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Abstract We describe different aspects of the theory of pseudo-differential equa-
tions on manifolds with non-smooth boundaries. Using a concept of special factor-
ization for an elliptic symbol we consider distinct variants of this approach including
asymptotic and discrete situations.
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1 Introduction

From 90s the author develops the theory of boundary value problems based on two
principles [9]. These are a local principle and factorizability principle at a boundary
point like [2, 15, 3]. The first principle was known earlier and it also was known
as a freezing coefficients principle. Usually the second name corresponds to partial
differential equations theory but the first name was introduced for multidimensional
singular integral equations and more general for pseudo-differential equations. Main
difference between differential and pseudo-differential operator is the following. A
differential operator D has a local property i.e. if one takes two smooth functions
φ ,ψ with non-intersecting supports and compose the operator ψ ·D ·φ then it leads
to a zero operator. For a pseudo-differential operator P this property does not hold
and we obtain for ψ ·P ·φ a compact operator only. This case permits to obtain
rough properties for pseudo-differential equations and related boundary value prob-
lems namely Fredholm properties only in comparison with differential operators and
boundary value problems where one has as a rule results on existence and unique-
ness.
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There are a lot of approaches to construct such a theory (see for example papers
[5, 7, 8]). I have written many times [11, 17] what is difference between this con-
sideration and others, it is choice of distinct key principles. In any case one needs
to declare an invertibility of so-called local representatives of an initial pseudo-
differential operator to describe its Fredholm properties.

Local principle and factorizability was first introduced in papers of I.B. Simo-
nenko [15] (for multidimensional singular integral operators in Lebesgue Lp-spaces)
and M.I. Vishik – G.I. Eskin [3] (for pseudo-differential operators in Sobolev – Slo-
bodetskii Hs-spaces). For manifolds with a smooth boundary one uses an idea of
“rectification of a boundary“, and the problems reduces to a half-space case, for
which a factorizability principle holds immediately because under localization at
a boundary point and applying the Fourier transform we obtain well known one-
dimensional classical Riemann boundary value problem for upper and lower com-
plex half-planes with a multidimensional parameter. This approach does not work if
a boundary has at least one singular point like a conical point. One needs here other
considerations and approaches.

2 Domains and operators

Our main goal is to describe possible solvability conditions for the pseudo-differential
equation

(Au)(x) = f (x), x ∈ D,

where D is manifold with a boundary, A is pseudo-differential operator with the
symbol A(x,ξ ).

Such operators are defined locally by the formula

u(x) 7−→
∫

Rm

∫
Rm

A(x,ξ )ũ(y)e−i(x−y)·ξ dξ dy, (1)

if D is a smooth compact manifold, because can use ”freezing coefficients principle
”, or in other words ”local principle”. For manifold with a smooth boundary we need
new local formula for defining the operator A: more precisely in inner points of D
we use the formula 1, but in boundary points we need another formula

u(x) 7−→
∫

Rm
+

∫
Rm

A(x,ξ )u(y)e−i(x−y)·ξ dξ dy. (2)

For invertibility of such operator (2) with symbol A(·,ξ ) non-depending on spa-
tial variable x one can apply the theory of classical Riemann boundary problem for
upper and lower complex half-planes with a parameter ξ ′. This step was systemati-
cally studied in the book [3]. But if the boundary ∂D has at least one conical point,
this approach is not effective.
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The conical point at the boundary is a such point, for which its neighborhood is
diffeomorphic to the cone

Ca
+ = {x ∈ Rm : xm > a|x′|, x′ = (x1, ...,xm−1), a > 0},

hence the local definition for pseudo-differential operator near the conical point is
the following

u(x) 7−→
∫

Ca
+

∫
Rm

A(x,ξ )u(y)e−i(x−y)·ξ dξ dy. (3)

We consider the operator 1 in the Sobolev – Slobodetskii space Hs(Rm) with
norm

||u||2s =
∫

Rm

|ũ(ξ )|2(1+ |ξ |)2sdξ ,

where ũ(ξ ) denotes the Fourier transform for u, and introduce the following class
of symbols non-depending on spatial variable x: ∃c1,c2 > 0, such that

c1 ≤ |A(ξ )(1+ |ξ |)−α | ≤ c2, ξ ∈ Rm. (4)

The number α ∈ R we call the order of pseudo-differential operator A.
It is well-known that pseudo-differential operator with symbol A(ξ ) satisfying 3,

is linear bounded operator acting from Hs(Rm) into Hs−α(Rm) [3].
We are interested in studying invertibility operator 3 in corresponding Sobolev

– Slobodetskii spaces. By definition, Hs(Ca
+) consists of distributions from Hs(Rm)

with support in Ca
+. The norm in the space Hs(Ca

+) is induced by the norm Hs(Rm).
We associate such operator with corresponding equation

(Au+)(x) = f (x), x ∈Ca
+, (5)

where right-hand side f is chosen from the space Hs−α
0 (Ca

+).
Hs

0(C
a
+) is the space of distributions S′(Ca

+), which admit continuation on Hs(Rm).
The norm in Hs

0(C
a
+) is defined by

|| f ||+s = inf ||l f ||s,

where infimum is chosen for all possible continuations l.

3 Complex variables and wave factorization

Below we will consider the symbols A(ξ ) satisfying the condition 4.

Definition 1. Wave factorization of symbol A(ξ ) is called its representation in the
form

A(ξ ) = A ̸=(ξ )A=(ξ ),
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where the factors A̸=(ξ ),A=(ξ ) satisfy the following conditions:
1) A ̸=(ξ ),A=(ξ ) are defined everywhere without may be the points {ξ ∈ Rm :

|ξ ′|2 = a2ξ 2
m};

2) A ̸=(ξ ),A=(ξ ) admit an analytical continuation into radial tube domains T (
∗

Ca
+

),T (
∗

Ca
−) respectively, which satisfy the estimates

|A±1
̸= (ξ + iτ)| ≤ c1(1+ |ξ |+ |τ|)±æ,

|A±1
= (ξ − iτ)| ≤ c2(1+ |ξ |+ |τ|)±(α−æ), ∀τ ∈

∗
Ca
+ .

The number æ is called index of wave factorization.

Here
∗

Ca
+ is conjugate cone to Ca

+, and
∗

Ca
−=−

∗
Ca
+.

Example 1. Let

A =− ∂ 2

∂x2
1
−·· ·− ∂ 2

∂x2
m
+ k2, k ∈ R\{0},

and then according to some properties of the Fourier transform the symbol of this
operator has the form

A(ξ ) = ξ 2
1 +ξ 2

2 + · · ·+ξ 2
m + k2.

The following equality is the wave factorization of the Helmholtz operator. We
will write it as

ξ 2
m + |ξ ′|2 + k2 =(√

a2 +1ξm +
√

a2ξ 2
m −|ξ ′|2 − k2

)(√
a2 +1ξm −

√
a2ξ 2

m −|ξ ′|2 − k2

)
meaning for

√
a2ξ 2

m −|ξ ′|2 − k2 the boundary value√
a2(ξm + i0)2 −|ξ ′|2 − k2.

4 Pseudo-differential equations and solvability

To describe a solvability picture for a model elliptic pseudo differential equation (5)
in 2-dimensional cone Ca

+ = {x ∈ R2 : x2 > a|x1|,a > 0} the author earlier consid-
ered a special singular integral operator [9]

(Kau)(x) =
a

2π2 lim
τ→0+

∫
R2

u(y)dy
(x1 − y1)2 −a2(x2 − y2 + iτ)2 . (6)
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This operator served a conical singularity in the general theory of boundary value
problems for elliptic pseudo differential equations on manifolds with a non-smooth
boundary. The operator Ka is a convolution operator, and the parameter a is a size
of an angle, x2 > a|x1|,a = cotα .

One of author’s main result [9] is the following (we formulate it for m = 2 for
simplicity)

Theorem 1. If elliptic symbol A(ξ ) admits wave factorization with respect to the
cone Ca

+ and |æ− s|< 1/2 then the equation (5) has a unique solution

ũ(ξ ) = A−1
̸= (ξ )(Ka l̃v)(ξ ),

where lv is an arbitrary continuation of v on the whole Hs(R2).
A priori estimate holds

||u+||s ≤ c|| f ||+s−α .

Below we will mention other possible situations.

4.1 Boundary value problems

If æ− s = n+δ ,n ∈ N, |δ |< 1/2, then one has the formula for a general solution of
the equation (5), and this formula contains a certain number of arbitrary functions
from corresponding Sobolev–Slobodetskii spaces [9]. To obtain the uniqueness the-
orem one needs to add some complementary conditions as a rule these are boundary
conditions.

Some classical variants are considered in [9], some new constructions are de-
scribed in [17].

4.2 Equations with potentials

It is possible that æ− s = n+ δ ,−n ∈ N, |δ | < 1/2, then the equation (5) is over-
determined so that one needs to add some unknowns. According to the special rep-
resentation for a solution of the equation (5) these unknowns should have a potential
like form [9].

5 Asymptotical variants

For |æ− s|< 1/2 one has the existence and uniqueness theorem [9]

ũ(ξ ) = A−1
̸= (ξ )(Ka l̃v)(ξ ),
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where lv is an arbitrary continuation of v on the whole Hs(R2).

5.1 Preliminaries

The formula (6) can be treated as a convolution of the distribution

Ka(ξ ) =
a

2π2
1

ξ 2
1 −a2ξ 2

2

with a basic function u(ξ ). If so it is interesting to study behavior of the operator
(6) for limit cases (a = 0,a =+∞) from convolution point of view.

Let S(R2) be the Schwartz space of infinitely differentiable rapidly decreasing at
infinity functions then S′(R2) is a corresponding space of distributions over S(R2).

When a →+∞ one obtains [10] the following limit distribution

lim
a→∞

a
2π2

1
ξ 2

1 −a2ξ 2
2
=

i
2π

P
1
ξ1

⊗δ (ξ2) , (7)

where the notation for distribution P is taken from V.S. Vladimirov’s books
[18, 19], and ⊗ denotes the direct product of distributions. Here δ denotes one-
dimensional Dirac mass-function which acts on φ ∈ S(R) in the following way

(δ ,φ) = φ(0),

and the distribution P 1
x is defined by the formula

(P
1
x
,φ) = v.p.

+∞∫
−∞

φ(x)dx
x

≡ lim
ε→0+

 −ε∫
−∞

+

+∞∫
ε

 φ(x)dx
x

.

Our main goal in this paper is obtaining an asymptotical expansion for the two-
dimensional distribution

Ka(ξ1,ξ2)≡
a

2π2
1

ξ 2
1 −a2ξ 2

2

with respect to small a−1. It is defined by the corresponding formula ∀φ ∈ S(R2)

(Ka,φ) =
a

2π2

∫
R2

φ(ξ1,ξ2)dξ
ξ 2

1 −a2ξ 2
2

. (8)
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5.2 Asymptotical representation for a solution

Below we denote lv ≡V .

Theorem 2. If the symbol A(ξ ) admits a wave factorization with respect to the cone
Ca
+ and |æ−s|< 1/2 then the equation 1 has a unique solution in the space Hs(Ca

+),
and for a large a it can be represented in the form

ũ(ξ ) =
i

2π
A−1
̸= (ξ )v.p.

+∞∫
−∞

(A−1
= Ṽ )(η1,ξ2)dη1

ξ1 −η1
+

A−1
̸= (ξ )∑

m,n
cm,n(a)

+∞∫
−∞

(ξ1 −η1)
m(A−1

= Ṽ )
(n)
ξ2
(η1,ξ2)dη1 (9)

assuming Ṽ ∈ S(R2),A−1
= Ṽ means the function A−1

= (ξ )Ṽ (ξ ).

Proof. Let φ ∈ S(R2).
A formal using the Maclaurin formula for the first integral in 4 will lead to the

following result

(Ka,φ) =
1

2π2

∞

∑
k=0

bk

k!

+N∫
−N

φ(k)
ξ2

(ξ1,0)

 +N∫
−N

tkdt
ξ 2

1 − t2

dξ1, (10)

and we need to give a certain sense for the expression in brackets.
Let us denote

Tk,N(ξ1)≡
+N∫

−N

tkdt
ξ 2

1 − t2

and reproduce some calculations.
First Tk,N(ξ1) ≡ 0,∀k = 2n− 1,n ∈ N. So the non-trivial case is k = 2n,n ∈ N.

Let us remind T0,∞(ξ1) = πi2−1ξ−1
1 [10, 11]. For other cases we can calculate this

integral. we have the following
k = 2,

T2,N(ξ1) =−2N −2−1ξ−1
1 ln

N −ξ1

N +ξ1
+πi2−1ξ−1

1 ;

k = 4,

T4,N(ξ1) =−2/3N3 −2ξ 2
1 N −2−1ξ 3

1 ln
N −ξ1

N +ξ1
+πi2−1ξ 3

1 ;

k = 6,

T6,N(ξ1) =−2/5N5 −2/3ξ 2
1 N3 −2ξ 5

1 N −2−1ξ 5
1 ln

N −ξ1

N +ξ1
+πi2−1ξ 5

1 ,
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and so on. One can easily write all expressions for arbitrary T2n,N(ξ1).
In general one can write

T2n,N(ξ1) = P2n−1(N,ξ1)−2−1ξ 2n−1
1 ln

N −ξ1

N +ξ1
+πi2−1ξ 2n−1

1

where P2n−1(N,ξ1) is a certain polynomial of order 2n−1 on variables N,ξ1.
Therefore instead of the formula (10) we can write

(Ka,φ) =
i

2π
(P

1
ξ1

⊗δ (ξ2),φ)+ (11)

1
2π2

∞

∑
n=1

b2n

(2n)!

+N∫
−N

φ(2n)
ξ2

(ξ1,0)
(

P2n−1(N,ξ1)−2−1ξ 2n−1
1 ln

N −ξ1

N +ξ1
+πi2−1ξ 2n−1

1

)
dξ1.

Let us describe the polynomial P2n−1(N,ξ1) more precisely. Obviously

P2n−1(N,ξ1) = c2n−1N2n−1 + c2n−3N2n−3ξ 2
1 + · · ·+ c1Nξ 2n−1

1 .

Further we rewrite the equality (11) in the following form

(Ka,φ) =
i

2π
(P

1
ξ1

⊗δ (ξ2),φ)+

1
2π2

∞

∑
n=1

b2n

(2n)!

n

∑
k=1

c2k−1N2k−1
+N∫

−N

φ(2n)
ξ2

(ξ1,0)ξ 2k−1
1 dξ1−

1
4π2

∞

∑
n=1

b2n

(2n)!

+N∫
−N

φ(2n)
ξ2

(ξ1,0)ξ 2n−1
1 ln

N −ξ1

N +ξ1
dξ1+

i
4π

∞

∑
n=1

b2n

(2n)!

+N∫
−N

φ(2n)
ξ2

(ξ1,0)ξ 2n−1
1 dξ1

We will start from two last summands. The second summand does not play any
role because

lim
N→+∞

ln
N −ξ1

N +ξ1
= 0.

The third summand we will represent according to lemma 1 (see below) taking
into account that we can pass to the limit under N →+∞

i
4π

∞

∑
n=1

b2n

(2n)!
( ˜δ (2n−1)(ξ1)⊗δ (2n)(ξ2),φ)

For the first summand we consider separately the case Nb ∼ 1(N → ∞,b → 0).
in other words we consider a special limit to justify the decomposition. Then
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1
2π2

∞

∑
n=1

b2n

(2n)!

n

∑
k=1

c2k−1N2k−1
+N∫

−N

φ(2n)
ξ2

(ξ1,0)ξ 2k−1
1 dξ1 ∼

1
2π2

∞

∑
n=1

1
(2n)!

n

∑
k=1

c2k−1b2n−2k+1
+∞∫

−∞

φ(2n)
ξ2

(ξ1,0)ξ 2k−1
1 dξ1.

Therefore

1
2π2

∞

∑
n=1

1
(2n)!

n

∑
k=1

c2k−1b2n−2k+1
+∞∫

−∞

φ(2n)
ξ2

(ξ1,0)ξ 2k−1
1 dξ1 =

1
2π2

∞

∑
n=1

1
(2n)!

n

∑
k=1

c2k−1b2n−2k+1( ˜δ (2k−1)(ξ1)⊗δ (2n)(ξ2),φ)

One can note if desirable

c2k−1 =−2(1+
1
3
+ · · ·+ 1

2k−1
).

Further details one can find in [13]. △

6 Discrete variants

6.1 Discrete functions and operators: preliminaries and examples

Given function ud of a discrete variable x̃ ∈ Zm we define its discrete Fourier trans-
form by the series

(Fdud)(ξ )≡ ũd(ξ ) = ∑
x̃∈Zm

eix̃·ξ ud(x̃), ξ ∈ Tm,

where Tm = [−π,π]m and partial sums are taken over cubes

QN = {x̃ ∈ Zm : x̃ = (x̃1, · · · , x̃m), max
1≤k≤m

|x̃k| ≤ N}.

One can define some discrete operators for such functions ud .

Example 2. If K(x),x ∈ Rm \ {0}, is a Calderon–Zygmund kernel, then the corre-
sponding operator is defined by the formula

(Kdud)(x̃) = ∑
ỹ∈Zm,ỹ̸=x̃

K(x̃− ỹ)ud(ỹ), x̃ ∈ Zm.

Example 3. If a first order finite difference of a discrete variable x̃k is defined by
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δkud(x̃) = ud(x̃k +1)−ud(x̃k),

then the discrete Laplacian is

(∆dud)(x̃) =
m

∑
k=1

(ud(x̃k +2)−2ud(x̃k +1)+ud(x̃k)) ,

and its discrete Fourier transform is the function

(Fd∆dud)(ξ ) =
m

∑
k=1

(eiξk −1)2.

Let D ⊂ Rm be a sharp convex cone, Dd ≡ D∩Zm, and L2(Dd) be a space of
functions of discrete variable defined on Dd , and A(x̃) be a given function of a
discrete variable x̃ ∈ Zm. We consider the following types of operators

(Adud)(x̃) =
∫

Tm
∑

ỹ∈Dd

ei(ỹ−x̃)·ξ Ãd(ξ )ũd(ξ )dξ , x̃ ∈ Dd , (12)

and introduce the function

Ãd(ξ ) = ∑
x̃∈Zm

eix̃·ξ A(x̃), ξ ∈ Tm.

Definition 2. The function Ãd(ξ ) is called a symbol of the operator Ad , and this
symbol is called an elliptic symbol if Ãd(ξ ) ̸= 0,∀ξ ∈ Tm.

Remark 1. If D = Rm then an ellipticity is necessary and sufficient condition for the
operator Ad to be invertible in the space L2(Zm).

Remark 2. One can define a general pseudo-differential operator with symbol Ã(x̃,ξ )
depending on a spatial discrete variable x̃ by the similar formula

(Adud)(x̃) =
∫

Tm
∑

ỹ∈Dd

ei(ỹ−x̃)·ξ Ã(x̃,ξ )ũd(ξ )dξ , x̃ ∈ Dd ,

but taking into account a local principle [2] the main aim in this situation is de-
scribing invertibility conditions for model operators like (12) in canonical domains
Dd .

Below we will refine the lattice Zm and introduce more convenient space scale.

6.2 Discrete Sobolev–Slobodetskii spaces

We consider here refined lattice hZm,h > 0, and define corresponding discrete
Fourier transform. If a function of a discrete variable is defined on a lattice hZm

then its discrete Fourier transform can be introduced by the formula
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(ũd)(ξ ) = ∑
x̃∈hZm

ud(x̃)eix̃·ξ hm, ξ ∈ h̄Tm,

where h̄ = h−1.
Let Hs(hZm) denotes the space of functions of a discrete variable for which

||ud ||2s ≡
∫

h̄Tm

|ũd(ξ )|2(1+ |σ∆d (h)(ξ )|)
sdξ <+∞,

where

σ∆d (h)(ξ ) = h−2
m

∑
k=1

(eihξk −1)2, ξ ∈ h̄Tm.

6.3 Solvability for discrete equations

6.3.1 Conical case and periodic Bochner kernel

Let D be a sharp convex cone, and
∗
D be a conjugate cone for D, i.e.,

∗
D= {x ∈ Rm : x · y > 0, y ∈ D}.

Let T (
∗
D) ⊂ Cm be a set of the type Tm + i

∗
D. For Tm ≡ Rm such a domain of

multidimensional complex space is called a radial tube domain over the cone
∗
D

([1, 18, 19]). We introduce the function

Bd(z) = ∑
x̃∈Dd

eix̃·z, z = ξ + iτ, ξ ∈ Tm, τ ∈
∗
D,

and define the operator

(Bdu)(ξ ) = lim
τ→0

∫
Tm

Bd(z−η)ud(η)dη .

Lemma 1. For arbitrary ud ∈ L2(Zm), the following property

FdPDd ud = BdFdud

holds.

Let us define the subspace A(Tm)⊂ L2(Tm) consisting of functions which admit

a holomorphic continuation into T (
∗
D) and satisfy the condition

sup
τ∈

∗
D

∫
Tm

|ũd(ξ + iτ)|2dξ <+∞.
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In other words, the space A(Tm)⊂ L2(Tm) consists of boundary values of holo-

morphic in T (
∗
D) functions.

Let us denote
B(Tm) = L2(Tm)⊖A(Tm),

so that B(Tm) is a direct complement of A(Tm) in L2(Tm).

6.3.2 A jump problem

We formulate the problem in the following way: finding a pair of functions Φ±,Φ+ ∈
A(Tm),Φ− ∈ B(Tm), such that

Φ+(ξ )−Φ−(ξ ) = g(ξ ), ξ ∈ Tm, (13)

where g(ξ ) ∈ L2(Tm) is given.

Lemma 2. The operator Bd : L2(Tm) → A(Tm) is a bounded projector. A function
ud ∈ L2(Dd) iff its Fourier transform ũd ∈ A(Tm).

Theorem 3. The jump problem has unique solution for arbitrary right-hand side
from L2(Tm).

Example 4. If m = 2 and D is the first quadrant in a plane then a solution of a jump
problem is given by formulas

Φ+(ξ ) =
1

(4πi)2 lim
τ→0

π∫
−π

π∫
−π

cot
ξ1 + iτ1 − t1

2
cot

ξ2 + iτ2 − t2
2

g(t1, t2)dt1dt2

Φ−(ξ ) = Φ+(ξ )−g(ξ ), τ = (τ1,τ2) ∈ D.

6.3.3 A general statement

It looks as follows. Finding a pair of functions Φ±,Φ+ ∈ A(Tm),Φ− ∈ B(Tm), such
that

Φ+(ξ ) = G(ξ )Φ−(ξ )+g(ξ ), ξ ∈ Tm, (14)

where G(ξ ),g(ξ ) are given periodic functions. If G(ξ )≡ 1, we have the jump prob-
lem (3).

Like classical studies [4, 6], we want to use a special representation for an elliptic
symbol to solve the problem (4).



On Some Equations on Non-Smooth Manifolds 13

6.3.4 Periodic wave factorization

Let us denote Hs(Dd) a subspace of Hs(Zm) consisting of functions of discrete
variable x̃ for which their supports belong to Dd , and H̃s(Dd), H̃s(Zm) their Fourier
images.

Lemma 3. For |s| < 1/2, the operator Bd is a bounded projector H̃s(Zm) →
H̃s(Dd), and a jump problem has unique solution Φ+ ∈ H̃s(Dd),Φ− ∈ H̃s(Zm \Dd)
for arbitrary g ∈ H̃s(Zm).

Definition 3. Periodic wave factorization for elliptic symbol Ã(ξ ) is called its rep-
resentation in the form

Ãd(ξ ) = Ã ̸=(ξ )Ã=(ξ )

where the factors A±1
̸= (ξ ),A±1

= (ξ ) admit bounded holomorphic continuation into

domains T (±
∗
D).

Theorem 4. If |s| < 1/2 and the elliptic symbol Ãd(ξ ) ∈ Sα(Tm) admits periodic
wave factorization, then the operator Ad is invertible in the space Hs(Dd).

7 Conclusion

As it was shown all aspects of this problem of solving the equation (5) are closely
related and use similar ideas and methods. Author hopes that in future it will be pos-
sible to unit these considerations in a general theory of elliptic pseudo-differential
equations on manifolds with non-smooth boundaries.
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