ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.15-194.55:539.4.015

МЕХАНИЧЕСКИЕ СВОЙСТВА И МИКРОСТРУКТУРА СВАРНОГО СОЕДИНЕНИЯ МАРТЕНСИТНОЙ ЖАРОПРОЧНОЙ СТАЛИ С 9% Cr

© 2016 г. Я. Э. Шахова*, А. Н. Беляков, Р. О. Кайбышев

*ФГАОУ ВПО "Белгородский государственный национальный исследовательский университет", 308015 Белгород, ул. Победы, 85

e-mail: shakhova@bsu.edu.ru Поступила в редакцию 18.06.2015 г.; в окончательном варианте – 23.10.2015 г.

Изучены структура и механические свойства сварного соединения стали 10Х9К3В2МФБР (в мас. % 0.097С; 0.17Si; 0.54Mn; 8.75Сr; 0.21Ni; 0.51Mo; 0.07Nb; 0.23V; 0.004N; 0.003B; 1.6W; 0.15Cu, остальное – Fe), полученного ручной сваркой в среде аргона с использованием сварочной проволоки 03Х20H45M7Г6Б (в мас. % 0.3C; 20Cr; 45Ni; 7Mo; 6Mn; 1Nb). Сварное соединение разделяется на зоны основного металла, термического влияния (3TB), которую, в свою очередь, можно разделить на зоны с крупным и мелким исходным аустенитным зерном, а также металла шва (МШ). Показано, что сварное соединение стали 10Х9К3В2МФБР обладает высокими прочностными свойствами при комнатной температуре при статическом нагружении и удовлетворительной ударной вязкостью, которая минимальна в МШ ($30 \, \text{Дж/см}^2$) и не зависит от температуры. При понижении температуры от комнатной до 253 K в 3TB имеет место хрупко-вязкий переход. Испытания на ползучесть при температуре 923 K показали, что долговременная прочность сварного шва ниже, чем основного материала при всех изученных напряжениях. Ускорение ползучести в сварном шве наблюдается при напряжениях 140 МПа и выше, а при малых напряжениях 120 МПа скорость ползучести в сварном шве и основном металле одинакова до перехода на стадию ускоренного разрушения; разница в долговременной прочности связана с преждевременным разрушением в мелкозернистой 3TB.

Ключевые слова: мартенситная сталь, сварное соединение, механические свойства, ползучесть, ударная вязкость, фрактография.

DOI: 10.7868/S0015323016040136

введение

Стали с 9% Сг используют для изготовления высокотемпературных трактов котлов и паропроводов угольных энергоблоков, работающих при температуре пара до 893 К, поскольку они обладают уникально высокой жаропрочностью [1, 2]. Одним из основных недостатков этих сталей является низкая, по сравнению с основным материалом (OM), долговременная прочность сварных швов, обусловленная преждевременным разрушением в зоне термического влияния (ЗТВ) [1, 3-8]. Соответственно, сопротивление ползучести сварного соединения не может быть увеличено подбором материала электродов. Основным способом повышения долговременной прочности сварного шва является дополнительное легирование OM, которое подавляет нежелательные структурные изменения в ЗТВ при сварке и последующей термической обработке [1, 3, 9-13]. Наиболее распространенной модификацией химического состава 9% Cr сталей, направленной на повышение сопротивления ползучести сварных швов, является увеличение содержания бора при дополнительном легировании 3% Со [14–16]. Положительный эффект В и Со на долговременную прочность 9% Сг сталей обусловлен их влиянием на размер аустенитных зерен и распределение зернограничных карбидов $M_{23}C_6$ по различным типам границ в 3ТВ при послесварочной термической обработке (ПСТО) [9–13].

Микроструктура сварного соединения состоит из ОМ, ЗТВ, которую условно можно разделить на крупнозернистую и мелкозернистую, а также металла шва (МШ) [1]. Структура ОМ представляет собой структуру мартенсита отпуска с размером исходных аустенитных зерен (ИАЗ) от 12 до 40 мкм [1, 2, 14, 17], а структура МШ определяется типом сварочной проволоки. Как и в других сталях и сплавах [18], прочность сварного соединения в 9% Сг сталях определяется ЗТВ, в которой можно выделить несколько зон [1, 3]. Вблизи МШ в ЗТВ температура намного больше A_{C3} ; формируется структура похожая на структуру, образующуюся в результате отжига при температу-

рах 1323-1373 К. Эта зона обозначается как область крупных ИАЗ (КИАЗ) [1, 3]. После ПСТО структура в ней близка к структуре ОМ и отличается от нее только увеличенным размером ИАЗ [1, 3]. Зона КИАЗ имеет наивысшую твердость и низкую ударную вязкость. Наименьшее сопротивление ползучести из всех зон сварного шва имеет зона мелких ИАЗ (МИАЗ), которая примыкает к ОМ [1, 3]. В то же время кратковременная прочность и ударная вязкость в этой зоне близка к аналогичным свойствам ОМ [1, 3]. Зона МИАЗ образуется в результате нагрева выше А_{С3} на 100-200 К в зависимости от режимов сварки и последующей скорости охлажления. Считается, что аустенизация в 9-12% Cr сталях при этих температурах происходит в результате диффузионного превращения, что приводит к образованию мелких аустенитных зерен, рост которых эффективно сдерживается карбидами M₂₃C₆ [14, 19]. При нагреве в процессе сварки все карбиды М₂₃С₆, располагавшиеся по границам пакетов, блоков и реек мартенсита [4, 9, 10, 20], растворяются, а при последующей ПСТО, которая представляет собой отпуск при температурах от 1003 до 1023 К, происходит только рост существующих карбидов $M_{23}C_6$ за счет выделения из твердого раствора Cr, Fe, W, C. Соответственно, в зоне МИАЗ внутри ИАЗ эти карбиды либо не выделяются вообще, либо их доля незначительна [10]. При долговременной ползучести миграция малоугловых границ, которая не сдерживается зернограничными карбидами M₂₃C₆, приводит к трансформации дислокационной структуры мартенсита в субзеренную структуру [14, 19]. Зона МИАЗ утрачивает возможность сопротивляться ползучести. И происходит преждевременное разрушение по IV механизму (рис. 1) [1, 3, 21].

Кроме этих областей, в ЗТВ присутствует очень узкая область неполной трансформации в межкритическом интервале [22–24]. В ней $\alpha \rightarrow \gamma$ -превращение происходит по сдвиговому механизму, что приводит к полному восстановлению ИАЗ; растворение карбидов M₂₃C₆ внутри аустенитных зерен не происходит [9, 10]. После сварки и ПСТО структура этой зоны отличается от ОМ только меньшим размером ИАЗ. Таким образом, слабым местом в ЗТВ является зона МИАЗ, в которой размер ИАЗ в 3-10 раз меньше, чем в ОМ, и, кроме того, отсутствуют карбиды M₂₃C₆ по границам пакетов, блоков и реек. В ней не формируется дислокационная структура мартенсита с выделившимися по границам карбидами, которая сохраняет стабильность при долговременной ползучести [1, 2, 14, 15, 17, 19]. В остальных частях ЗТВ наблюдается характерная структура отпущенного мартенсита [1, 2, 20].

В теплотехнических сталях в отличие от конструкционных материалов, эксплуатируемых при

Рис. 1. Схематическое изображение типов разрушения в сварных соединениях 9–12% Сг сталях [1, 3]: ОМ – основной металл; ЗТВ – зона термического влияния, МШ – металл шва.

комнатной температуре, относительная прочность сварного соединения определяется не по кратковременным статическим свойствам, а по испытаниям на долговременную прочность, для которых характерны четыре типа разрушения (рис. 1) [1, 3]. Трещины I и II типов образуются в зоне МШ поперек и вдоль сварного шва. Это горячие трещины, которые могут появляться при аргонно-дуговой сварке с присадочной проволокой из аустенитных сталей и сплавов при большой силе тока. Использование многослойной сварки позволяет практически полностью избавиться от этого дефекта в высокохромистых сталях [1, 3].

Трещины III типа образуются в зоне КИАЗ или переходной области (рис. 1) при послесварочном отпуске или эксплуатации с повышенными нагрузками и температурой [1, 3]. Этот тип разрушения диагностируется по катастрофическому падению пластичности, при уменьшении относительного сужения <10% [1, 3]. Его механизм остается во многом непонятным [1, 3]. Считается, что он может быть связан либо с релаксацией больших внутренних напряжений, связанных с различием коэффициентов термического расширения и деформационных характеристик МШ и ЗТВ, либо обусловлен большими различиями в сопротивлении ползучести разных участков переходной зоны или зоны КИАЗ [1, 3]. Однако наиболее вероятным представляется, что этот тип разрушения является результатом образования крупных пор по границам крупных ИАЗ на зернограничных частицах в результате отсутствия аккомодации зернограничного проскальзывания с последующим распространением трещин по механизму межзеренного разрушения.

Основным типом разрушения для сварных швов высокохромистых сталей при ползучести с низкими приложенными напряжениями (<130 МПа) является IV тип: появление и распространение трещины происходит либо в зоне МИАЗ, либо в межкритической зоне (рис. 1). Эти зоны имеют наименьшее сопротивление ползучести, что приводит к локализации в них деформации [1, 3, 21]. Механизм распространения трещин IV типа может быть как внутризеренный, так и межзеренный.

Главная цель данной работы — определение свойств сварного соединения оригинальной российской стали 10Х9К3В2МФБР [14], созданной на базе широко распространенной стали Р92 [1, 2] за счет дополнительного легирования 3% Со. Второй целью является изучение структуры сварного соединения и влияния разных зон сварного соединения на механические свойства и механизмы разрушения при статическом нагружении, испытаниях на ударную вязкость и долговременную прочность.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Исследования были выполнены на одностороннем стыковом сварном шве трубы главного паропровода из стали 10Х9К3В2МФБР (в мас. % 0.097C; 0.17Si; 0.54Mn; 8.75Cr; 0.21Ni; 0.51Mo; 0.07Nb; 0.23V; 0.004N; 0.003B; 1.6W; 0.15Cu, остальное – Fe) производства Челябинского Тракторного Завода, г. Челябинск, РФ. Сварное соединение было выполнено ОАО "Таганрогский котлостроительный завод "Красный котельщик", г. Таганрог. РФ методом ручной аргонно-дуговой сварки с нерасходуемым вольфрамовым электродом на постоянном токе с напряжением 10-14 В, расходом аргона 8–12 л/мин, со сварочной проволокой 03Х20Н45М7Г6Б и предварительным и сопутствующим сварке подогревом трубы до 473-593 К. После сварки сварное соединение охлаждалось до 373 К под теплоизоляцией с последующим нагревом с печью от 353 до 1023 К со скоростью не выше 100 К/час. Время послесварочного отпуска составило 3 ч, затем соединение охлаждали до температуры 573 К со скоростью аналогичной скорости нагрева.

Измерение микротвердости по сечению сварного соединения проводили на полированных образцах с использованием микротвердомера AFRI DM-8B AUTO с нагрузкой 300 г и шагом измерения 100 мкм. Испытание на растяжение проводили на поперечных плоских образцах с длиной рабочей части 35 мм и поперечным сечением 3 × 7 мм² на универсальной испытательной машине Instron 5882 при температурах 293, 873 и 923 К со скоростью деформирования 2 мм/мин. Нагрев образцов осуществляли в трехсекционной печи с точностью поддержания температуры ±2 К. Перед проведением испытаний образцы выдерживали в печи в течение 15 мин при температуре испытания. Испытания на ударную вязкость сварного соединения проводили на стандартных образцах квадратного сечения 10×10 мм² и длиной 55 мм, с V-образным концентратором напряжений с использованием маятникового копра Instron IMP 460 при температурах 293, 273, 263, 253 К. Для определения ударной вязкости в разных частях сварного соединения V-образный концентратор напряжений располагали при вырезке образцов в зонах ОМ, МШ и ЗТВ. Испытания на ползучесть сварного соединения проводили до разрушения при температуре 923 К и приложенных напряжениях 160. 140 и 120 МПа с использованием машины рычажного типа ATS 2330 на поперечных плоских образцах с длиной рабочей части 25 мм и сечением 7 × 3 мм², изготовленных согласно стандарту ASTM E139-00.

Структурные и фрактографические исследования после механических испытаний проводили с использованием сканирующего электронного микроскопа (РЭМ) FEI Quanta 600F, оборудованного приставкой для анализа дифракции обратно-рассеянных электронов (EBSD) с автоматической системой для анализа ориентировок. Фольги для просвечиваюшего электронного микроскопа (ПЭМ) были изготовлены методом струйной электрополировки в растворе 10% хлорной кислоты в уксусной кислоте. Размеры реек/субзерен были измерены по фотографиям, сделанным с помощью ПЭМ, методом секущих. Плотность дислокаций была определена путем подсчета отдельных дислокаций внутри зерен/субзерен по 6 произвольно выбранным фотографиям с ПЭМ на каждую точку. Остальные детали структурных исследований были приведены в работах [14, 15, 17, 18].

Дилатометрия была выполнена с использованием прибора Netzsch модели DIL 402С на образцах в форме прутка длиной 25 мм и диаметром 6 мм при скорости нагрева 5 К/мин.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Структура. Микроструктура различных зон сварного шва и распределение микротвердости по поперечному сечению сварного соединения представлены на рис. 2. Четко выделяются три зоны: МШ, ЗТВ, ОМ. Хорошо различимая дендритная структура наблюдается в МШ (рис. 26). Микротвердость этой зоны самая низкая (рис. 2а). Граница между МШ и ЗТВ четко выраженная, переходная зона жидкость-твердое тело [19] отсутствует,

Рис. 2. Распределение микротвердости по сечению сварного соединения стали 10Х9К3В2МФБР (а) и микроструктура металла шва (МШ) (б), зоны термического влияния (3ТВ) (в, г, д), основного металла (ОМ) (е).

включения δ-феррита вблизи нее в ЗТВ не выявляются (рис. 2в).

В ЗТВ наблюдается увеличение микротвердости от границы, примыкающей к МШ, к границе, примыкающей к ОМ. Причем вблизи последней микротвердость равна ~220 HV, что несколько ниже микротвердости ОМ (~230 HV). Области МИАЗ и КИАЗ структурно различимы, поскольку размер ИАЗ варьируется от 5 до 30 мкм (рис. 2в-2д). Отдельная межкритическая зона не выявляется (рис. 2г, д). В зоне КИАЗ формируется типичная структура пакетного мартенсита (рис. 2в, 2г, 3г) [20] Толщина зоны МИАЗ составляет ~2 мм. Доля мелких ИАЗ с размером ~5 мкм в зоне МИАЗ возрастает с увеличением расстояния от ОМ в направлении МШ от 1-2 до 30% (рис. 2д). Форма и размер мелких ИАЗ примерно соответствует аналогичным параметрам мартенситного пакета [20] в этой стали [14]. Особенностью всех мелких ИАЗ является пониженная плотность дислокаций (рис. 3б, 3в) по сравнению с ОМ (рис. 3а) и преобладание субзеренной структуры вместо таких элементов пакетного мартенсита как пакеты, блоки, рейки [1, 2, 14, 15, 18, 20] (рис. 3б, 3в).

Полунепрерывные цепочки карбидов М₂₃С₆ наблюдаются, главным образом, вдоль исходных аустенитных границ, хотя на некоторых субзеренных границах они тоже присутствуют (рис. 3б). Следует отметить, что количество карбидов M₂₃C₆ внутри крупных и мелких ИАЗ примерно одинаковое, а плотность этих карбидов по границам ИАЗ в зоне КИАЗ существенно выше. Влияния температуры нагрева в ЗТВ на распределение по объему и размер карбонитридов М(С,N) выявлено не было. В ОМ наблюдается типичная структура отпущенного мартенсита (рис. 2е, 3а) [1, 14-18], которая характеризуется высокой плотностью решеточных дислокаций и выделением карбидов M₂₃C₆ по границам блоков и даже отдельных реек (рис. 3а). Размер ИАЗ в зоне КИАЗ примерно в два раза больше, чем в ОМ (рис. 3а, 3г).

Механические свойства сварного соединения

Типичные кривые растяжения стали 10Х9К3В2МФБР и ее сварного соединения при

Рис. 3. Тонкая структура сварного шва: (а) ОМ; (б, в) зона МИАЗ; (г) зона КИАЗ.

трех температурах приведены на рис. 4, механические свойства обобщены в табл. 1. При комнатной температуре в ОМ наблюдается деформационное упрочнение, которое переходит в стадию кажущегося установившегося течения с последующей локализацией пластической деформации в шейке. В поперечных сварных образцах деформационное упрочнение имеет место вплоть до разрушения, которое происходит без локализации пластического течения по сварному шву. Т.е., прочность ЗТВ и МШ примерно одинакова, поперечные сварные образцы деформируются без образования шейки.

Этими различиями в механическом поведении объясняется разница в относительном сужении почти в 13 раз между сварным соединением и ОМ. Следует отметить, что очень низкое относительное сужение сварных образцов коррелирует с очень

Рис. 4. Влияние температуры на инженерные кривые (диаграммы растяжения) σ - ε для стали 10Х9К3В2МФБР (а) и ее сварного соединения (б).

высоким равномерным удлинением и не связано с низким сопротивлением хрупкому разрушению. Более того, равномерное удлинение у сварного соединения почти в 2 раза выше, чем у ОМ.

Таблица 1. Механические свойства стали 10Х9К3В2МФБР и ее сварного соединения при испытаниях в поперечном направлении при 293, 873 и 923 К. σ_{0.2} – условный предел текучести, σ_в – временное сопротивление, δ – удлинение, φ – относительное сужение

	Температура испытания, К	Условный пре- дел текучести, $\sigma_{0.2}$ МПа	Предел прочности, σ _в , МПа	Равномерное удлинение, $\epsilon_{\rm U}, \%$	Относитель- ноеудлинение, δ, %	Относитель- ное сужение, ф, %
Сварное соедине- ние стали 10Х9К3В2МФБР	293	400	725	11.0	11.5	5.1
	873	305	410	1.7	8.0	79.9
	923	240	300	0.7	9.7	83.5
Сталь 10Х9К3В2МФБР	293	670	805	6.2	12.8	67.5
	873	415	435	0.6	12.6	83.9
	923	320	335	0.	16.5	87.2

Повышение температуры испытаний меняет тип кривых σ–ε как в OM, так и в поперечных сварных образцах. Для обоих типов образцов после короткой стадии упрочнения наблюдается длительная стадия разупрочнения, которая переходит в ускоренное разрушение после образования шейки. Равномерное удлинение уменьшается почти в 10 раз. В поперечных сварных образцах характеристики прочности ниже, а стадия деформационного упрочнения короче по сравнению с OM. Разрушение наступает в результате образования шейки в 3TB, поскольку прочность МШ оказывается выше.

Коэффициент прочности сварного соединения определяли по стандартной методике по отношению $\sigma_{\rm в}/\sigma_{\rm воМ}$. Отметим, что коэффициент прочности сварного соединения ≥ 0.9 при всех температурах, в то время как отношение условных пределов текучести поперечных образцов и образцов ОМ варьируется от 0.60 при 293 К до 0.75 при повышенных температурах (табл. 2). Следует отметить, что сварка слабо влияет на относительное удлинение, которое остается достаточно высоким >10% при комнатной температуре и снижается при повышенных температурах, что связано с локализацией деформации в 3ТВ (рис. 4, табл. 1).

Ударная вязкость сварного соединения

Результаты испытаний по определению ударной вязкости различных зон сварного соединения показаны на рис. 5. Видно, что наименьшая ударная вязкость наблюдается в образцах, у которых надрез расположен в МШ. Величина КСV этих образцов составляет около 30 Дж/см² и не зависит от температуры. Эта величина КСV соответствует минимальным требованиям, предъявляемым к ударной вязкости сварных соединений труб в конструкциях энергоблоков тепловых электростанций [25].

В ЗТВ наблюдается хрупко-вязкий переход (ХВП) при уменьшении температуры от 293 до 253 К (рис. 5). Полученные значения ударной вязкости для данного сварного соединения близки к аналогичным величинам для стали Р92, в которой сварка была выполнена с использованием присадочной проволоки из высокохромистой стали мартенситного класса [26], и существенно ниже, чем в ОМ близких по составу 9% Сг сталей [27]. Таким образом, сварка приводит к охрупчиванию стали 10Х9КЗВ2МФБР.

Сопротивление ползучести сварного соединения

Кривые ползучести для стали 10Х9К3В2МФБР и ее сварного соединения при 923 К представлены на рис. 6. Сварка уменьшает время до разрушения при всех приложенных напряжениях. Однако, характер ее влияния на ползучесть сильно зависит

Таблица 2.	Коэфициен	нт прочности си	варного	соединен	ИЯ
после меха	нических и	спытаний при 2	293, 873	и 923 К	

Температура испытания,	Коэффициен сварного с	Место		
K	$\sigma_{0.2}/\sigma_{0.2OM}$	$\sigma_{_B}\!/\sigma_{_BOM}$	разрушения	
293	0.60	0.90	ΜШ	
873	0.73	0.94	3TB	
923	0.75	0.90	3TB	

от приложенных напряжений. При 140 МПа и выше наблюдается существенное ускорение ползучести, минимальная скорость ползучести, $\dot{\epsilon}_{min}$, уменьшается в 20–10 раз, а степень деформации, $\epsilon_{cut-off}$, при которой достигается эта скорость, уменьшается в 1.5 раза. Это связано с тем, что на переходной стадии ползучести образцы, вырезанные из сварных швов, демонстрируют меньшее падение скорости ползучести с увеличением степени деформации по сравнению с ОМ. Сварка многократно ускоряет наступление стадии ускоренного разрушения.

Разрушение происходит по ОМ. При 120 МПа ситуация иная. Поведение ОМ и образцов, вырезанных из сварного шва, на переходной стадии ползучести идентично. Отличия наблюдаются только на стадии ускоренного разрушения: в сварных образцах после достижения $\dot{\varepsilon}_{min}$ на стадии ускоренного разрушения скорость деформации увеличивается значительно быстрее, чем в ОМ. Соответственно время до разрушения уменьшается в 2 раза, что является обычной разницей между ОМ и сварным соединением [1, 3–13]. Разрушение происходит в ЗТВ.

Рис. 5. Зависимость ударной вязкости сварного соединения стали 10Х9К3В2МФБР от температуры испытания: *1* – металл шва, *2* – зона термического влияния.

2016

Рис. 6. Зависимость степени деформации сварного соединения стали 10Х9К3В2МФБР (а, в) и образцов стали 10Х9К3В2МФБР (б, г) от времени (а, б) и скорости деформации от степени (в, г) при приложенных напряжениях: *1* – 120 МПа, *2* – 140 МПа, *3* – 160 МПа.

Фрактография

Изломы образцов стали 10Х9К3В2МФБР и ее сварного соединения после растяжения при 293, 873 и 923 К представлены на рис. 7. Поскольку при комнатной температуре разрушение в стали и в сварном соединении (МШ) происходит в областях со структурой отпущенного мартенсита и аустенита, соответственно, то изломы различаются. В обоих случаях имеет место вязкое внутризеренное разрушение с небольшим вкладом межзеренного разрушения (рис. 7а, 7б). В ОМ трещины распространяются вдоль отдельных границ ИАЗ (рис. 7а), а в МШ вдоль отдельных дендритов (рис. 7б). Однако доля межзеренного разрушения в обоих случаях невелика. Размер ямок в МШ существенно меньше, чем на поверхности разрушения высокохромистой стали. Ямки достаточно глубокие, что свидетельствует о больших пластических деформациях при разрушении.

При высоких температурах характер разрушения стали и сварного шва похожи, поскольку в обоих случаях оно проходит в зонах со структурой отпущенного мартенсита (рис. 7в, 7г). Разрушение носит вязкий внутризеренный характер. Ямки имеют круглую форму и большую глубину. В стали их диаметр существенно меньше, а их распределение по размеру более однородно, что и обусловливает большую пластичность ОМ. Так, в ЗТВ при 873 К поверхность излома состоит из больших и глубоких ямок, средний размер которых колеблется в диапазоне от 5 до 35 мкм, окруженных мелкими ямками со средним размером менее 5 мкм. При повышении температуры в ЗТВ однородность поверхности вязкого излома увеличивается. Таким образом, уменьшение пластичности сварного соединения связано не только с локализацией деформации в ЗТВ, но и с облегчением зарождения в ней трещин из-за большей неравномерности в структуре. Изломы образцов сварного соединения стали 10Х9К3В2МФБР после испытаний на ударную вязкость приведены на рис. 8. При 293 К в зоне МШ вязкое внутризеренное разрушение по объему материала инициируется межзеренным квазисколом по границам дендритов (рис. 8а), что и обусловливает невысо-

Рис. 7. Фрактография (РЭМ) изломов стали 10Х9К3В2МФБР (а, в) и ее сварного соединения (б, г) после механических испытаний при температуре 293 К (а, б) и 873 К (в, г).

Рис. 8. Фрактография (РЭМ) изломов сварного соединения стали 10Х9К3В2МФБР после испытаний на ударную вязкость. Концентратор напряжений (V-образного типа) вырезан в металле шва (а – после испытаний при 293 K) и зоне термического влияния (б, в – после испытаний при 293 K, г – после испытаний при 253 K).

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 117 № 4 2016

Рис. 9. Фрактография (РЭМ) изломов сварного соединения стали 10Х9К3В2МФБР после испытаний на ползучесть при температуре 923 К и приложенном напряжении 140 МПа (а), 160 МПа (б) и 120 МПа (в).

кую ударную вязкость. На поверхности излома хорошо видны гребни отрыва.

Типичных для горячих трещин областей декогезии первичных кристаллов с окисленной поверхностью выявлено не было. Следовательно, горячие трещины в МШ не образуются, и разрушения по I и II типу не происходит. Соответственно, использованная технология сварки обеспечила качественное сварное соединение.

При комнатной температуре в ЗТВ разрушение носит смешанный характер. Оно происходит по механизму квазискола в области нестабильного распространения трещины и по механизму вязкого разрушения в области торможения распространения трещины (рис. 86, 8в). Ямки разрушения в последней зоне имеют большой размер и плоскую форму, что обусловливает небольшую величину КСV. Понижение температуры до 253 K увеличивает поверхность области хрупкого излома, причем увеличивается доля чистого скола по плоскостям с большим межатомным расстоянием. В отдельных местах появляется характерная структура "ступенек лестниц", обусловленная сколом по некомпланарным плоскостям с низкими индексами (рис. 8г). В целом разрушение является преимущественно внутризеренным во всех областях. Однако доля межзеренного разрушения в области нестабильного роста трещины увеличивается с понижением температуры. Таким образом, ХВП в ЗТВ обусловлен уменьшением доли вязкого излома и появлением межзеренного разрушения.

На рис. 9 приведены поверхности разрушения образцов сварного соединения после испытаний на ползучесть. При приложенных напряжениях 140 и 160 МПа характер разрушения (рис. 9а, 9б) не типичен для ползучести, хотя и отличается от имеющего место при статическом разрушении (рис. 7в, 7г). Это вязкий излом с небольшим количеством крупных и очень глубоких ямок. Если они располагаются на границах некоторых ИАЗ, то формируются "каньоны", указывающие на межзеренное вязкое разрушение. Однако, внутризеренное разрушение преобладает. Также стоит отметить, что разрушение образца при напряжении ≥140 МПа происходит в зоне ОМ, т.е. его механизм не связан с типами разрушения, представленными на рис. 1. При 120 МПа характер разрушения иной. Он инициируется образованием пор по границам некоторых крупных ИАЗ, слияние которых приводит к образованию трещин. Долом происходит по механизму вязкого внутризеренного разрушения. Разрушение происходит в ЗТВ в области МИАЗ, что характерно для IV типа (рис. 1).

ОБСУЖДЕНИЕ

Анализ представленных результатов показывает, что трубы из стали 10Х9К3В2МФБР могут быть сварены аргонно-дуговой сваркой вольфрамовым электродом с использованием аустенитной присадочной проволоки. Этот вид сварки обеспечивает качественное соединение. Однако механические свойства сварного соединения находятся на минимально допустимом уровне [25]. Это связано с особенностями структуры в 3ТВ и выбранной для сварки присадочной проволокой, которая определяет структуру и свойства МШ.

Особенностью стали 10Х9К3В2МФБР является формирование смешанной реечно-субзеренной структуры после отпуска с преобладанием первой в ОМ [14]. В 3ТВ, как в мелких, так и в крупных ИАЗ преобладает субзеренная структура (рис. 3в). По всей видимости, это связано с особенностями превращения $\alpha \rightarrow \gamma$ при сварочном нагреве, которое происходит по сдвиговому механизму. В пользу этого предположения свидетельствуют результаты дилатометрического исследования ОМ (рис. 10) [28]. На кривой удлинения образца четко виден скачок такого же размера, как и при мартенситном превращении при охлаждении, причем образование аустенита проходит в достаточно узкой температурной области, около 30 К.

В зоне МИАЗ аустенит может восстанавливаться в пределах исходного пакета, поскольку пакетом является область, в которой мартенситное превращение проходит вдоль только одной плоскости {111}у [20]. При повторном мартенситном превращении при охлаждении от температуры сварки внутри таких аустенитных зерен размером 5 мкм образуется, фактически, один блок. Причем разориентировка между двумя различными ориентировками в соотношении Курдюмова-Закса является малоугловой. Для плоскости {111}у, например, существуют три таких варианта: V1/V4, V3/V6 и V2/V5 [20]. При реализации одного из них в мелких аустенитных зернах полная иерархическая структура пакетного мартенсита [20] не образуется; мелкое ИАЗ делится одной малоугловой границей с разориентировкой ~10.53° на два субзерна, которые, в свою очередь, разделены на рейки дислокационными границами с разориентировкой ≤2°. При отпуске такая структура легко трансформируется в субзеренную, поскольку специальные границы, которые образуются при других кристаллографических вариантах, не будут препятствовать миграции малоугловых границ.

В ЗТВ образуется смешанная структура из небольшого количества мелких ИАЗ, которые образовались в результате сдвигового $\alpha \rightarrow \gamma$ -превращения в пределах одного пакета [4, 10], и ИАЗ, в которых аустенит при нагреве восстановился в пределах всего ИАЗ [4, 10]. В зоне МИАЗ рост аустенитных зерен, восстановившихся в пределах одного пакета, не происходит, поскольку цепочки карбидов $M_{23}C_6$ по их границам обеспечивают большую тормозящую силу [14].

В зоне КИАЗ рост этих зерен имеет место, поскольку границы мелких аустенитных зерен могут отрываться от зернограничных карбидов с повышением температуры [4, 10]. Этот рост ведет к увеличению размера аустенитных зерен до 20 мкм. Это в два раза больше, чем в ОМ [14]. По всей видимости, температура в зоне КИАЗ существенно выше температуры нагрева под нормализацию ОМ, что приводит к развитию собирательной рекристаллизации в аустените [29]. Укрупнение ИАЗ снижает сопротивление ползучести, поскольку, как хорошо видно на рис. Зг, по границам таких крупных ИАЗ формируются цепочки крупных карбидов $M_{23}C_6$ [14, 29].

Большинство этих карбидов не успевает раствориться при кратковременном нагреве в зоне КИАЗ, что всегда происходит при отжиге при 1323 К в течение 30 мин в 9% Сг сталях, не содержащих Со [1, 29–31]. При последующем отпуске количество этих карбидов, располагающихся по границам реек и блоков, сильно уменьшается, так как более крупные зернограничные карбиды получают преимущество в росте по хорошо извест-

Рис. 10. Относительное изменение размеров образца стали 10Х9К3В2МФБР при нагреве.

ной схеме Гиббса—Томсона. Кроме того, выделение из твердого раствора Сг и других элементов, входящих в состав карбидов $M_{23}C_6$, приводит к росту существующих крупных частиц, а новые карбиды по малоугловым границам внутри мелких ИАЗ не образуются.

Бор, сегрегации которого по границам подавляют диффузионное $\alpha \rightarrow \gamma$ -превращение [10], является причиной формирования мелких ИАЗ за счет сдвигового превращения [4, 10]. Введение в сталь 3% Со замедляет диффузию [15]. Это предотвращает полное растворение карбидов М₂₃С₆ во всей ЗТВ при сварочном нагреве, и замедляет их коагуляцию при отпуске. Одновременно, это препятствует сильному росту аустенитных зерен. Так, в ЗТВ, даже примыкающей к МШ, их размер не превышает 30 мкм, что намного меньше, чем в сталях без Со [1, 3]. При послесварочном отпуске в ЗТВ не формируется структура отпущенного мартенсита, по границам пакетов, блоков и реек которого располагаются карбиды $M_{23}C_6$, что критически важно для ее стабильности при ползучести [14, 19]. Соответственно, между дислокационной структурой отпущенного мартенсита и ОМ возникают существенные различия, что сказывается на механических свойствах.

При статических испытаниях на растяжение и кратковременнных испытаниях на ползучесть при приложенных напряжениях 140 МПа и выше прочность 3ТВ оказывается ниже прочности ОМ. По всей видимости, отсутствие карбидов $M_{23}C_6$ по границам пакетов, блоков и реек уменьшает напряжения, необходимые для работы источников дислокаций [32]. Это объясняет меньший предел текучести и большую величину $\dot{\varepsilon}_{min}$ при данных условиях. При статическом нагружении при 293 К наклеп в аустенитных зернах МШ обеспечивает высокую однородность деформации, величины σ_B в ОМ и поперечных образцах оказы-

ваются близки. При высоких температурах локализация деформации в ЗТВ приводит к преждевременному разрушению. При ползучести с приложенными напряжениями 120 МПа разница в механизмах деформации ОМ и ЗТВ нивелируется. По всей видимости, в ЗТВ при достижении $\dot{\varepsilon}_{min}$ образуются субзерна [14, 19], рост которых происходит с высокой скоростью на стадии ускоренного разрушения, поскольку карбидов M₂₃C₆, которые обеспечивают наибольшую тормозящую силу [14, 19], внутри ИАЗ мало. Этот быстрый рост субзерен и приводит к высокой скорости ползучести на 3-й стадии в высокохромистых сталях [21] и преждевременному разрушению по IV механизму [1].

Низкая ударная вязкость ЗТВ обусловлена тем, что крупные зернограничные карбиды $M_{23}C_6$ облегчают межзеренное разрушение в области нестабильного роста трещины и приводят к появлению больших плоских ямок в области торможения разрушения, где наблюдается вязкий излом. Однако это не имеет большого практического значения, поскольку ударная вязкость МШ ниже, чем ЗТВ. Причины низкой ударной вязкости МШ с аустенитной структурой, по всей видимости, обусловлены дендритным строением МШ.

выводы

1. Микроструктура сварного соединения стали 10Х9К3В2МФБР состоит из трех основных зон: металла шва, зоны термического влияния и основного металла. В зоне термического влияния формируются две морфологически разные области: область мелких ИАЗ, в которой присутствует небольшое количество этих зерен размером 5 мкм и менее, и крупнозернистая зона со средним размером ИАЗ более 20 мкм.

2. Сварное соединение стали 10Х9К3В2МФБР демонстрирует высокое значение прочности на уровне 90% и выше от предела прочности основного металла в интервале температур от 293 до 923 К. В тоже время условный предел текучести сварного шва существенно ниже, чем у основного металла. Относительное удлинение сварного соединения несколько ниже (~10%), чем основного материала и незначительно зависит от температуры испытания.

3. Ударная вязкость сварного соединения равна 30 Дж/см². Низкое значение ударной вязкости сварного соединения обусловлено металлом шва, в котором преобладает вязкое внутризеренное разрушение. Зона термического влияния демонстрирует достаточно высокую ударную вязкость. Однако, имеет место ярко выраженный хрупковязкий переход при температуре близкой к комнатной, который связан с уменьшением доли вязкой составляющей в изломе. 4. Сварное соединение испытывает преждевременное разрушение при испытаниях на ползучесть при 923 К. При приложенных напряжениях 140 МПа и выше в сварном соединении наблюдается повышенная, по сравнению с основным металлом, скорость ползучести. Разрушение происходит в основном металле, т.е. специфических механизмов разрушения при ползучести сварных швов при высоких приложенных напряжениях не наблюдается. При 120 МПа скорость ползучести сварного соединения и основного металла одинаковы вплоть до наступления стадии ускоренного разрушения, которое в сварном соединении происходит намного быстрее в мелкозернистой зоне термического влияния, т.е. по IV типу разрушения.

БЛАГОДАРНОСТИ

Исследование выполнено за счет гранта Российского научного фонда (проект № 14-29-00173). Авторы выражают благодарность центру коллективного пользования "Диагностика структуры и свойств наноматериалов" НИУ "БелГУ" за предоставленное оборудование для проведения структурных исследований и механических испытаний.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Abe F., Kern T.-U., Viswanathan R.* Creep-resistant steels. Woodhead Publishing Limited, 2008. 678 p.
- Кайбышев Р.О., Скоробогатых В.Н., Щенкова И.А. Новые стали мартенситного класса для тепловой энергетики. Жаропрочные свойства // ФММ. 2010. Т. 109. С. 200–215.
- Abson D.J., Rothwell J.S. Review of type IV cracking of weldments in 9–12% Cr creep strength enhanced ferritic steels // Inter. Mater. Rev. 2013. V. 58. P. 437–473.
- Abe F., Tabuchi M., Tsukamoto S., Shirane T. Microstructure evolution in HAZ and suppression of Type IV fracture in advanced ferritic power plant steels // Inter. J. Pressure Vessels Piping. 2010. V. 87. P. 598–604.
- 5. *Abe F., Tabuchi M., Tsukamoto S.* Metallurgy of Type IV fracture in advanced ferritic power plant steels // Mater. High Temp. 2011. V. 28. P. 85–94.
- 6. *Liu Y., Tsukamoto S., Shirane T., Abe F.* Formation Mechanism of Type IV Failure in High Cr Ferritic Heat-Resistant Steel-Welded Joint // Metall. Mater. Trans. A. 2013.V. 44. P. 4626–4633.
- Yu X., Babu S.S., Terasaki H., Komizo Y., Yamamoto Y., Santella M.L. Correlation of precipitate stability to increased creep resistance of Cr–Mo steel welds // Acta Mater. 2013. V. 61. P. 2194–2206.
- Hongo H., Tabuchi M., Watanabe T. Type IV Creep Damage Behavior in Gr.91 Steel Welded Joints // Metall. Mater. Trans. A. 2012. V. 43. P. 1163–1173.
- Das C.R., Albert S.K., Bhaduri A.K., Murty B.S. Effect of Boron Addition and Initial Heat-Treatment Temperature on Microstructure and Mechanical Properties of Modified 9Cr–1Mo Steels Under Different Heat-Treatment Conditions // Metall. Mater. Trans. A. 2013. V. 44. P. 2171–2866.

- Liu Y., Tsukamoto S., Sawada K., Tabuchi M., Abe F. Precipitation behaviour in Ac₃ HAZ simulated B steel during PWHT and creep deformation // Metall. Mater. Trans. A. 2015. V. 46. P. 1843–1854.
- 11. *Abe F., Tabuchi M., Kondo M., Tsukamoto S.* Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition // Int. J. Pressure Vessels Piping. 2014. V. 84. P. 44–52.
- Abe F., Tabuchi M., Kondo M., Okada Y. Suppression of Type IV fracture in welded joints of advanced ferritic power plant steels–Effect of boron and nitrogen // Mater. High Temp. 2007. V. 23. P. 145–154.
- Albert Sh.K., Kondo M., Tabuchi M., Yin F., Sawada K., Abe F. Improving the Creep Properties of 9Cr-3W-3Co-NbV Steels and their Weld Joints by Addition of Boron // Metall. Mater. Trans. A. 2005. V. 36A. P. 333-343.
- Dudova N., Plotnikova A., Molodov D., Belyakov A., Kaibyshev R. Structural changes of tempered martensitic 9% Cr-2% W-3% Co steel during creep at 650°C // Mater. Sci. Eng. A. 2012. V. 534. P. 632–639.
- Kipelova A., Odnobokova M., Belyakov A., Kaibyshev R. Effect of Co on Creep Behavior of a P911 Steel // Metall. Mater. Trans. A. 2013. V. 44A. P. 577–583.
- Helisa L., Toda Y., Hara T., Miyazaki H., Abe F. Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants // Mater. Sci. Eng. A. 2009. V. 510–511. P. 88–94.
- Дудко В.А., Федосеева А.Э., Беляков А.Н., Кайбышев Р.О. Влияние содержания углерода на фазовый состав и механические свойства стали (02/10) 10Х9В2МФБР // ФММ. 2015. Т. 116 С. (принята к публикации).
- Табатчикова Т.И., Носов А.Д., Гончаров С.Н., Гуднев Н.З., Дельгадо Рейна С.Ю., Яковлева И.Л. Структура и вязкость зоны термического влияния сварных соединений высокопрочной стали // ФММ. 2014. Т. 115. С. 1309–1316.
- Dudko V., Belyakov A., Molodov D. Kaibyshev R. Microstructure Evolution and Pinning of Boundaries by Precipitates in a 9 pct. Cr Heat Resistant Steel During Creep // Metall. Mat. Trans. A. 2013. V. 44. P. 162–172.
- Kitahara H., Ueji R., Tsuji N, Minamino Y. Crystallographic features of lath martensite in low-carbon steel // Acta Mater. 2006. V. 54. P. 1279–1288.
- Ghassemi-Armaki H., Chen R.P., Maruyama K., Igarashi M. Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels // J. Nucl. Mater. 2013. V. 433. P. 23–29.

- 22. Урцев В.Н., Яковлева И.Л., Терещенко Н.А., Шмаков А.В., Муриков С.А., Дегтярев В.Н. Перекристаллизация среднеуглеродистой стали в неравновесных условиях кратковременного нагрева выше температуры А_{с1} // ФММ. 2014. Т. 115. С. 951–960.
- Панов Д.О., Симонов Ю.Н., Спивак Л.В., Смирнов А.И. Этапы аустенизации холоднодеформированной низкоуглеродистой стали в межкритическом интервале температур // ФММ. 2015. Т. 116. С. 846–853.
- 24. Маковецкий А.Н., Табатчикова Т.И., Яковлева И.Л., Терещенко Н.А., Мирзаев Д.А. Формирование структуры низколегированной трубной стали при нагреве в межкритическом интервале температур // ФММ. 2012. Т. 113. С. 744–755.
- 25. Якобсон С.С., Курносова Н.Д., Ворновицкий И.И., Гинзбург Г.М., Зислин Г.С., Корольков П.М., Урман Н.С., Хапонен Н.А., Хромченко Ф.А., Шельпяков А.А., Шефель В.В. Руководящий документ 153-34.1-003-01 Сварка, термообработка и контроль трубных систем котлов и трубопроводов при монтаже и ремонте энергетического оборудования Москва, ПИО ОБТ, 2002. 212 с.
- 26. The T92/P92 book. Vallourec&Mannesmann tubes. Dusseldorf, Germany. 2000. 68 p.
- Однобокова М.В., Кипелова А.Ю., Беляков А.Н., Кайбышев Р.О. Механическое поведение и хрупковязкий переход в высокохромистой мартенситной стали // ФММ. 2016. Т. 117. С. (принята к публикации).
- Yang H.-S., Bhadeshia H.K.D. Uncertainties in dilatometric determination of martensite start temperature // Mater. Sci. Techn. 2007. V. 23. P. 556–560.
- Dudko V.A., Belyakov A.N., Skorobogatykh V.N., Shchenkova I.A., Kaibyshev R.O. Effect of austenizing temperature on creep resistance of steel 10Kh9V2MFBR // Met. Sci. Heat Treat. 2010. V. 52. P. 166–170.
- Kipelova A.Yu., Belyakov A.N., Skorobogatykh V.N., Shchenkova I.A., Kaibyshev R.O. Tempering-induced structural changes in steel 10Kh9K3V1M1FBR and their effect on mechanical properties // Met. Sci. Heat Treat. 2010 V. 52. P. 100–110.
- Dudova N., Kaibyshev R. On the Precipitation Sequence in a 10% Cr Steel under Tempering // ISIJ International. 2011. V. 51. P. 826–831.
- Giordana M.F., Giroux P.-F., Alvarez-Armas I., Sauzay M., Armas A., Kruml T. Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modeling // Mater. Sci. Eng. A. 2012. V. 550. P. 103–111.