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Summary. — DarkSide is a dark matter direct search experiment at Laboratori
Nazionali del Gran Sasso (LNGS). DarkSide is based on the detection of rare nuclear
recoils possibly induced by hypothetical dark matter particles, which are supposed to
be neutral, massive (m > 10 GeV) and weakly interactive (WIMP). The dark matter
detector is a two-phase time projection chamber (TPC) filled with ultra-pure liquid
argon. The TPC is placed inside a muon and a neutron active vetoes to suppress
the background. Using argon as active target has many advantages, the key features
are the strong discriminant power between nuclear and electron recoils, the spatial
reconstruction and easy scalability to multi-tons size. At the moment DarkSide-50
is filled with ultra-pure argon, extracted from underground sources, and from April
2015 it is taking data in its final configuration. When combined with the preceding
search with an atmospheric argon target, it is possible to set a 90% CL upper limit
on the WIMP-nucleon spin-independent cross section of 2.0×10−44 cm2 for a WIMP
mass of 100 GeV/c2. The next phase of the experiment, DarkSide-20k, will be the
construction of a new detector with an active mass of ∼ 20 tons.

1. – The existence of Dark Matter

The existence of dark matter, postulated since 1930 because of its gravitational effects
on the dynamics of galaxies and clusters of galaxies, is today widely accepted and con-
firmed also on the cosmological scale. It is assumed that the dark matter is part of the
missing mass of the Universe, but its nature is still completely unknown. At the moment
the most precise measurement of the CMB, combined with the results from large-scale
structure observations, indicates that dark matter and dark energy contribute respec-
tively to 26.8% and 68.3% of the mass/energy density of the Universe leaving only 4.9%
to the ordinary matter [1]. Among a wide range of possible theories and dark matter
candidates one of the most shared hypothesis is that the galactic halo could be permeated
of massive particles called WIMP. The term WIMP indicates candidates from different
theoretical models, but with common characteristics: WIMPs are supposed to be stable
and electrically neutral, they interact through gravitational force and they may have
other unknown interactions of weak intensity. According to these properties WIMPs
could interact with target nuclei of experiments releasing energies of order few tens of
keV. Very low interaction rates are expected for such particles, based on the model for
their production and existing limits [2]. To detect these WIMPs, target masses of 0.1−10
tons may be required, and ultra-low background must be achieved by a combination of
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Fig. 1. – Time profile of the scintillation light: the electron recoil (red) has a bigger fraction of
long-lived triplet states, so it is slower with respect to the nuclear recoil (blue) which has more
short-lived singlet states.

measures. These include cosmic ray suppression by locating the experiments deep under-
ground, selection of materials for low radioactivity, and instrumentation that can reject
residual radioactive backgrounds in favor of the sought-after nuclear recoil events.

2. – The argon choice

In DarkSide the active medium for detection is liquid argon which is very suitable
as target material for DM experiments because it has high scintillation yield, is easily
purified of radioactive impurities and is likely scalable to large masses with relative ease.
Among the noble gases argon also has excellent ionization and scintillation properties:
in fact, a particle can produce more than 104 photons per MeV of deposited energy.
Scintillation is initiated both by excitation and recombination after ionization. The
128 nm scintillation photons are emitted from two nearly degenerate excimer states, a
long-lived triplet state and a short-lived singlet state. The difference in ionization density
between nuclear recoils (from WIMP or neutron scattering) and electron recoils (from
β/γ radiation) produces a significant difference in the radiative decay ratio of these states
and hence in the time profile of the scintillation light [3]. Nuclear recoils have more of the
fast scintillation component than electron recoils, providing a very powerful “pulse shape
discrimination” (PSD) between electron backgrounds and nuclear-recoil signals (fig. 1).

The pulse shape discrimination between electron recoil and nuclear recoil is based on
the F90 parameter, defined as the fraction of the scintillation signal in the liquid phase
(S1) that occurs in the first 90 ns of the pulse, which is typically ∼ 0.3 for β/γ-events
and ∼ 0.7 for nuclear recoils. For β/γ-events, the low density of electron-ion pairs also
results in less recombination and therefore more free electrons, compared to a nuclear
recoil track of the same S1 [4].

However, the high performances of the background rejection are strongly limited
if atmospheric argon is used to fill the detector. That is because atmospheric argon,
produced industrially by distillation of liquid air, contains 39Ar, an isotope made by
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Fig. 2. – Comparison between the atmospheric argon and the underground argon spectrum. The
black spectrum is dominated by 39Ar. The lower line is the 39Ar extracted using a Monte Carlo
simulation.

cosmic ray activity. 39Ar has, in air, a relative abundance 39Ar/Ar = 8 · 10−16 and
it decays β− (Q = 565 keV and τ = 388 years) with an activity of ∼ 1Bq/kg. The
presence of 39Ar does not only increase the background rate, but acting as an impurity,
it limits the sensitivity of the experiment because favors electron recombination. To
solve this problem the DarkSide collaboration made a multi-year effort to extract argon
from underground sources: underground argon contains a factor of ∼ 103 less 39Ar with
respect to atmospheric argon. The detector has been filled with underground argon
between March and April 2015 and measures (fig. 2) confirm that the 39Ar activity of
UAr is a factor (1.4± 0.2)× 103 lower than the AAr one, corresponding to (0.73± 0.11).
mBq/kg.

3. – DarkSide

The DarkSide project is designed for direct detection of dark matter particles, using
a dual phase liquid argon time projection chamber. The whole experiment is based on
three nested detectors: the double-phase TPC is surrounded by two veto detectors that
are used to reject events in the TPC caused by cosmogenic (muon-induced) neutrons or
by neutrons and γ-rays from radioactive contamination in the detector components.

The DarkSide main detector will be DarkSide-20k that is going to be a large scale time
projection chamber with a fiducial mass of ∼ 20 tons. The scintillation signal in argon
will be detected by SiPM. The quantity of purified argon necessary to fill the detector
will be extracted by a distillation column installed in the Seruci mine, in Sardinia.

At the moment, after the promising results of its predecessor DarkSide-10, the detector
in use is DarkSide-50 [5].

3.1. TPC . – The cylindrical TPC, with an active UAr mass of (46.4 ± 0.7) kg is
observed by thirty-eight 3′′ PMTs positioned at the top and bottom of the TPC itself.
An interaction in the LAr target generates primary scintillation light and ionization
electrons. The electrons escaping recombination drift in the TPC electric field to the
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Fig. 3. – Plot of the f90 discrimination parameter: in the region of interest for the dark matter
search DarkSide-50 is background free. See [6].

surface of the liquid argon, where a stronger electric field extracts them into the gaseous
argon. In this field the electrons gain sufficient energy to induce further light emission
via proportional scintillation.

So there are two kind of signal that have to be detected inside the TPC:

• The primary scintillation (S1) in the liquid phase, due to excitation and recombined
ionization.

• The secondary scintillation (S2) in the gas phase, due to drifted ionization electrons.

The S1 and S2 pulses together allow the interaction point to be localized in 3D. The
transverse (xy) position is determined from the distribution of the S2 pulses over the top
PMT array, while the vertical (z) position is inferred from the drift time separating the
S1 and S2 pulses.

3.2. Neutron veto. – The LSV is a 4.0 m diameter stainless steel sphere filled with 30
metric tonnes of boron-loaded liquid scintillator. The sphere is lined with Lumirror, a
reflecting foil used to enhance the light collection efficiency. An array of 110 8′′ PMTs
is mounted on the inside surface of the sphere to detect scintillation photons. The
purpose of the neutron veto is to tag neutrons which could produce in the TPC a nuclear
recoil which can mimic the WIMP-nucleus interaction. The presence of TMB in the
liquid scintillator mixture favours neutron capture on 10B producing α particles of energy
1.47 MeV, corresponding to a signal of about 30PE which can be easily detected.

3.3. Muon veto. – The LSV is located in the middle of a water Cherenkov muon veto
(WCV), used for rejecting the coincidences in the TPC induced by the residual flux of
cosmogenic muons and also used as passive shielding for external neutrons and gammas.
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4. – First results

A first run of DarkSide-50 with a (1422 ± 67) kg-day exposure of atmospheric argon
produced a null result for the dark matter search and zero backgrounds from 39Ar decays.
A total of 16 million background events in the TPC, mostly originating from 39Ar,
were collected. All but two of the events falling within the WIMP region of interest
were rejected using the primary-scintillation pulse shape discrimination (PSD). The two
remaining events in the WIMP search region had a signal in coincidence with the veto
and were therefore discarded. The first WIMP search in DarkSide-50 using UAr has been
also reported in [1], where it is shown that underground argon is depleted in 39Ar by a
factor (1.4 ± 0.2) × 103 relative to atmospheric argon. The combination of the electron
recoil background rejection observed in the AAr run, and the reduction of 39Ar from the
use of UAr would allow DarkSide-50 to be free from 39Ar background for several tens of
years.

Dark matter limits from the present exposure are determined from our WIMP
search region using the standard isothermal galactic WIMP halo parameters. Given
the background-free result (fig. 3), we derive a 90% CL exclusion curve corresponding
to the observation of 2.3 events for spin-independent interactions. When combined with
the null result of our previous AAr exposure, we obtain a 90% CL upper limit on the
WIMP-nucleon spin-independent cross section of 2.0 × 10−44 cm2 for a WIMP mass of
100GeV/c2 [6].

REFERENCES

[1] Planck Collaboration et al., Astron. Astrophys., 571 (2014) A1.
[2] Bertone G., Hooper D. and Silk J., Phys. Rep., 405 (2005) 304.
[3] Aprile E., Bolotnikov A. E., Bolozdynya A. I. and Doke T., Noble gas detectors

(Wiley-VCH) 2006.
[4] Lippincott W. H. et al., Phys. Rev. C, 78 (2008) 12.
[5] DarkSide Collaboration (Agnes P. et al.), Phys. Lett. B, 743 (2015) 456.
[6] DarkSide Collaboration (Agnes P. et al.), Phys. Rev. D, 93 (2016) 081101.


