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Abstract—We consider some mathematical model of isothermal acoustics in a composite medium
consisting of two different porous soils (poroelastic domains) separated by a common boundary.
Each of the domains has its own characteristics of the solid skeleton; the liquid filling the pores is the
same for both domains. The differential equations of the exact model contain some rapidly oscillating
coefficients. The averaged equations (i.e., without rapidly oscillating coefficients) are derived.
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1. STATEMENT OF THE PROBLEM

Let the domain Q under consideration be the unit cube Q = (0, 1) × (0, 1) × (0, 1); let a poroelastic
medium fill the domain Ω = (0, 1)× (0, 1)× (0, a), 0 < a < 1, and let the domain G (another poroelastic
medium) be the open complement of Ω:

Q = Ω ∪ G ∪ S(0), S(0) = ∂Ω ∩ ∂G.

The motion of the mixture in Ω for t > 0 is described by the system of equations(
χε

c̄2
f

+
1 − χε

c̄2
s

)
p + ∇ ·w = 0, (1)

(ρfχε + (1 − χε)ρs)
∂2w
∂t2

= ∇ · P + ρεF, (2)

P = χεᾱμD
(

x,
∂w
∂t

)
+ (1 − χε)ᾱλD(x,w) − pI, (3)

where χε(x) is the characteristic function of the porous space Ωε
f in Ω, χε(x) = χ(x/ε); c̄s and c̄f are

the sound velocities in the solid and liquid parts, respectively; ρf is the density of the liquid; ρs is the
density of the solid part; F is a given vector of the distributed mass forces; l is the average size of pores;
L is the characteristic size of the domain under consideration; the small parameter ε is put to be equal
l/L. In what follows, we use the notations B : C = tr (BC�), where B and C are tensors of the second
rank; D(x,u) = 1

2(∇u + ∇u�) is the symmetric part of ∇u; and I is the unit tensor.
The movement of the mixture in G is described for t > 0 by the system(

χε
0

c̄2
f

+
1 − χε

0(
c̄
(0)
s

)2

)
p + ∇ ·w = 0, (4)
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(
ρfχε

0 +
(
1 − χε

0

)
ρ(0)

s

)∂2w
∂t2

= ∇ · P(0) + ρεF, (5)

P(0) = χε
0ᾱμD

(
x,

∂w
∂t

)
+

(
1 − χε

0

)
ᾱ

(0)
λ D(x,w) − pI, (6)

where χε
0 is the characteristic function of the liquid part Gε

f in G: χε
0(x) = χ0(x/ε). The elastic properties

of the solid skeleton in Gε
s and Ωε

s are different; while the liquid is the same in Gε
f and Ωε

f .

On the common boundary S(0), the continuity conditions are fulfilled for the displacement

lim
x→x0, x∈G

w(x, t) = lim
x→x0, x∈Ω

w(x, t) (7)

and the normal component of the momenta

lim
x→x0, x∈G

P(0)(x, t) · n(x0) = lim
x→x0, x∈Ω

P(x, t) · n(x0). (8)

The formulation of the problem is completed with the homogeneous boundary conditions

w(x, t) = 0, (x, t) ∈ ST = S × (0, T ), (9)

on the boundary S = ∂Q and the homogeneous initial conditions

w(x, 0) =
∂w
∂t

(x, 0) = 0, x ∈ Q. (10)

Differential equations (1)–(10) adequately describe the physical processes in the domain consisting
of two different continuous media; however, they cannot be used for computation because of the presence
of rapidly oscillating coefficients there. Our goal is to derive some averaged equations that do not contain
such coefficients. In order to take advantage of the available inequalities for periodic structures and
other results of the homogenization theory [1-3] as well as the method of two-scale convergence [4],
we introduce some simplifying geometric assumptions.

Proposition 1. (1) Let χ(y) be a 1-periodic function; let Ys = {y ∈ Y : χ(y) = 0} be the solid
part of the unit cube Y = (0, 1)3 ⊂ R

3; and let the liquid part Yf = {y ∈ Y : χ(y) = 1} be the
open complement of the solid part. Suppose that γ = ∂Yf ∩ ∂Ys, and γ is a Lipschitz continuous
surface.

(2) The domain Eε
f is the periodic replication in R

3 of Y ε
f = εYf , and the domain Eε

s is the
periodic replication in R

3 of Y ε
s = εYs.

(3) The porous space Ωε
f ⊂ Ω = Ω ∩ Eε

f is the periodic replication in Ω of εYf ; and the solid
skeleton Ωε

s ⊂ Ω = Ω ∩ Eε
s is the periodic replication in Ω of εYs. The Lipschitz boundary

Γε = ∂Ωε
s ∩ ∂Ωε

f

is periodic replication in Ω of εγ.
(4) Ys and Yf are connected sets.

Proposition 2. The solid skeleton Ωε
s is a connected domain.

Proposition 3. The porous space Ωε
f is a connected domain.

Analogous assumptions are also made about the domain G.
Moreover, it is assumed that all dimensionless parameters depend on the small parameter ε and the

following (finite or infinite) limits exist

lim
ε→0

ᾱμ(ε) = μ0, lim
ε→0

ᾱλ(ε) = λ0, lim
ε→0

ᾱ
(0)
λ (ε) = λ

(0)
0 ,

lim
ε→0

ᾱμ

ε2
= μ1, lim

ε→0

ᾱλ

ε2
= λ1, lim

ε→0

ᾱ
(0)
λ

ε2
= λ

(0)
1 .

In our model, the liquid is weakly compressible; i.e., μ0 = 0.
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As always, we introduce the notion of generalized solution and prove the existence and uniqueness of
such a solution. We use the notations of [5] for the function spaces.

Let ζ(x) be the characteristic function of Ω in Q and

ρε
(0) = (1 − ζ)

(
ρfχε

0 +
(
1 − χε

0

)
ρ(0)

s

)
+ ζ

(
ρfχε + (1 − χε)ρs

)
,∫

QT

(
|F(x, t)|2 +

∣∣∣∣∂F
∂t

(x, t)
∣∣∣∣
2)

dx dt = F 2 < ∞.

Definition. A pair of functions {wε, pε} such that

wε ∈
◦

W
1,1

2 (QT ), pε ∈ L2(QT ),

is called a generalized solution of (1)–(10) if they satisfy the continuity equation(
(1 − ζ)

(
χε

0

c̄2
f

+
1 − χε

0(
c̄
(0)
s

)2

)
+ ζ

(
χε

c̄2
f

+
1 − χε

c̄2
s

))
pε + ∇ ·wε = 0 (11)

almost everywhere in QT and∫
QT

ρε
(0)

(
∂wε

∂t

∂ϕ

∂t
+ F · ϕ

)
dxdt =

∫
QT

(ζP + (1 − ζ)P(0)) : D(x,ϕ) dxdt (12)

for all functions ϕ such that ϕ ∈
◦

W
1,0

2 (QT ),
∂ϕ

∂t
∈ L2(ΩT ) and ϕ(x, T ) = 0 for x ∈ Q.

2. THEOREM OF EXISTENCE AND UNIQUENESS OF A GENERALIZED SOLUTION

Theorem 1. For all ε > 0, the problem (1)–(10) has the unique generalized solution {wε, pε}
on an arbitrary time interval [0, T ] and

max
0<t<T

∫
Ω

(
|pε(x, t)|2 +

∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣
2

+ (1 − χε)ᾱλ|D(x,wε)|2
)

dx

+ max
0<t<T

∫
G

(
|pε(x, t)|2 +

∣∣∣∣∂wε

∂t
(x, t)

∣∣∣∣
2

+
(
1 − χε

0

)
ᾱ

(0)
λ |D(x,wε)|2

)
dx

+ max
0<t<T

∫
Ω

(∣∣∣∣∂pε

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣∂

2wε

∂t2
(x, t)

∣∣∣∣
2

+ (1 − χε)ᾱλ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2)

dx

+ max
0<t<T

∫
G

(∣∣∣∣∂pε

∂t
(x, t)

∣∣∣∣
2

+
∣∣∣∣∂

2wε

∂t2
(x, t)

∣∣∣∣
2

+
(
1 − χε

0

)
ᾱ

(0)
λ

∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2)

dx

+
∫

ΩT

χεᾱμ

(∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+
∣∣∣∣D

(
x,

∂2wε

∂t2

)∣∣∣∣
2)

dxdt

+

T∫
0

∫
G

χε
0ᾱ

(0)
μ

(∣∣∣∣D
(

x,
∂wε

∂t

)∣∣∣∣
2

+
∣∣∣∣D

(
x,

∂2wε

∂t2

)∣∣∣∣
2)

dxdt ≤ C0F
2, (13)

where the constant C0 is independent of ε, ᾱλ, ᾱ
(0)
λ , and ᾱμ.
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Proof. The a priori estimate (13) and the existence of the unique generalized solution are proved on the
basis of the energy identities

1
2

d

dt

∫
Ω

(
ρε

∣∣∣∣∂wε

∂t

∣∣∣∣
2

+ (1 − χε)ᾱλD(x,wε) : D(x,wε) + |pε|2
)

dx

+
1
2

d

dt

∫
G

(
ρ(0)

s

∣∣∣∣∂wε

∂t

∣∣∣∣
2

+
(
1 − χε

0

)
ᾱ

(0)
λ D(x,wε) : D(x,wε) +

1(
c̄
(0)
s

)2
|pε|2

)
dx

+
∫
Ω

χε

(
ᾱμD

(
x,

∂wε

∂t

)
: D

(
x,

∂wε

∂t

))
dx

+
∫
G

χε
0

(
ᾱμD

(
x,

∂wε

∂t

)
: D

(
x,

∂wε

∂t

))
dx =

∫
Q

ρε
(0)F · ∂wε

∂t
dx;

1
2

d

dt

∫
Ω

(
ρε

∣∣∣∣∂
2wε

∂t2

∣∣∣∣
2

+ (1 − χε)ᾱλD
(

x,
∂wε

∂t

)
: D

(
x,

∂wε

∂t

)
+

∣∣∣∣∂pε

∂t

∣∣∣∣
2)

dx

+
1
2

d

dt

∫
G

(
ρ(0)

s

∣∣∣∣∂
2wε

∂t2

∣∣∣∣
2

+
(
1 − χε

0

)
ᾱ

(0)
λ D

(
x,

∂wε

∂t

)
: D

(
x,

∂wε

∂t

)
+

1(
c̄
(0)
s

)2

∣∣∣∣∂pε

∂t

∣∣∣∣
2)

dx

+
∫
Ω

χε

(
ᾱμD

(
x,

∂2wε

∂t2

)
: D

(
x,

∂2wε

∂t2

))
dx

+
∫
G

χε
0

(
ᾱμD

(
x,

∂2wε

∂t2

)
: D

(
x,

∂2wε

∂t2

))
dx =

∫
Q

ρε
(0)

∂F
∂t

· ∂2wε

∂t2
dx,

which are derived by the substitution into the integral identity (12) of an explicit expression for the

tensors P and P(0) from the equations of state (3) and (6), multiplication of (12) by
∂wε(x, t)

∂t
and

integration by parts over Q.
Theorem 1 is proved.

3. AVERAGING THE MODEL
In the derivation of averaged equations, we apply the Nguetseng’s method of the two-scale conver-

gence (see [4] and [6]). For a specific type of a continuous medium the limit regimes as ε → 0 are obtained
in [6–11]. The major problem in proving the averaged equations in this particular case is concerned with
the conditions on the common boundary S(0) between two poroelastic domains G and Ω. In this article,
an averaged model is derived for the domain consisting of two weakly-deformable soils permeated by
a system of pores which are filled with a viscous weakly-compressible liquid.

Theorem 2. Let {wε, pε} be a generalized solution of (1)–(10),

λ
(0)
0 = 0, λ

(0)
1 < ∞, 0 < λ0 < ∞, μ0 = 0, μ1 < ∞,

and let wε
s = EΩε

s
(wε) be the extension operator from Ωε

s to Ω. Then, in GT , the limits v =
∂w
∂t

(velocity of the liquid) and p (pressure) of the sequences
{

∂wε

∂t

}
and {pε} satisfy the system of

equations of acoustics consisting of the momentum balance equation in the form

v(x, t) =

t∫
0

B(a)
0

(
μ1, λ

(0)
1 ; t − τ

)
· ∇p(x, τ) dτ + f(x, t) (14)
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and the continuity equation (
m

c̄2
f

+
1 − m(
c̄
(0)
s

)2

)
∂p

∂t
+ ∇ · v = 0. (15)

In ΩT , the limit functions mpf (pressure of the liquid), w(f) (displacement of the liquid), and ws

(displacement of the solid skeleton) of the sequences {ζχεpε}, {ζχεwε}, and {ζwε
s} satisfy the

system of averaged equations consisting of the continuity equation

m

c2
f

pf + ∇ · w(f) = Cs
0 : D(x,ws) +

cs
0

λ0
pf , (16)

the momentum balance equation for the solid skeleton

ρf
∂2w(f)

∂t2
+ ρ(0)

s

∂2ws

∂t2
= ∇ ·

(
λ0N

s
2 : D(x,ws) − pfCs

1

)
+ ρ̂F (17)

and the momentum balance equation for the liquid part

−
t∫

0

B(f)(μ1,∞; t − τ) ·
(
∇pf + ρf

(
∂2ws

∂τ2
− F

))
(x, τ) dτ =

∂w(f)

∂t
− m

∂ws

∂t
. (18)

The formulation of the problem is completed with the homogeneous boundary conditions

v(x, t) · n(x) = 0, x ∈ ∂G \ S(0), t > 0, (19)

w(f)(x, t) · n(x) = 0, x ∈ ∂Ω \ S(0), t > 0, (20)

ws(x, t) = 0, x ∈ ∂Ω \ S(0), t > 0, (21)

the homogeneous initial conditions

p(x, 0) = 0, x ∈ G, (22)

w(f)(x, 0) = ws(x, 0) =
∂ws

∂t
(x, 0) = 0, x ∈ Ω, (23)

and the continuity conditions on the common boundary S
(0)
T

lim
x→x0, x∈G

v(x, t) · n(x0) = lim
x→x0, x∈Ω

(
v(f)(x, t) + (1 − m)

∂ws

∂t
(x, t)

)
· n(x0), (24)

− lim
x→x0, x∈G

p(x, t)n(x0) = lim
x→x0, x∈Ω

(
λ0N

s
2 : D(x,ws(x, t)) − pfCs

1

)
· n(x0). (25)

In (14)–(25), m =
∫
Y

χ(y) dy = 〈χ(y)〉Y ; n(x0) is the normal to S(0) at x0 ∈ S(0); n(x) is the

normal to ∂Q at x ∈ ∂Q; and ρ̂ = mρf + (1 − m)ρ(0)
s .

In the theorem, we use the notation wε
s = EΩε

s
(wε), where EΩε

s
: W1

2(Ω
ε
s) → W1

2(Ω) is the extension
operator from Ωε

s to Ω such that wε
s = wε in Ωε

s × (0, T ) and∫
Ω

∣∣wε
s

∣∣2 dx ≤ C0

∫
Ωε

s

|wε|2 dx,

∫
Ω

∣∣D(x,wε
s)

∣∣2 dx ≤ C0

∫
Ωε

s

|D(x,wε)|2 dx.

The correctness of this extension is substantiated in [12].
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Proof. The a priori estimate (13) obtained in Theorem 1 allows us to take the weak and two-scale limits
as ε → 0 following the Nguetseng’s theorem [4] and the results of [6–11].

The two-scale limit P (x, t,y) of {pε} is given by the formula

(1 − ζ)p + ζχ(y)pf (x, t) + ζ(1 − χ(y))Ps(x, t,y).

For μ1 < ∞,

W(x, t,y) = χ(y)W(x, t,y) + (1 − χ(y))ws(x, t).

The two-scale limit of
{
wε

s

}
equals ws(x, t), whereas the two-scale limit of {D(x,wε

s)} is equal to
D(x,ws(x, t)) + D

(
y,U(x, t,y)). Thus, we obtain the limit continuity equation(

m

c̄2
f

+
(1 − m)

c̄2
s

)
∂p

∂t
+ ∇ · v = 0, x ∈ G, t > 0,

and the boundary condition v · n = 0 for x ∈ ∂G \ S(0) and t > 0. For μ1 < ∞ and λ
(0)
1 < ∞, we have

v =
∂w
∂t

.

Using the embedding ∇p ∈ L2(ΩT ), ∇
(

∂p

∂t

)
∈ L2(ΩT ), we derive the microscopic momentum

balance equation

ρ(y)
∂2W
∂t2

= ∇y ·
(

μ1χ
(0)(y)D

(
y,

∂W
∂t

)
+ λ

(0)
1 (1 − χ(y))D(y,W) − Π I

)
−∇p + ρ(y)F,

y ∈ Y, t > 0,

where ρ(y) = ρfχ(0)(y) + ρ
(0)
s (1 − χ(0)(y)), and the microscopic continuity equation

∇y · W = 0, y ∈ Y.

These equations are closed with the homogeneous initial conditions

W(x,y, 0) =
∂W
∂t

(x,y, 0) = 0, y ∈ Y.

We look for a solution in the form of a sum

W(x, t,y) =
3∑

i=1

t∫
0

W(i)(y, t − τ)
∂p

∂xi
(x, τ) dτ +

3∑
i=1

t∫
0

W(i)
F (y, t − τ)Fi(x, τ) dτ,

Π(x, t,y) =
3∑

i=1

t∫
0

Π(i)(y, t − τ)
∂p

∂xi
(x, τ) dτ +

3∑
i=1

t∫
0

Π(i)
F (y, t − τ)Fi(x, τ) dτ,

where F(x, t) = (F1(x, t), F2(x, t), F3(x, t)).

In turn, {W(i),Π(i)} and
{
W(i)

F ,Π(i)
F

}
, i = 1, 2, 3, are solutions of the periodic initial boundary value

problems in Y for t > 0:

ρ(y)
∂2W(i)

∂t2
= ∇y ·

(
μ1χ

(0)(y)∇y

(
∂W(i)

∂t

)
+ λ

(0)
1 (1 − χ(0)(y))∇yW(i) − Π(i)I

)
,

∇y ·W(i) = 0,

W(i)(y, 0) = 0, ρ(y)
∂W(i)

∂t
(y, 0) = −ei, y ∈ Y,
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and

ρ(y)
∂2W(i)

F

∂t2
= ∇y ·

(
μ1χ

(0)(y)∇y

(
∂W(i)

F

∂t

)
+ λ

(0)
1 (1 − χ(0)(y))∇yW

(i)
F − Π(i)

F I
)

,

∇y ·W(i)
F = 0,

W(i)
F (y, 0) = 0,

∂W(i)
F

∂t
(y, 0) = ei, y ∈ Y,

respectively. In this case,

∂W
∂t

=
3∑

i=1

t∫
0

∂W(i)

∂t
(y, t − τ)

∂p

∂xi
(x, τ) dτ +

3∑
i=1

t∫
0

∂W(i)
F

∂t
(y, t − τ)Fi(x, τ) dτ,

∂w
∂t

=
3∑

i=1

t∫
0

〈
∂W(i)

∂t

〉
Y

(t − τ)
∂p

∂xi
(x, τ) dτ +

3∑
i=1

t∫
0

〈
∂W(i)

F

∂t

〉
Y

(y, t − τ)Fi(x, τ) dτ

=

t∫
0

B(a)
0 (μ1, λ

(0)
1 ; t − τ) · ∇p(x, τ) dτ + f(x, t),

where

B(a)
0

(
μ1, λ

(0)
2 ; t

)
=

3∑
i=1

〈
∂W(i)

∂t

〉
Y

(t) ⊗ ei, (26)

f(x, t) =
3∑

i=1

t∫
0

〈
∂W(i)

F

∂t

〉
Y

(y, t − τ)Fi(x, τ) dτ. (27)

Here the matrix a ⊗ b is defined as (a ⊗ b) · c = a(b · c) for arbitrary vectors a, b, and c.
Put

N
(0) =

3∑
i,j=1

Jij ⊗ Jij +
c2
s

λ0
I ⊗ I,

where Jij = 1
2(ei ⊗ ej + ej ⊗ ei); the tensor A ⊗ B of the fourth rank is defined as follows: (A ⊗ B) :

C = A(B : C) for every tensor C of the second rank.

The functions U(ij)
2 (y) and U(0)

2 (y) are solutions of the periodic problems

∇y ·
(
(1 − χ)

(
N(0) :

(
J(ij) + D

(
y,U(ij)

2

))))
= 0 in Y,

∇y ·
(
(1 − χ)

(
N(0) : D

(
y,U(0)

2

)
+ I

))
= 0 in Y.

Put

U(x, t,y) =
3∑

i,j=1

U(ij)
2 (y)Dij(x, t).

Then

〈D(y,U)〉Ys =
3∑

i,j=1

〈
D

(
y,U(ij)

2

)〉
Ys

Dij =

⎛
⎝ 3∑

i,j=1

〈
D

(
y,U(ij)

2

)〉
Ys

⊗ J(ij)

⎞
⎠ : D(x,ws),
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and

N
s
2 = N

(0) :

⎛
⎝(1 − m)

3∑
i,j=1

Jij ⊗ Jij +
3∑

i,j=1

〈
D

(
y,U(ij)

2

)〉
Ys

⊗ J(ij)

⎞
⎠ , (28)

Cs
1 = mI −

〈
D

(
y,U(0)

2

)〉
Ys

. (29)

Using (28), we obtain

〈∇y · U〉Ys =
3∑

i,j=1

〈
∇y ·U(ij)

2

〉
Ys

Dij =

⎛
⎝ 3∑

i,j=1

〈
∇y · U(ij)

2

〉
Ys

Jij

⎞
⎠ : D(x,ws),

therefore,

Cs
0 =

3∑
i,j=1

〈
∇y ·U(ij)

2

〉
Ys

Jij , cs
0 =

〈
∇y · U(0)

2

〉
Ys

. (30)

Consider the case μ1 > 0:

W(f) = ws(x, t) +
3∑

i=1

t∫
0

W(f)
i (y, t − τ)

(
∂p

∂xi
(x, τ) + ρf

∂2ws

∂τ2
(x, τ)

)
dτ,

Π(f)(x, t,y) =
3∑

i=1

t∫
0

Π(f)
i (y, t − τ)

(
∂p

∂xi
(x, τ) + ρf

∂2ws

∂τ2
(x, τ)

)
dτ,

where
{
W(f)

i ,Π(f)
i big} , i = 1, 2, 3, are solutions of the following periodic initial boundary value

problems:

ρf
∂2W(f)

i

∂t2
=

μ1

2
Δy

(
∂W(f)

i

∂t

)
−∇yΠ

(f)
i , (y, t) ∈ Yf × (0, T ),

∇y · W(f)
i (y, t) = 0, (y, t) ∈ Yf × (0, T ),

W(f)
i (y, 0) = 0, ρf

∂W(f)
i

∂t
(y, 0) = ei, y ∈ Yf ,

W(f)
i (y, t) = 0, (y, t) ∈ γ × (0, T ),

for almost all x ∈ ΩT .

By definition,

∂w(f)

∂t
(x, t) =

∫
Yf

∂W(f)

∂t
(x, t,y) dy

= m
∂ws

∂t
−

t∫
0

(
3∑

i=1

(∫
Yf

∂W(f)
i

∂t
(y, t − τ) dy

)
⊗ ei

)
·
(
∇p(x, τ) + ρf

∂2ws

∂τ2
(x, τ)

)
dτ

= m
∂ws

∂t
−

t∫
0

B(f)(μ1,∞; t − τ) ·
(
∇p(x, τ) + ρf

∂2ws

∂τ2
(x, τ)

)
dτ,
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where

B(f)(μ1,∞; t) =
3∑

i=1

(∫
Yf

∂W(f)
i

∂t
(y, t) dy

)
⊗ ei. (31)

Consider now the case μ1 = 0. For μ1 = 0, the microscopic momentum balance equation for the
liquid component has the form

ρf
∂2W(f)

∂t2
= −∇y Π(f) −∇p. (32)

The boundary condition on γ has the form

(W(f)(x, t,y) − ws(x, t)) · n(y) = 0 (33)

and is a corollary of the microscopic continuity equation and the representation

W(x, t,y) = χ(y)W(f)(x, t,y) + (1 − χ(y))ws(x, t), y ∈ Y.

To solve (32), we apply the operator (∇y, ·):

0 = ∇y ·
(

ρf
∂2W(f)

∂t2

)
= −∇y · (∇yΠ(f)).

Then (33) and (32) yield the boundary condition for the pressure Π(f) on γ:

∇yΠ(f) · n(y) = −
(
∇p + ρf

∂2ws

∂t2

)
· n(y).

Let

Π(f) = −
(

3∑
i=1

Π(f)
i (y)ei

)
·
(
∇p + �f

∂2ws

∂t2

)
,

where Π(f)
i , i = 1, 2, 3, are solutions of the periodic initial boundary value problems

ΔyΠ
(f)
i = 0, y ∈ Yf ,

(
∇yΠ

(f)
i − ei

)
· n(y) = 0, y ∈ γ.

Then

∇yΠ(f) = −
(

3∑
i=1

∇yΠ
(f)
i ⊗ ei

)
·
(
∇p + ρf

∂2ws

∂t2

)
.

After integrating (32) over Yf , we arrive at the momentum balance equation for the liquid component

ρfB(f)(0,∞) = mI −
(

3∑
i=1

∫
Yf

∇yΠ
(f)
i (y) dy ⊗ ei

)
.

The proof of Theorem 2 is complete.
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