Difference Equations and Boundary Value Problems

Alexander V. Vasilyev and Vladimir B. Vasilyev

Abstract

We study multidimensional difference equations with a continual variable in the Sobolev-Slobodetskii spaces. Using ideas and methods of the theory of boundary value problems for elliptic pseudo-differential equations, we suggest to consider certain boundary value problems for such difference equations. Special boundary conditions permit to prove unique solvability for these boundary value problems in appropriate Sobolev-Slobodetskii spaces.

Keywords Difference equation - Symbol • Factorization • Index • Boundary value problem • Solvability

Mathematics Subject Classification (2010): Primary 39A14; Secondary $35 J 40$

1 Introduction

We consider a general difference equation of the type

$$
\begin{equation*}
\sum_{|k|=0}^{\infty} a_{k}(x) u\left(x+\alpha_{k}\right)=v(x), \quad x \in D, \tag{1.1}
\end{equation*}
$$

where $D \subset \mathbb{R}^{m}$ is a canonical domain like $\mathbb{R}^{m}, \mathbb{R}_{ \pm}^{m}=\left\{x \in \mathbb{R}^{m}: x=\left(x_{1}, \cdots, x_{m}\right)\right.$, $\left.\pm x_{m}>0\right\}, C_{+}^{a}=\left\{x \in \mathbb{R}^{m}: x_{m}>a\left|x^{\prime}\right|, x^{\prime}=\left(x_{1}, \cdots, x_{m-1}\right), a>0\right\}, k$ is a multiindex, $|k|=k_{1}+\cdots+k_{m},\left\{\alpha_{k}\right\} \subset D$. Equations of a such type have a long history $[4,5,8]$ and in general there is no algorithm for solving the Eq. (1.1). If so then any assertion on a solvability of such equations is very important and required. One can

[^0]add that Eq. (1.1) appear in very distinct branches of a science like mathematical biology, technical problems, etc. Also such equations have arisen in studies of the second author $[10,11]$ related to boundary value problems in a plane corner. Onedimensional case for such equations was considered in [12].

Here we will start from the equation

$$
\begin{equation*}
\sum_{|k|=0}^{\infty} a_{k} u\left(x+\alpha_{k}\right)=v(x), \quad x \in \mathbb{R}_{+}^{m} \tag{1.2}
\end{equation*}
$$

with constant coefficients because further we will try to use a local principle [6] to obtain some results on Fredholm properties of the general Eq. (1.1). We use methods of the theory of boundary value problems for elliptic pseudo-differential equations $[1,9]$. For our case of a half-space, these methods are based on the theory of one-dimensional singular integral equations and classical Riemann boundary value problem [2, 3, 7].

2 Spaces, Operators, and Symbols

2.1 Spaces

Let $S\left(\mathbb{R}^{m}\right)$ be the Schwartz class of infinitely differentiable rapidly decreasing at infinity functions and $S^{\prime}\left(\mathbb{R}^{m}\right)$ be the space of distributions over the space $S\left(\mathbb{R}^{m}\right)$. If $u \in S\left(\mathbb{R}^{m}\right)$, then its Fourier transform is defined by the formula

$$
\tilde{u}(\xi)=\int_{\mathbb{R}^{m}} e^{-i x \cdot \xi} u(x) d x
$$

Definition 2.1. A Sobolev-Slobodetskii space $H^{s}\left(\mathbb{R}^{m}\right), s \in \mathbb{R}$, consists of functions (distributions) with a finite norm

$$
\|u\|_{s}=\left(\int_{\mathbb{R}^{m}} \tilde{u}(\xi)(1+|\xi|)^{2 s} d \xi\right)^{1 / 2}
$$

Let us note $H^{0}\left(\mathbb{R}^{m}\right)=L_{2}\left(\mathbb{R}^{m}\right)$.
The space $S\left(\mathbb{R}^{m}\right)$ is a dense subspace in the $H^{s}\left(\mathbb{R}^{m}\right)$ [1]. The space $H^{s}\left(\mathbb{R}_{+}^{m}\right)$ consists of functions from the space $H^{s}\left(\mathbb{R}^{m}\right)$ which support belongs to $\overline{\mathbb{R}_{+}^{m}}$ with induced norm. Also we need the space $H_{0}^{s}\left(\mathbb{R}_{+}^{m}\right)$ which consists of distributions from $S^{\prime}\left(\mathbb{R}_{+}^{m}\right)$ admitting a continuation in the whole space $H^{s}\left(\mathbb{R}^{m}\right)$. A norm in the space $H_{0}^{s}\left(\mathbb{R}_{+}^{m}\right)$ is defined by the formula

$$
\|u\|_{s}^{+}=\inf \|l u\|_{s},
$$

where infimum is taken from all continuations l.

2.2 Operators

Here we consider difference operators with constant coefficients only of the type

$$
\begin{equation*}
\mathcal{D}: u(x) \longmapsto \sum_{|k|=0}^{\infty} a_{k} u\left(x+\alpha_{k}\right) \tag{2.1}
\end{equation*}
$$

where $\left\{a_{k}\right\}$ and $\left\{\alpha_{k}\right\}$ are given sequences in \mathbb{R}^{m}, and

$$
\begin{equation*}
\sum_{|k|=0}^{\infty}\left|a_{k}\right|<+\infty \tag{2.2}
\end{equation*}
$$

Definition 2.2. An operator \mathcal{D} of the type (2.1) with coefficients a_{k} satisfying (2.2) is called difference operator with constant coefficients.

Lemma 2.3. Every operator $\mathcal{D}: H^{s}\left(\mathbb{R}^{m}\right) \rightarrow H^{s}\left(\mathbb{R}^{m}\right)$ with constant coefficients is a linear bounded operator $\forall s \in \mathbb{R}$.

2.3 Symbols

Definition 2.4. The function

$$
\begin{equation*}
\sigma_{\mathcal{D}}(\xi)=\sum_{|k|=0}^{\infty} a_{k} e^{-i \alpha_{k} \cdot \xi} \tag{2.3}
\end{equation*}
$$

is called a symbol of the operator \mathcal{D}. The symbol $\sigma_{\mathcal{D}}(\xi)$ is called an elliptic symbol if $\sigma_{\mathcal{D}}(\xi) \neq 0, \forall \xi \in \mathbb{R}^{m}$.

Evidently under condition (2.2) $\sigma_{\mathcal{D}} \in L_{\infty}\left(\mathbb{R}^{m}\right)$, but everywhere below we suppose that $\sigma_{\mathcal{D}} \in C\left(\dot{\mathbb{R}}^{m}\right)$ taking into account that $\dot{\mathbb{R}}^{m}$ is a compactification of \mathbb{R}^{m}.

3 Equations and Factorization

3.1 Equations

We are interested in studying solvability of the Eq. (1.2). It can be written in the operator form

$$
\begin{equation*}
(\mathcal{D} u)(x)=v(x), \quad x \in \mathbb{R}_{+}^{m} \tag{3.1}
\end{equation*}
$$

assuming that v is a given function in $\mathbb{R}_{+}^{m}, v \in H_{0}^{s}\left(\mathbb{R}_{+}^{m}\right)$, the unknown function u is defined in $\mathbb{R}_{+}^{m}, u \in H^{s}\left(\mathbb{R}_{+}^{m}\right)$, and $\left\{\alpha_{k}\right\} \subset \mathbb{R}_{+}^{m}$.

By notation, $u_{+}(x)=u(x), l v$ is an arbitrary continuation of v on \mathbb{R}_{+}^{m}. Then we put

$$
u_{-}(x)=(l v)(x)-\left(\mathcal{D} u_{+}\right)(x)
$$

and see that $u_{-}(x)=0, \forall x \in \mathbb{R}_{+}^{m}$, to explain this notation. Further we rewrite the last equation

$$
\left(\mathcal{D} u_{+}\right)(x)+u_{-}(x)=(l v)(x)
$$

and apply the Fourier transform

$$
\begin{equation*}
\sigma_{\mathcal{D}}(\xi) \tilde{u}_{+}(\xi)+\tilde{u}_{-}(\xi)=\widetilde{l v}(\xi) \tag{3.2}
\end{equation*}
$$

To solve the Eq. (3.2) with an elliptic symbol $\sigma_{\mathcal{D}}(\xi)$, we need to introduce a concept of a factorization. Everywhere below we write $\sigma(\xi)$ instead of $\sigma_{\mathcal{D}}(\xi)$ for a brevity.

3.2 Factorization

Let us denote $\xi=\left(\xi^{\prime}, \xi_{m}\right), \xi^{\prime}=\left(\xi_{1}, \cdots, \xi_{m-1}\right)$.
Definition 3.1. Let $\sigma(\xi)$ be an elliptic symbol. Factorization of elliptic symbol $\sigma(\xi)$ is called its representation in the form

$$
\sigma(\xi)=\sigma_{+}(\xi) \sigma_{-}(\xi)
$$

where factors $\sigma_{ \pm}(\xi)$ admit an analytical continuation in upper and lower complex planes $\mathbb{C}_{ \pm}$on the last variable ξ_{m} for almost all $\xi^{\prime} \in \mathbb{R}^{m-1}$ and $\sigma_{ \pm}(\xi) \in L_{\infty}\left(\mathbb{R}^{m}\right)$.

Definition 3.2. Index of factorization for the elliptic symbol $\sigma(\xi)$ is called an integer

$$
\mathfrak{X}=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \arg \sigma\left(\cdot, \xi_{m}\right)
$$

Remark 3.3. The index \mathfrak{x} is not really depended on ξ^{\prime} because it is homotopic invariant.

Remark 3.4. It is a principal fact the index of factorization does not correlate with an order of operator. For our case the order of the operator \mathcal{D} is zero in a sense of Eskin's book [1], but the index may be an arbitrary integer. It is essential the index is a topological barrier for a solvability.

Proposition 3.5. If $æ=0$, then for any elliptic symbol $\sigma(\xi)$, a factorization

$$
\sigma(\xi)=\sigma_{+}(\xi) \sigma_{-}(\xi)
$$

exists, and it is unique up to a constant.
This is classical result, see details in $[1-3,7]$.

4 Solvability and Boundary Value Problems

4.1 Solvability

Everywhere below we will denote $\tilde{H}(D)$ the Fourier image of the space $H(D)$.
Theorem 4.1. If $|s|<1 / 2, \mathfrak{x}=0$, then the Eq. (3.1) has a unique solution $u \in$ $H^{s}\left(\mathbb{R}_{+}^{m}\right)$ for arbitrary right-hand side $v \in H_{0}^{s}\left(\mathbb{R}_{+}^{m}\right)$.
Proof is a very simple. It is based on properties of the Hilbert transform

$$
\left(H_{\xi^{\prime}} u\right)\left(\xi^{\prime}, \xi_{m}\right)=\frac{1}{\pi i} v \cdot p \cdot \int_{-\infty}^{+\infty} \frac{u\left(\xi^{\prime}, \eta_{m}\right) d \eta_{m}}{\xi_{m}-\eta_{m}}
$$

which is a linear bounded operator $H^{s}\left(\mathbb{R}^{m}\right) \rightarrow H^{s}\left(\mathbb{R}^{m}\right)$ for $|s|<1 / 2$ [1]. This operator generates two projectors on some spaces consisting of boundary values of analytical functions in $\mathbb{C}_{ \pm}$on the last variable $\xi_{m}[1-3,7]$

$$
\Pi_{ \pm}=1 / 2\left(I \pm H_{\xi^{\prime}}\right)
$$

so that the representation

$$
f=f_{+}+f_{-} \equiv \Pi_{+} f+\Pi_{-} f
$$

is unique for arbitrary $f \in H^{s}\left(\mathbb{R}^{m}\right),|s|<1 / 2$. Further after factorization we write the equality (3.2) in the form

$$
\sigma_{+}(\xi) \tilde{u}_{+}(\xi)+\sigma_{-}^{-1}(\xi) \tilde{u}_{-}(\xi)=\sigma_{-}^{-1}(\xi) \widetilde{l v}(\xi)
$$

and else

$$
\sigma_{+}(\xi) \tilde{u}_{+}(\xi)-\left(\Pi_{+}\left(\sigma_{-}^{-1} \cdot \widetilde{v}\right)\right)(\xi)=\left(\Pi_{-}\left(\sigma_{-}^{-1} \cdot \widetilde{l v}\right)\right)(\xi)-\sigma_{-}^{-1}(\xi) \tilde{u}_{-}(\xi)
$$

So the left-hand side belongs to the space $\widetilde{H}^{s}\left(\mathbb{R}_{+}^{m}\right)$ and the left-hand side belongs to the space $\widetilde{H}^{s}\left(\mathbb{R}_{-}^{m}\right)$, and these should be zero. Hence

$$
\tilde{u}_{+}(\xi)=\sigma_{+}^{-1}(\xi)\left(\Pi_{+}\left(\sigma_{-}^{-1} \cdot \widetilde{l v}\right)\right)(\xi) .
$$

It completes the proof. Δ

4.2 General Solution

Let $x \in \mathbb{Z}$. First we introduce a function

$$
\omega\left(\xi^{\prime}, \xi_{m}\right)=\left(\frac{\xi_{m}-i\left|\xi^{\prime}\right|-i}{\xi_{m}+i\left|\xi^{\prime}\right|+i}\right)^{\mathrm{x}}
$$

which belongs to $C\left(\dot{\mathbb{R}}^{m}\right)$.
Evidently the functions $z \pm i\left|\xi^{\prime}\right|$ for fixed $\xi^{\prime} \in \mathbb{R}^{m-1}$ are analytical functions in complex half planes $\mathbb{C}_{ \pm}$. Moreover

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty} d \arg \frac{\xi_{m}-i\left|\xi^{\prime}\right|-i}{\xi_{m}+i\left|\xi^{\prime}\right|+i}=1
$$

According to the index property $[1-3,7]$, a function

$$
\omega^{-1}\left(\xi^{\prime}, \xi_{m}\right) \sigma\left(\xi^{\prime}, \xi_{m}\right)
$$

has a vanishing index, and it can be factorized

$$
\omega^{-1}\left(\xi^{\prime}, \xi_{m}\right) \sigma\left(\xi^{\prime}, \xi_{m}\right)=\sigma_{+}\left(\xi^{\prime}, \xi_{m}\right) \sigma_{-}\left(\xi^{\prime}, \xi_{m}\right)
$$

so we have

$$
\sigma\left(\xi^{\prime}, \xi_{m}\right)=\omega\left(\xi^{\prime}, \xi_{m}\right) \sigma_{+}\left(\xi^{\prime}, \xi_{m}\right) \sigma_{-}\left(\xi^{\prime}, \xi_{m}\right)
$$

where

$$
\sigma_{ \pm}\left(\xi^{\prime}, \xi_{m}\right)=\exp \left(\Psi^{ \pm}\left(\xi^{\prime}, \xi_{m}\right)\right), \quad \Psi^{ \pm}\left(\xi^{\prime}, \xi_{m}\right)=\frac{1}{2 \pi i} \lim _{\tau \rightarrow 0+} \int_{-\infty}^{+\infty} \frac{\ln \left(\omega^{-1} \sigma\right)\left(\xi, \eta_{m}\right) d \eta_{m i}}{\xi_{m} \pm i \tau-\eta_{m}}
$$

Now the Eq. (3.2), we rewrite in the form

$$
\begin{align*}
& \left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{-\mathfrak{x}} \sigma_{+}(\xi) \tilde{u}_{+}(\xi)+\left(\xi_{m}-i\left|\xi^{\prime}\right|-i\right)^{-\mathfrak{x}} \sigma_{-}^{-1}(\xi) \tilde{u}_{-}(\xi) \\
= & \left(\xi_{m}-i\left|\xi^{\prime}\right|-i\right)^{-\mathfrak{x}} \sigma_{-}^{-1}(\xi) \widetilde{l v}(\xi) . \tag{4.1}
\end{align*}
$$

Let us note the right-hand side of the Eq. (4.1) belongs to the space $\widetilde{H}^{s+x}\left(\mathbb{R}^{m}\right)$. If $|æ+s|<1 / 2$, we go to Sect. 4.1.

4.2.1 Positive Case

If $s+æ>1 / 2$, we choose a minimal $n \in \mathbb{N}$ so that $0<s+\mathfrak{Z}-n<1 / 2$. Further we use a decomposition formula for operators $\Pi_{ \pm}[1]$ for $\tilde{f} \in \widetilde{H}^{s+x}\left(\mathbb{R}^{m}\right)$

$$
\begin{equation*}
\Pi_{ \pm} \tilde{f}=\sum_{k=1}^{n} \frac{\Pi^{\prime} \Lambda_{ \pm}^{k-1} \tilde{f}}{\Lambda_{ \pm}^{k}}+\frac{1}{\Lambda_{ \pm}^{n}} \Pi_{ \pm} \Lambda_{ \pm \pm}^{n} \tilde{f} \tag{4.2}
\end{equation*}
$$

where

$$
\Lambda_{ \pm}\left(\xi^{\prime}, \xi_{m}\right)=\xi_{m} \pm\left|\xi^{\prime}\right| \pm i, \quad\left(\Pi^{\prime} \tilde{f}\right)\left(\xi^{\prime}\right)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} \tilde{f}\left(\xi^{\prime}, \xi_{m}\right) d \xi_{m}
$$

We rewrite the Eq. (4.1)

$$
\sigma_{+}(\xi) \tilde{w}_{+}(\xi)+\sigma_{-}^{-1}(\xi) \tilde{w}_{-}(\xi)=\tilde{h}(\xi)
$$

where $\tilde{w}_{ \pm}(\xi)=\left(\xi_{m} \pm i\left|\xi^{\prime}\right| \pm i\right)^{-x} \tilde{u}_{ \pm}(\xi), \tilde{h}(\xi)=\left(\xi_{m}-i\left|\xi^{\prime}\right|-i\right)^{-x} \sigma_{-}^{-1}(\xi) \widetilde{l v}(\xi)$.
Obviously $\tilde{w}_{ \pm} \in \widetilde{H}^{s+x}\left(\mathbb{R}_{ \pm}^{m}\right), \tilde{h} \in \widetilde{H}^{s+x}\left(\mathbb{R}^{m}\right)$. We set $s+\mathfrak{x}-n=\alpha, 0<\alpha<1 / 2$. Since $s+\mathfrak{x}=n+\alpha>\alpha$ then $\tilde{h} \in \widetilde{H}^{s+x}\left(\mathbb{R}^{m}\right) \Longrightarrow h \in \widetilde{H}^{\alpha}\left(\mathbb{R}^{m}\right)$. According to Theorem 4.1, we have a solution of the last equation $\tilde{w}_{+} \in \widetilde{H}^{\alpha}\left(\mathbb{R}_{+}^{m}\right)$ in the form

$$
\tilde{w}_{+}(\xi)=\sigma_{+}^{-1}(\xi)\left(\Pi_{+} \tilde{h}\right)(\xi)
$$

Thus

$$
\tilde{u}_{+}(\xi)=\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\mathfrak{m}} \sigma_{+}^{-1}(\xi)\left(\Pi_{+} \tilde{h}\right)(\xi)
$$

so that $\tilde{u}_{+} \in \widetilde{H}^{\alpha-\mathfrak{x}}\left(\mathbb{R}_{+}^{m}\right)$. Now we apply the formula (4.2) to the expression $\Pi_{+} \tilde{h}$ and obtain the following representation

$$
\begin{equation*}
\tilde{u}_{+}(\xi)=\sum_{k=1}^{n} \frac{\tilde{c}_{k}\left(\xi^{\prime}\right)}{\sigma_{+}(\xi) \Lambda_{+}^{k-x}\left(\xi^{\prime}, \xi_{m}\right)}+\frac{1}{\sigma_{+}(\xi) \Lambda_{+}^{n-x}\left(\xi^{\prime}, \xi_{m}\right)}\left(\Pi_{ \pm} \Lambda_{+}^{n} \tilde{h}\right)\left(\xi^{\prime}, \xi_{m}\right), \tag{4.3}
\end{equation*}
$$

where $\tilde{c}_{k}=\left(\Pi^{\prime} \Lambda_{+}^{k-1}\right) \tilde{h}$. It is not hard concluding $\tilde{c}_{k} \in \widetilde{H}^{s_{k}}\left(\mathbb{R}^{m-1}\right), s_{k}=s+\mathfrak{x}-k+$ $1 / 2$. So we have the following

Proposition 4.2. If $s+æ>1 / 2$, then for the solution of the Eq.(3.1), the representation (4.3) is valid.

Note. One can prove that the functions $\tilde{c}_{k} \in \widetilde{H}^{s_{k}}\left(\mathbb{R}^{m-1}\right)$ and $s_{k}=s+\mathfrak{x}-k+1 / 2$ are defined uniquely.

4.2.2 Negative Case

If $s+\mathfrak{X}<-1 / 2$, we choose a polynomial $Q_{n}(\xi)$ without real zeroes so that $-1 / 2<$ $s+\mathfrak{x}+n<0$, and use the equality

$$
\sigma_{+}(\xi) \tilde{w}_{+}(\xi)+\sigma_{-}^{-1}(\xi) \tilde{w}_{-}(\xi)=\tilde{h}(\xi)
$$

from Sect. 4.2.1 once again. Since $\tilde{h} \in \widetilde{H}^{s+\infty}\left(\mathbb{R}^{m}\right)$, we represent

$$
\tilde{h}=Q \Pi_{+}\left(Q^{-1} \tilde{h}\right)+Q \Pi_{-}\left(Q^{-1} \tilde{h}\right)
$$

because $Q^{-1} \tilde{h} \in \widetilde{H}^{s+x+n}\left(\mathbb{R}^{m}\right)$. Further we work with the equality

$$
\sigma_{+}(\xi) \tilde{w}_{+}(\xi)+\sigma_{-}^{-1}(\xi) \tilde{w}_{-}(\xi)=Q \Pi_{+}\left(Q^{-1} \tilde{h}\right)+Q \Pi_{-}\left(Q^{-1} \tilde{h}\right)
$$

or in other words

$$
\sigma_{+}(\xi) \tilde{w}_{+}(\xi)-Q \Pi_{+}\left(Q^{-1} \tilde{h}\right)=Q \Pi_{-}\left(Q^{-1} \tilde{h}\right)-\sigma_{-}^{-1}(\xi) \check{w}_{-}(\xi)
$$

So the left-hand side belongs to the space $\widetilde{H}^{s+x}\left(\mathbb{R}_{+}^{m}\right)$, and the left-hand side belongs to the space $\widetilde{H}^{s+\infty}\left(\mathbb{R}_{-}^{m}\right)$ so it is distribution supported on \mathbb{R}^{m-1}. Its general form in Fourier images is [1]

$$
\sum_{j=1}^{n} \tilde{c}_{j}\left(\xi^{\prime}\right) \xi_{m}^{j-1}
$$

Thus we have the formula $\left(\tilde{g}_{+}=\Pi_{+}\left(Q^{-1} \tilde{h}\right)\right.$

$$
\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{-x} \sigma_{+}(\xi) \tilde{u}_{+}(\xi)-Q_{n}(\xi) g_{+}(\xi)=\sum_{j=1}^{n} \tilde{c}_{j}\left(\xi^{\prime}\right) \xi_{m}^{j-1}
$$

and a lot of solutions

$$
\tilde{u}_{+}(\xi)=\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\mathfrak{x}} \sigma_{+}^{-1}(\xi) Q_{n}(\xi) g_{+}(\xi)+\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{x} \sigma_{+}^{-1}(\xi) \sum_{j=1}^{n} \tilde{c}_{j}\left(\xi^{\prime}\right) \xi_{m}^{j-1}
$$

It is left to verify that functions $\tilde{C}_{j}(\xi)=\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\mathfrak{x}} \sigma_{+}^{-1}(\xi) \tilde{c}_{j}\left(\xi^{\prime}\right) \xi_{m}^{j}$ belong to $\widetilde{H}^{s}\left(\mathbb{R}^{m}\right)$. We have

$$
\left\|C_{j}\right\|_{s}^{2}=\int_{\mathbb{R}^{m}}\left|\tilde{c}_{j}\left(\xi^{\prime}\right)\right|^{2}\left|\xi_{m}+i\right| \xi^{\prime}|+i|^{2 æ}\left|\sigma_{+}^{-2}(\xi)\right|\left|\xi_{m}\right|^{2 j}(1+|\xi|)^{2 s} d \xi
$$

and passing to repeated integral, we first calculate

$$
\int_{-\infty}^{+\infty}\left|\xi_{m}+i\right| \xi^{\prime}|+i|^{2 æ}\left|\xi_{m}\right|^{2 j}(1+|\xi|)^{2 s} d \xi_{m}
$$

which exists only if $\mathfrak{x}+j+s<-1 / 2$. Hence we obtain after integration that $C_{j} \in H^{\mathfrak{x}+j+s+1 / 2}\left(\mathbb{R}^{m-1}\right)$.

Thus we have proved the following
Theorem 4.3. If $s+\mathfrak{x}<-1 / 2$, then the Eq. (3.1) has many solutions in the space $H^{s}\left(\mathbb{R}_{+}^{m}\right)$, and the formula for a general solution in Fourier image

$$
\begin{aligned}
\tilde{u}_{+}\left(\xi^{\prime}, \xi_{m}\right)= & \left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\circledast} \sigma_{+}^{-1}(\xi) Q_{n}(\xi) \tilde{g}_{+}\left(\xi^{\prime}, \xi_{m}\right) \\
& +\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\circledast} \sigma_{+}^{-1}\left(\xi^{\prime}, \xi_{m}\right) \sum_{k=0}^{\circledast-1} c_{k}\left(\xi^{\prime}\right) \xi_{m}^{k}
\end{aligned}
$$

holds, where $c_{k} \in H^{s k}\left(\mathbb{R}^{m-1}\right), s_{k}=-\mathfrak{x}+k+1 / 2, k=0, \cdots, \mathfrak{x}-1$ are arbitrary functions.

Corollary 4.4. If under assumptions of the Theorem $4.3 v \equiv 0$, then a general solution of the equation

$$
\begin{equation*}
(\mathcal{D} u)(x)=0, \quad x \in \mathbb{R}_{+}^{m} \tag{4.4}
\end{equation*}
$$

has the form

$$
\begin{equation*}
\tilde{u}_{+}(\xi)=\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{æ} \sigma_{+}^{-1}\left(\xi^{\prime}, \xi_{m}\right) \sum_{k=1}^{n} \tilde{c}_{k}\left(\xi^{\prime}\right) \xi_{m}^{k-1} \tag{4.5}
\end{equation*}
$$

4.3 Boundary Conditions

For a brevity we consider a homogeneous equation using the Corollary 4.4. We need some additional conditions to uniquely determine the functions $\tilde{c}_{k}, k=1, \cdots, n$. It is an interesting fact that we cannot use the same conditions for positive and negative
x. Moreover the boundary operators in a certain sense are determined by the formula for a general solution. We consider below very simple boundary operators. Usually such operators are traces of some pseudo-differential operators on the hyperplane $x_{m}=0$. But it is possible not for all cases.

4.3.1 Positive Case

Let us assume we know the values of \tilde{u}_{+}in n distinct hyperplanes from \mathbb{R}^{m} of type $\xi_{m}=p_{j}$. We denote $\tilde{u}_{+}\left(\xi^{\prime}, p_{j}\right) \equiv \tilde{r}_{j}\left(\xi^{\prime}\right)$ and obtain from the formula (4.5) the following system of linear algebraic equations

$$
\sum_{k=1}^{n} \tilde{c}_{k}\left(\xi^{\prime}\right) p_{j}^{k-1}=\tilde{r}_{j}\left(\xi^{\prime}\right)\left(p_{j}+i\left|\xi^{\prime}\right|+i\right)^{\mathrm{x}} \sigma_{+}^{-1}\left(\xi^{\prime}, p_{j}\right), \quad j=1, \cdots, n
$$

Obviously the system is uniquely solvable because its matrix has the Vandermonde determinant. To formulate a corresponding boundary value problem, we need some preliminaries.

We take the following boundary conditions

$$
\begin{equation*}
\int_{-\infty}^{+\infty} u_{+}\left(x^{\prime}, x_{m}\right) e^{-i p x_{m}} d x_{m}=r_{j}\left(x^{\prime}\right), \quad j=1, \cdots, n \tag{4.6}
\end{equation*}
$$

It will mean $\tilde{u}_{+}\left(\xi^{\prime}, p_{j}\right)=\tilde{r}_{j}\left(\xi^{\prime}\right)$. If $u_{+} \in H^{s}\left(\mathbb{R}_{+}^{m}\right)$ then $r_{j} \in H^{s-1 / 2}\left(\mathbb{R}_{+}^{m}\right)$ [1]. So we have the following

Theorem 4.5. Let $r_{j} \in H^{s-1 / 2}\left(\mathbb{R}^{m-1}\right), j=1, \cdots, n$. Then the boundary value problem (4.4), (4.6) has a unique solution in the space $H^{s}\left(\mathbb{R}_{+}^{m}\right)$.

Note. One can consider a linear combination of the conditions (4.6) and require nonvanishing the associated determinant.

4.3.2 Negative Case

This case admits integration for the right-hand side of the formula (4.5); thus, we take boundary conditions in the standard form

$$
\begin{equation*}
\left(A_{j} u_{+}\right)(x)_{\left.\right|_{x_{m}=0}}=r_{j}\left(x^{\prime}\right), \quad j=1, \cdots, n, \tag{4.7}
\end{equation*}
$$

where A_{j} are pseudo-differential operators with symbols $A_{j}\left(\xi^{\prime}, \xi_{m}\right)$ satisfying the condition

$$
\mid A_{j}\left(\xi^{\prime}, \xi_{m}\right) \sim\left(1+\left|\xi^{\prime}\right|+\left|\xi_{m}\right|\right)^{\gamma_{j}} .
$$

Let us denote

$$
a_{j k}\left(\xi^{\prime}\right)=\int_{-\infty}^{+\infty} A_{j}\left(\xi^{\prime}, \xi_{m}\right)\left(\xi_{m}+i\left|\xi^{\prime}\right|+i\right)^{\infty} \sigma_{+}^{-1}\left(\xi^{\prime}, \xi_{m}\right) \xi_{m}^{k-1} d \xi_{m}
$$

Theorem 4.6. Let $\gamma_{j}+\mathfrak{x}+k<-1, r_{j} \in H^{s_{j}}\left(\mathbb{R}^{m-1}\right), s_{j}=s-\gamma_{j}-1 / 2, \forall j$, $k=1, \cdots, n$, and the

$$
\inf _{\xi^{\prime} \in \mathbb{R}^{m-1}}\left|\operatorname{det}\left(a_{j k}\left(\xi^{\prime}\right)\right)_{j, k=1}^{n}\right|>0 .
$$

Then the boundary value problem (4.4),(4.7) has a unique solution in the space $H^{s}\left(\mathbb{R}_{+}^{m}\right)$.

5 Conclusion

There are a lot of possibilities to state distinct problems for the Eq. (3.1) adding some additional conditions. Also it seems to be interesting to transfer this approach and results to a discrete case, i.e., for spaces of a discrete variable. This will be discussed elsewhere.

Acknowledgements This work was partially supported by the Russian Foundation for Basic Research and government of Lipetsk region of Russia, project no. 14-41-03595-a.

References

1. Eskin, G.: Boundary Value Problems for Elliptic Pseudodifferential Equations. American Mathematical Society, Providence (1981)
2. Gakhov, F.D.: Boundary Value Problems. Dover Publications, New York (1981)
3. Gokhberg, I., Krupnik, N.: Introduction to the Theory of One Dimensional Singular Integral Equations. Birkhäuser, Boston (2010)
4. Jordan, C.: Calculus of Finite Differences. Chelsea Publishing Company, New York (1950)
5. Milne-Thomson, L.M.: The Calculus of Finite Differences. Chelsea Publishing Company, New York (1981)
6. Mikhlin, S.G., Prößdorf, S.: Singular Integral Operators. Akademie-Verlag, Berlin (1986)
7. Muskhelishvili, N.I.: Singular Integral Equations. North Holland, Amsterdam (1976)
8. Titchmarsh, E.: Introduction to the Theory of Fourier Integrals. Chelsea Publishing Company, New York (1986)
9. Vasil'ev, V.B.: Wave Factorization of Elliptic Symbols: Theory and Applications. Introduction to the Theory of Boundary Value Problems in Non-Smooth Domains. Kluwer Academic Publishers, Boston (2000)
10. Vasilyev, V.B.: General boundary value problems for Pseudo differential equations and related difference equations. Adv. Differ. Equ. 2013(289), 1-7 (2013)
11. Vasilyev, V.B.: On some difference equations of first order. Tatra Mt. Math. Publ. 54, 165-181 (2013)
12. Vasilyev, A.V., Vasilyev, V.B.: On some classes of difference equations of infinite order. Adv. Differ. Equ. 2015(211), 1-9 (2015)

[^0]: A.V. Vasilyev

 National Research Belgorod State University, Studencheskaya 14/1, Belgorod 307008, Russia
 e-mail: alexvassel@gmail.com
 V.B. Vasilyev (\triangle)

 Lipetsk State Technical University, Moskovskaya 30, Lipetsk 398600, Russia
 e-mail: vladimir.b.vasilyev@gmail.com

