
Elliptic Equations, Manifolds with Non-smooth
Boundaries, and Boundary Value Problems

Vladimir B. Vasilyev

To ISAAC

Abstract We discuss basic principles for constructing the theory of boundary
value problems on manifolds with non-smooth boundaries. It includes studying
local situations related to model pseudo-differential equations in canonical domains.
The technique consists of Fourier transform, multi-dimensional Riemann boundary
value problem, wave factorization, and multi-variable complex analysis.
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1 Introduction

One considers a general elliptic pseudo differential equation

.Au/.x/ D f .x/; x 2 M; (1)

in Sobolev–Slobodetskii spaces Hs.M/, where M is a smooth manifold with non-
smooth boundary, i.e. its boundary has some singularities like a cone, a wedge, etc.,
and the unknown function u is defined onM.

If A.x; !/; .x; !/ 2 Rm ! Rm; is a symbol (in local coordinates of the co-tangent
bundle T!M) of a pseudo-differential operator A, then to obtain a Fredholm property
for the operator A we need to describe invertibility conditions for some classes of
its local representatives.
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Such operators are defined by a well-known formula if M is a compact smooth
manifold because one can use the “freezing coefficients principle” or, in other
words, “local principle.” For a manifold with a smooth boundary we need a new
local formula for defining the operator A: more precisely near inner points ofM we
use an usual formula, but near boundary points we need another formula

u.x/ 7"!
Z

Rm
C

Z

Rm

A.x; !/u. y/ei.x"y/#!d!dy: (2)

For invertibility of such an operator with symbol A.#; !/ not depending on a
spatial variable x one can apply the theory of the classical Riemann boundary
value problem for upper and lower complex half-planes with a parameter ! 0 D
.!1; : : : ; !m"1/. This step was systematically studied in the book [2]. But if the
boundary @M has at least one conical point, this approach is not effective.

A conical point at the boundary is such a point for which its neighborhood is
diffeomorphic to the cone Ca

C D fx 2 Rm W xm > ajx0j; x0 D .x1; : : : ; xm"1/; a >
0g; hence the local definition for pseudo-differential operator near the conical point
is the following

u.x/ 7"!
Z

Ca
C

Z

Rm

A.x; !/u. y/ei.x"y/#!d!dy: (3)

To study an invertibility property for the operator (3) the author has introduced
the concept of wave factorization for an elliptic symbol near a singular boundary
point [5, 7, 9] and using this property has described Fredholm properties for Eq. (1).

Other approaches to the theory of boundary value problems one can find in
papers of V.G. Mazya, B.A. Plamenevskii, B.-W. Schulze, R.B. Melrose, M. Taylor,
V. Nistor, and many others. I cannot enumerate all authors but in author’s book [6]
very large survey of these approaches with names and papers is given.

2 Studying Model Operators

To describe Fredholm properties for a general pseudo-differential operator on the
manifold M one needs to study local situations separately. These correspond to
model operators in canonical domains.
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2.1 Simple and Complicated Singularities

2.1.1 Simple Singularities

A simple standard singularity in m-dimensional space is the cone Ca
C.

Example 1 A conical singularity can be stratified, i.e. for example the cone Ca
C !

Cb
C $ RnCm; where Ca

C $ Rn;Cb
C $ Rm, is a stratified cone

Example 2 A quadrant on the plane R2 is represented as a direct product of two
half-axes.

Example 3 Octant in the space R3 is a cone of 3-wedged angle type which can
be represented as a direct product of a quadrant (i.e., two-dimensional cone) and a
half-axis (one-dimensional cone).

Example 4 A wedge of codimension k in m-dimensional space is the set fx 2
Rm W x D .x0; x00; xm/; x0 2 Rm"k; x0 D .x1; : : : ; xm"k/; xm > ajx00j; x00 D
.xm"kC1; : : : ; xm"1/; a > 0g.
Example 5 A multi-wedged angle in m-dimensional space is the set Pm D fx 2
Rm W xm >

m"1P
kD1

akjxkj; ak > 0g.

2.1.2 Complicated Singularities

Such singularities arise if a singularity’s type cannot be described by the standard
cone Ca

C.

Example 6 A variant of the thin cone Tm"k D fx 2 Rm W xm > ajx00j; x00 D
.x1; : : : ; xm"k/; xm"kC1 D # # # D xm"1 D 0g.
Example 7 A union of m-dimensional cones with a common origin.

Example 8 A union of cones with distinct dimensions with a common origin.

2.2 Local Index and Local Solvability

Here we consider Eq. (1) for a model operator with the elliptic symbol A.!/ in a
canonical m-dimensional domain D (Examples 1–5). For this case we deal with a
convex cone which does not contain a whole straight line. For Example 4 we have
D D Ca

C ! Rm"k;Ca
C $ Rk; and the variable x00 2 Rm"k will be a parameter. Thus

a principal case is that the set D is a convex sharp cone in m-dimensional space
Rm. If so one needs to describe invertibility conditions for the model operator A for
this canonical domain. For this purpose the author has introduced a special variant
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of a multi-dimensional Riemann boundary value problem which is distinct from all
known ones. This problem can be solved by using a wave factorization concept,
moreover one can obtain an integral representation for the solution of the model
Eq. (1). For a model equation we use “local” constructions of Sobolev–Slobodetskii
spaces in Rm.

2.2.1 Spaces

By definition the space Hs.D/ consists of distributions from the space Hs.Rm/ [2]
for which their supports belong to D. A norm in the space Hs.D/ is induced by the
norm of the space Hs.Rm/. The right-hand side f is chosen from the space Hs"˛

0 .D/
which consists of distributions from S0.D/ admitting a continuation into the whole
space Hs"˛.Rm/. A norm in the space Hs"˛

0 .D/ is defined by the formula

jjf jjCs"˛ D inf jjlf jjs"˛;

where infimum is taken over all continuations l. Here we use notations like ones in
the Eskin’s book [2].

2.2.2 Wave Factorization

Let us denote
!
D a conjugate cone [1, 15]

!
DD fx 2 Rm W x # y > 0; y 2 Dg;

where x # y denotes an inner product.

Example 9 If D D Ca
C, then

!
DD fx 2 Rm W axm > jx0jg.

Definition 2.1 A radial tube domain T.D/ over the cone D is called a subset of
m-dimensional complex space Cm of the type Rm C iD.

Definition 2.2 The symbol A.!/ is called an elliptic symbol of order ˛ 2 R if
9c1; c2 > 0 such that

c1 % jA.!/.1C j!j/"˛j % c2; 8! 2 Rm:

Definition 2.3 Wave factorization with respect to the coneD for the elliptic symbol
A.!/ is called a representation in the form

A.!/ D A¤.!/AD.!/;
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where the factors A¤.!/;AD.!/ must satisfy the following conditions:

1) A¤.!/;AD.!/ are defined for all admissible values ! 2 Rm, without possibility,

the points ! 2 @.
!
D
S
."

!
D//;

2) A¤.!/;AD.!/ admit an analytical continuation into radial tube domains T.
!
D/;

T."
!
D/ respectively with estimates

jA˙1
¤ .! C i"/j % c1.1C j!j C j" j/˙æ;

jA˙1
D .! " i"/j % c2.1C j!j C j" j/˙.˛"æ/; 8" 2

!
Ca
C :

The number æ 2 R is called index of wave factorization.

2.2.3 Multi-Dimensional Riemann Problem

Taking into account that we will use the Fourier transform let us introduce the
following notations. We use notation Qu for the Fourier transform of function u, and
the notation eH for Fourier image of the Hilbert space H.

For small s, jsj < 1=2; we denote by A.Rm/ a subspace in the space eHs.Rm/ of

functions u.x/ which admit an analytical continuation into radial tube domain T.
!
D/

over conjugate cone
!
D, the subspace B.Rm/ is a direct complement of the subspace

A.Rm/ in the space eHs.Rm/, so that eHs.Rm/ D A.Rm/˚ B.Rm/:
The mentioned multi-variable Riemann problem is formulated as follows. One

seeks two functions ˆC.x/ 2 A.Rm/, ˆ".x/ 2 B.Rm/ which satisfy the linear
relation

ˆC.x/ D W.x/ˆ".x/C w.x/: (4)

almost everywhere on Rm, whereW.x/;w.x/ are given.
The transfer from Eq. (1) to the problem (4) is very simple. If we will apply

the Fourier transform to the model Eq. (1) we obtain a certain multi-dimensional
singular integral equation with the kernel B.x/ like a characteristic one-dimensional

singular integral equation [3, 4]. This kernel B.z/; z 2
!
D; is the Bochner kernel for

the cone D [1, 15] and

B.z/ D
Z

D

eiy#zdy; z D xC i"; z 2 T.
!
D/;

and a corresponding integral operator is the following

.BQu/.!/ D lim
"!0;"2!

D

Z

Rm

B.! " yC i"/Qu. y/dy: (5)
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Remark 2.4 The needed variant of Paley–Wiener theorem for this situation one can
find in the book [15], Chap. 5, Sect. 26. Principal point here is that representation

Qu D Qu1 C Qu2; 8Qu 2 eHs.Rm/;

where Qu1 2 A.Rm/; Qu2 2 B.Rm/, is unique for jsj < 1=2 only (see also [2, 5]).

Example 10 If D is a one-dimensional cone RC, then [1, 2, 15] B.z/ is the Cauchy
kernel i.2#z/"1, and the corresponding one-dimensional analogue of the singular
integral operator (5) is the following

Qu.!/ 7"! 1

2
Qu.!/C 1

#i
v:p:

C1Z

"1

Qu.$/d$
! " $ :

This follows from Plemelj–Sokhotskii formulas [3, 4].

2.2.4 Solvability and Boundary Conditions

The operator B and wave factorization give a possibility to describe solvability of
the model Eq. (1).

Proposition 2.5 If the elliptic symbol A.!/ admits wave factorization with respect
to the cone D with index æ, then

1) for jæ " sj < 1=2 there exists a unique solution u 2 Hs.D/ of the model Eq. (1)
for arbitrary right-hand side f 2 Hs"˛

0 .D/, and we have

Qu.!/ D A"1
¤ .!/.B.A

"1
D elf //.!/;

where A"1
D elf means the function A"1

D .!/elf .!/, lf is an arbitrary continuation of
f 2 Hs"˛

0 .D/ on the whole Hs"˛.Rm/;
2) for æ" s D nC ı; n 2 N; jıj < 1=2; there are a lot of solutions depending on n

arbitrary functions ck 2 Hsk.Rm"1/; sk D s " æC k " 1=2; k D 1; : : : ; n;
3) for æ " s D "n C ı; n 2 N; jıj < 1=2; then a solution from Hs.D/ exists iff

certain n additional integral conditions on right-hand side f 2 Hs"˛
0 .D/ hold.

Remark 2.6 Two-dimensional variant of the proposition was proved by the author
many years ago [5]. Some multi-dimensional constructions are described in [10–
12].

Some Comments to the Proposition 2.5. Indeed functions ck appear after wave factorization
and change of variables reducing the cone into a half-space. A certain special operator similar to a
pseudo-differential one takes part in this construction. All details are given in [10–12].
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For the case 2 of the Proposition 2.5 one needs some additional conditions to
extract a unique solution. These may be boundary conditions as usual or conditions
of another type. Some preliminary considerations are given in [10, 12].

3 Partition of Unity and Transfer to Manifolds

These ideas lead to many interesting deductions. To define correctly a pseudo
differential operator on a manifold with non-smooth boundary one needs to choose
a partition of unity and to consider boundary neighborhoods in dependence on the
type of singular point. Since pseudo differential operators are operators of a local
type, the Fredholm property will be conserved. It means the following. If we use a
change of variables diffeomorphic transforming singular neighborhood onto certain
cone we locally obtain an operator of the type (3) plus some compact operator. Since
the index of an operator is stable under compact perturbations we obtain operators
with same indices.

4 Conclusion

There are a lot of singularities types in a manifold with a non-smooth boundary. For
example, the author’s papers [8, 14] are related to thin singularities, and the paper
[13] concerns to the union of cones. The author hopes that the developed methods
will be useful for the general theory of boundary value problems.
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