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Abstract We study multidimensional difference equations with a continual vari-
able in the Sobolev-Slobodetskii spaces. Using ideas and methods of the theory
of boundary value problems for elliptic pseudo-differential equations, we suggest
to consider certain boundary value problems for such difference equations. Special
boundary conditions permit to prove unique solvability for these boundary value
problems in appropriate Sobolev-Slobodetskii spaces.
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1 Introduction

We consider a general difference equation of the type

(1.1)
k=0

where D ¢ Rmis a canonical domain like Rm,R+ = {x 2Rm:x = (x\, mm xm),
+xm >0}, Ca = {x 2Rm:xm > a\x\,x = (xi, mm xm_ i), a > 0}, k is a multi-
index, \k\= k1+ mm+ km,{ak} ¢ D. Equations of a such type have a long history
[4, 5, 8] and in general there is no algorithm for solving the Eq. (1.1). If so then any
assertion on a solvability of such equations is very important and required. One can
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add that Eq. (1.1) appear in very distinct branches of a science like mathematical
biology, technical problems, etc. Also such equations have arisen in studies of the
second author [10, 11] related to boundary value problems in a plane corner. One-
dimensional case for such equations was considered in [12].

Here we will start from the equation

aku(x + ak) = v(x), x 2RC, (1.2)
k=0

with constant coefficients because further we will try to use a local principle [6] to
obtain some results on Fredholm properties of the general Eq. (1.1). We use methods
of the theory of boundary value problems for elliptic pseudo-differential equations
[1, 9]. For our case of a half-space, these methods are based on the theory of
one-dimensional singular integral equations and classical Riemann boundary value
problem [2, 3, 7].

2 Spaces, Operators, and Symbols

2.1 Spaces

Let S(Rm) be the Schwartz class of infinitely differentiable rapidly decreasing at
infinity functions and S'(Rm) be the space of distributions over the space S(Rm). If
u 2 S(Rm), then its Fourier transform is defined by the formula

Rm

Definition 2.1. A Sobolev-Slobodetskii space Hs(Rm), s 2 R, consists of functions
(distributions) with a finite norm

Let us note HO(Rm) = L2(Rm).

The space S(R!") is a dense subspace in the Hs(R") [1]. The space Hs(R™)
consists of functions from the space # SR') which support belongs to R™ with
induced norm. Also we need the space HQR+) which consists of distributions from
5'(RC) admitting a continuation in the whole space Hs(Rm). A norm in the space
HO(R+) is defined by the formula

llulls = infINIs

where infimum is taken from all continuations I.
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2.2 Operators

Here we consider difference operators with constant coefficients only of the type

1
D :u(x) =! "~ aku(x + ak), (2.1)
k|=0
where {ak}and{ak} are given sequences in Rm, and

1
\ak\ < + 1 - (2.2)
k=0

Definition 2.2. An operator D of the type (2.1) with coefficients ak satisfying (2.2)
is called difference operator with constant coefficients.

Lemma 2.3. Every operatorD :Hs(Rm) ! Hs(Rm) with constant coefficients is a
linear bounded operator 8 s 2 R.

2.3 Symbols

Definition 2.4. The function
1

(?) = J 2 ake~iak? (2.3)
lk|=0

is called a symbol of the operator D. The symbol aD(?) is called an elliptic symbol
ifav(?) ¢ 0,8 ?2 Rm.

Evidently under condition (2.2) aD 2 L1 (Rm), but everywhere below we
suppose that aD 2 C(Rm) taking into account that Rmis a compactification of Rm.

3 Equations and Factorization

3.1 Equations

We are interested in studying solvability of the Eq. (1.2). It can be written in the
operator form

(Du)(x) = v(x), x 2RC, (3.1)

assuming that v is a given function in RC, v 2 HO(RC), the unknown function u is
defined in RC, u 2 Hs(RC), and {ak} ¢ RC.
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By notation, u+(x) = u(x), lv is an arbitrary continuation of v on R+. Then
we put

u_(x) = (Iv)(x) —(Du+)(x),

and see that u_(x) = 0,8 x 2 R+, to explain this notation. Further we rewrite the
last equation

(Du+)(x) + u_(x) = (Iv)(x)
and apply the Fourier transform
av (Qu+(?) + u_(?) = v(?). (3.2)

To solve the Eq. (3.2) with an elliptic symbol av (?), we need to introduce a
concept of a factorization. Everywhere below we write ct(?) instead of av (?) for a
brevity.

3.2 Factorization

Letus denote ? = (?0,?m), ?20="(?i, *e= , ?m-i).

Definition 3.1. Letct(?) be an elliptic symbol. Factorization ofelliptic symbol ct(?)
is called its representation in the form

a(?) = o (?)a- (),

where factors ct+(?) admit an analytical continuation in upper and lower complex
planes C+ on the last variable ?m for almost all 202 Rm-1 and ct+(?) 2 L1 (Rm).

Definition 3.2. Index of factorization for the elliptic symbol ct?) is called an
integer

+1
x= — ] dargo-(~£,,).
-1

Remark 3.3. The index X is not really depended on ?0because it is homotopic
invariant.

Remark 3.4. Itis a principal fact the index of factorization does not correlate with
an order of operator. For our case the order of the operator D is zero in a sense of
Eskin’s book [1], but the index may be an arbitrary integer. It is essential the index
is atopological barrier for a solvability.
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Proposition 3.5. Ifx = 0, thenfor any elliptic symbol a(?), afactorization
a(?) = a+(?)a_(?)

exists, and it is unique up to a constant.

This is classical result, see details in [1- 3, 7].

4 Solvability and Boundary Value Problems

4.1 Solvability

Everywhere below we will denote Hi(D) the Fourier image of the space H(D).

Theorem 4.1. 1f\s\ < 1/2, x = 0, then the Eq. (3.1) has a unique solution u 2
Hs(RC)for arbitrary right-hand side v 2 H§(RC).

Proof. is a very simple. It is based on properties of the Hilbert transform

-

which is a linear bounded operator Hs(Rm) ! Hs(Rm) for \s\ <1/2 [1]. This
operator generates two projectors on some spaces consisting of boundary values of
analytical functions in Cx on the last variable ?2m [1- 3, 7]

M+ = 1/2(1 £ H20),
so that the representation

f =fC+f—=nCf+ N4

is unique for arbitraryf 2 Hs(Rm), \s\ <1/2. Further after factorization we write
the equality (3.2) in the form

a+ (Au+(?) + a—(Hu—?) = a—1(?)Iv(?)
and else

at(u+(?) - (N+(a—4 «1v))(?) = (M—Ha—Le-Iv))(?) - a—1» —?)-
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So the left-hand side belongs to the space Hs(R+) and the left-hand side belongs
to the space HS(R -), and these should be zero. Hence

u+(?) = a+1(?)(M+(a-1+H))(?).

It completes the proof. A

4.2 General Solution

Let x e Z. First we introduce a function

T Sy — . .
2m + 2@+ 0

which belongs to C(Rm).
Evidently the functions z = |20 for fixed 20 2 Rm-1 are analytical functions in
complex half planes C +. Moreover

1
JL dargfm~/'l"|~/_=l
2n-J + 57?0+ i

1

According to the index property [1- 3, 7], a function
1 -1(?0,?7m M 20, ?m)
has a vanishing index, and it can be factorized

1-1(?0,?mM?0,?m) = 0+(?0,?7m)a-(??m),

so we have
a(20,2m) = 1(?0,7m)a+(20,7m)*-(20, 2m),
where
C1 1
ex(0TE) = exp(PEHAL). PEGsny — o M g Vgt
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Now the Eq. (3.2), we rewrite in the form

(@m C i\20.C i)—ka+(?)u+(?) C @m- i\?20\- i)—ka—1(?)u—?)
= (m- i\20\- i) —Fla—1(?)/v(?). (4.1)

Let us note the right-hand side of the Eq. (4.1) belongs to the space Hs+!ERr m).
If bk C s\ < 1/2, we go to Sect. 4.1.
4.2.1 Positive Case

IfsC x > 1/2, we choose a minimaln 2 N sothat0 < sC > - n < 1/2. Further
we usea decomposition formula for operators M+ [1] forf 2 HsCE(rm)

Mn'n*—Q 1
Ustf = E—7r1-+ T5rN+=n3/. (4.2)
k=1 N+ N+
where
Cc1
nt(r.s,,) = £ in % /. (N'/)(r) = ~ /(2w Wb,

We rewrite the Eq. (4.1)
a+(?)w+(?) C a—0© * —?) = h(?),
wherew=(?) = (?m = i\?200£ i)—ku£(?),h(?) = (m- I\?0\- i)—=Kka—1(?)/v(?).
Obviouslywz 2 H!I°+HKR".),h 2 HsCIE(Rm).W esetsCx— = a,0 < a < 1/2.

SincesC % = nC a > a thenh 2 Hs+IBRm) =) h 2_H“(Rm). According to
Theorem 4.1, we have a solution of the last equation w+ 2 H*“(R+) in the form

w+(?) = a+1(?)(N+/r)(?).
Thus
ut(?) = ®mC NN C O"aXMc/rX?),

so that u+ 2 H“—®(R+). Now we apply the formula (4.2) to the expression I +h
and obtain the following representation

MT) = at (M)NA(F, 2,) + a+(M)N'--(~,2,,,)(N+N+/r)(? "’ (43)
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where G = (M @1+ 1) -h. Itis nothard concluding ck 2 H sk(Rm 1), sk = s+ x- kC
1/2. So we have the following

Proposition 4.2. 1f s C x > 1/2, then for the solution of the Eq. (3.1), the
representation (4.3) is valid.

Note. One can prove that the functions k € Hk(Rm~21)andsk = s + »x—k + 1/2 are defined
uniquely.

4.2.2 Negative Case

Ifs+ % < -1/2, wechoose apolynomial Qn(?) without real zeroes so that-1/2 <
s+ X+ n <0, and use the equality

ct+ (?)w+ (?) C ct—2(?)w—?) = hi(?)
from Sect. 4.2.1 once again. Since h 2 Hs+ AR m), we represent

h=Qn+(Q—h) C Q n—Q—1h)

because Q—h 2 Hs+ ~ n(Rm). Further we work with the equality

a+H()W+ (?) C (W —?) = Qn+(Q—lh) C Q n—Q—dh)

or in other words

at(?)W+(?) - Qn+(Q—h) = Q n—~Q—h) - =1WH?)

So the left-hand side belongs to the space HsCIE(R+), and the left-hand side
belongs to the space H *+x(K—) so it is distribution supported on Rm—. Its general
form in Fourier images is [1]

n

E o (?0°m--
i=1

Thus we have the formula (g+ = n+(Q —h)

(?m C |20/ C 0"ct+(?)u+(?) - Qn(?)g+(?) = E  G(?0m-L.
i=1

and a lot of solutions

U+(?) = (?mC i|?0/C iT CT+L(?)Qn(?)g+ (?) C ?mC i|20C OAC 1(?) £ Cj(?0m—1.
=1
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It is left to verify that functions Cj(?) = (?m+ i\?"\C i)+ 1(?)Cj(?")?d belong
to Hs(Rm). We have

wejwz = foacjd)zveme v\ ¢ 2>+ 2()Wem\2jt ¢ bV)2sd?,

Rm
and passing to repeated integral, we first calculate

+1

j wmC\ \C ;@KmMV2j C 12)25dm,
-

which exists only if x Cj C s < —1/2. Hence we obtain after integration that
Cj 2 H1E+j+s+12(Rm).
Thus we have proved the following

Theorem 4.3. Ifs C x < —1/2, then the Eqg. (3.1) has many solutions in the space
Hs(R+), and theformulafor a general solution in Fourier image

Ut (?',?2m) = (?m C i\?0\C +(?', ?m)
w1
C(?m C i\?00C i)*a+1(?/,? m ~ Ck(?0?m
k=0

holds, where ck 2 Hsk(Rm—1), sk = —k C Kk C 1/2, Kk = 0, se= ,x — 1 are arbitrary
functions.

Corollary 4.4. If under assumptions of the Theorem 4.3 v = 0, then a general
solution ofthe equation

(Du)(x) = 0, x 2R+ (4.4)

has theform

n

u+(?) = (M C i\200C ;)xa+1(20,2m)J 2 Ck(?0?m—i- (4.5)
k=1

4.3 Boundary Conditions

For a brevity we consider ahomogeneous equation using the Corollary 4.4. We need
some additional conditions to uniquely determine the functions G,k = 1, ees ,n. It
is an interesting fact that we cannotuse the same conditions for positive and negative
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X. Moreover the boundary operators in a certain sense are determined by the formula
for a general solution. We consider below very simple boundary operators. Usually
such operators are traces of some pseudo-differential operators on the hyperplane
xm = 0. But it is possible not for all cases.

4.3.1 Positive Case

Let us assume we know the values of u+ in n distinct hyperplanes from Rm of
type ?m = pj. We denote u+(?',pj) = rj(?0 and obtain from the formula (4.5) the
following system of linear algebraic equations

n

Ck(?)pk— = G(?")(pi C i\?200C ira +4?' pj), j = 1,0 n.
k=1

Obviously the system is uniquely solvable because its matrix has the Vander-
monde determinant. To formulate a corresponding boundary value problem, we need
some preliminaries.

We take the following boundary conditions

+1
joou+r(X Xm)e~ppXmdXm = n(X), j = 1,ee ,n. (4.6)
-1

It will mean u+(?0,pj) = r,(?0. Ifu+ 2 Hs(R+) then 5 2 Hs—1/2(R+) [1]. So
we have the following

Theorem 4.5. Let 1 2 Hs—4/2(Rm—),j = 1,ess ,n. Then the boundary value
problem (4.4), (4.6) has a unique solution in the space Hs(R+).

Note. One can consider a linear combination of the conditions (4.6) and require nonvanishing
the associated determinant.

4.3.2 Negative Case

This case admits integration for the right-hand side of the formula (4.5); thus, we
take boundary conditions in the standard form

(Aju+)(X)km=0 = n(X), j= 1 .. ,n 4.7)

where Aj are pseudo-differential operators with symbols Aj(?0, ?m) satisfying the
condition

\Aj(20,72m) - (1 CI?2' 1+ \
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Let us denote
+ i

aik(?") = J Aj(? 2m)m C i|?20] C OXCT+420, 2m)2m—+d?m.
-

Theorem 4.6. Let yyCx C k < -1,5 2 Hj(Rm—), 5= s- V- 1/2, Vj,
k = 1, ,n, and the

?/eim_ 1 |det(ajk(?0)}',,k:1| > 0-

Then the boundary value problem (4.4),(4.7) has a unique solution in the space
Hs(R+).

5 Conclusion

There are a lot of possibilities to state distinct problems for the Eq. (3.1) adding
some additional conditions. Also it seems to be interesting to transfer this approach
and results to a discrete case, i.e., for spaces of a discrete variable. This will be
discussed elsewhere.
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