных реек, которые связаны с упругим искажени-

ДОКЛАДЫ АКАДЕМИИ НАУК том 464 № 1 2015

ε, % Напряжени Орована	Напряжение	Локальное	Напряжение отрыва	Внутреннее напряжение		Экспериментальное
	Орована	переползание		ПЭМ	РСА	пороговое напряжение*, т _{th}
0	62	19	51	76	66	_
1	62	19	51	49	47	51
4	62	19	38	43	34	_
8	53	16	44	40	26	-
18	42	13	34	22	22	-

Таблица 2. Пороговые напряжения (МПа), рассчитанные по различным моделям, а также величины внутренних напряжений, определенных различными методами

*Приведены касательные напряжения $\tau_{th} = \sigma_{th} / \sqrt{3}$.

ем кристаллической решетки, были рассчитаны по уравнению $\tau_{lath}/G = 0.35t\theta/l_{\tau}$, где t – толщина фольги, θ – угол разориентировки между двумя точками внутри рейки, определенный методом линий Кикучи в сходящемся электронном пучке на просвечивающем электронном микроскопе (ПЭМ), и l_{τ} – расстояние между точками внутри рейки, в которых определена ориентировка [8]. Средние величины внутренних напряжений после отпуска и деформации до 1, 4, 8, 18% при 650°С и начальном напряжении 118 МПа приведены на рис. 2 вместе с напряжениями, определенными методом рентгеноструктурного анализа (PCA).

Главным источником внутренних напряжений служат отдельные дислокации внутри реек и дислокационные границы реек. При ползучести происходит перестройка дислокаций в границах реек, что приводит к их трансформации в совершенные субзеренные границы, которые имеют низкие дальнодействующие напряжения или не имеют их совсем. Эта трансформация объясняет неизменность их разориентировки с увеличением степени деформации. Одновременно взаимная аннигиляция решеточных дислокаций с противоположными векторами Бюргерса уменьшает их плотность (табл. 1). Развитие этих двух процессов приводит к уменьшению дальнодействующих упругих напряжений (рис. 2). Карбонитриды M(C,N), блокируя движение дислокаций внутри реек и их перераспределение в границах реек, препятствуют этой трансформации, в то время как зернограничные частицы М₂₃С₆ и фаза Лавеса могут только сдерживать миграцию субзеренных границ и замедлять перестройку границ реек в субзеренные границы.

Таким образом, главной причиной высокой жаропрочности являются пороговые напряжения, связанные как с наличием в структуре стали карбонитридов M(C, N), так и с внутренними упругими напряжениями. Величины напряжений отрыва и внутренних напряжений, измеренных методами PCA и ПЭМ, близки к пороговым на-

пряжениям τ_{th} (табл. 2). Вероятно, действия напряжений этих двух типов торможения движущихся дислокаций происходят параллельно, внося совместный вклад в жаропрочность. Стали мартенситного класса могут сопротивляться ползучести до тех пор, пока карбонитриды M(C, N) тормозят движение дислокаций и соответственно препятствуют релаксации внутренних напряжений из-за перестройки дислокаций в границах реек и уменьшения плотности решеточных дислокаций.

Авторы выражают благодарность центру коллективного пользования "Диагностика структуры и свойств наноматериалов" НИУ БелГУ за оборудование, предоставленное для проведения структурных исследований.

Исследование поддержано грантом Российского научного фонда (проект 14–29–00173).

Рис. 2. Зависимость внутренних напряжений от степени деформации.

СПИСОК ЛИТЕРАТУРЫ

- 1. Dudko V., Belyakov A., Molodov D., Kaibyshev R. Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct. Cr Heat Resistant Steel During Creep // Metal. Mat. Trans. A. 2013. V. 44. P. 162– 172.
- Кайбышев Р.О., Скоробогатых В.Н., Щенкова И.А. Новые стали мартенситного класса для тепловой энергетики. Жаропрочные свойства // ФММ. 2009. Т. 108. № 5. С. 1–15.
- Kostka A., Tak K.-G., Hellmig R.J., Estrin Y., Eggeler G. On the Contribution of Carbides and Micrograin Boundaries to the Creep Strength of Tempered Martensite Ferritic Steels // Acta mater. 2007. V. 55. P. 539– 550.

- Дудко В.А., Беляков А.Н., Скоробогатых В.Н., Кайбышев Р.О. Структурные изменения в жаропрочной стали 10Х9В2МФБР в процессе ползучести при 650°С // МиТОМ. 2010. № 3 (657). С. 26–32.
- Zaefferer S. Computer-Aided Crystallographic Analysis in the TEM // Adv. Imaging and Electron Phys. 2002. V. 125. P. 355–415.
- Pantleon W. On the Statistical Origin of Disorientations in Dislocation Structures // Acta mater. 1998. V. 46. P. 451–456.
- Mohamed F.A., Park K.-T., Lavernia E.J. Creep Behaviour of Discontinuous SiC-Al Composites // Mater. Sci. Eng. A. 1992. V. 150. P. 21–35.
- Belyakov A., Tsuzaki K., Kimura Y., Mishima Y. Tensile Behaviour of Submicrocrystalline Ferritic Steel Processed by Large-Strain Deformation // Phil. Mag. Lett. 2009. V. 89. P. 201–212.