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On Discrete Pseudo-Differential Operators and Equations

Vladimir Vasilyev?

“Belgorod State National Research University, Belgorod, Russia

Abstract. We introduce discrete pseudo-differential operators in appropriate discrete Sobolev—-Slobodetskii
spaces. Using discrete Fourier transform and factorization concept we study invertibility of such operators
in some discrete spaces. Some examples for discrete Calderon-Zygmund operators and difference operators
are considered.

1. Introduction

A classical pseudo-differential operator in Euclidean space IR" is defined by the formula [2, 8-10]

(Au)) = f A, )™ a(E)de, M

Rm

where the sign ~ over a function denotes its Fourier transform

7(e) = f U,

R

and the function A(x, &) is called a symbol of a pseudo-differential operator A.
Our main goal here is describing a periodic variant of this definition and studying its certain properties
related to solvability of corresponding equations in canonical domains of an Euclidean space.

1.1. Discrete Functions and Operators: Preliminaries and Examples
Given function u, of a discrete variable ¥ € Z we define its discrete Fourier transform by the series

(Fatta)(&) = Ba(&) = Y e®uy(®), EeT",

fezm
where T" = [-7, n]™ and partial sums are taken over cubes

Ov={xezZ":%= (X, - ,%y), max |X| < N}.
1<k<m

One can define some discrete operators for such functions u,.
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Example 1.1. If K(x),x € R™ \ {0}, is a Calderon-Zygmund kernel, then the corresponding operator is
defined by [12]

Kau)® = Y| KE-jua(y), ¥ez".
jezm jex
Example 1.2. If a first order finite difference of a discrete variable ¥ is defined by
Ottg(X) = ug(Xe + 1) — ua(Xe),

then the discrete Laplacian is
m
(Agqug)(X) = ) (ua(Fx +2) = 2uq(T + 1) + ua(Xx) ,
k=1

and its discrete Fourier transform is the function

m
(Faqua)(©) = Y (€5 = 1)2.
k=1
Let D ¢ R™ be a sharp convex cone, D; = DNZ", and L,(D,) be a space of functions of discrete variable
defined on Dy, and A;(X) be a given function of a discrete variable ¥ € Z™. We consider the following types
of operators

Ani® = [ Y A, weD, @
T" 4eDy
where
Ad©) = ) AR, EeT.
Xezm

Definition 1.3. The function A4(&)is called a symbol of the operator A4, and this symbol is called an elliptic
symbol if A;(&) #0,VE € T™.

Remark 1.4. If D = R™ then an ellipticity is necessary and sufficient condition for the operator A; to be
invertible in the space L,(Z").

Remark 1.5. One can define a general pseudo-differential operator with symbol A;(%, &) depending on a
spatial discrete variable % by the similar formula

Ani® = [ Y 004 As, Ouaorde, €Dy
" §eDy

but taking into account alocal principle [6] the main aim in this situation is describing invertibility conditions
for model operators like (2) in canonical domains D.

Below we will refine the lattice Z™ and introduce more convenient space scale.

2. Discrete Sobolev-Slobodetskii Spaces

2.1. Discrete Fourier Transform

We consider here refined lattice hZ™,h > 0, and define corresponding discrete Fourier transform. If
a function of a discrete variable is defined on a lattice hZ™ then its discrete Fourier transform can be
introduced by the formula

(@)(E) = ) ua(®E™h", & enT™,
Xehzm

where fi = hL.
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2.2. Discrete Spaces

Let H*(hZ™) denotes a space of functions of a discrete variable for which

2 = f TP + [oa, ()(E)dE < +oo,

h’]rm
where
oaM)(E) = H2 Y (@ 1), & enT™,
k=1

Remark 2.1. A lot of variants for definition of discrete H*-spaces were introduced in the paper [3], there
are also significant properties of these spaces like continual case.

2.3. Periodic Integral Transforms

Let us denote by Pp, projection operator on hD, Pp, : Lo(hZ™) — Ly(hD,) so that for arbitrary function
ug € Ly(hZ")

uy(x), ifx e hDy;
0, otherwise.

(Pp,ua)(%) = {

For a half-space case, the Fourier image of the operator Pp, is evaluated [12, 13, 15] and we will
demonstrate it in the following

Example 2.2. If D=R"” ={x € R" : x = (xq,* -+, Xp), Xm > 0} then

hm
o1 , h(En = 1 + i)
(FaPp, )& &) = = lim f Ha(&, 1) cot = .

—hm

If D is a sharp convex cone, then D is the conjugate cone i.e.

*

D={xeR":(x,y) >0, YyeDj,

(for example, C;, = {x e R" : x = (x1, - , Xm), X > alx’|, X = (x1,- -+, Xpu-1),a > 0}, C{ = {x € R" : ax,, > [x']}).
Now we introduce the function

Bu(z) = Z e, z=C&+it, Eehl™, 1 615,
xehDy

and define the operator
Ban(&) = timy [ Butz = sty
HTm
Lemma 2.3. For arbitrary uy € Lo(hZ"™) the following property
FyPp,ug = BaFqug

holds.
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Proof. Let x.(¥) be an indicator of the set h1D;. Thus

(Pp,a)(%) = x+(%) - ua(X).

Further since the function x.(¥) is not summable we cannot apply directly a convolution property of
the Fourier transform. We choose the function ¢** so the product x.(¥)e""* will be summable for some
admissible 7. Taking into account a forthcoming passing to a limit under 7 — 0+ we have

Fa(x+(®)e™™) = By(2).

Thus we can use the Fourier transform obtaining convolution of functions B;(z) and 14(&). It is left passing
toalimit. O

3. Discrete Pseudo-Differential Operators

First two subsections of this section is devoted to some special cases of discrete pseudo-differential
operators for which the author knows some preliminary results. Results of such kind are very desirable for
general pseudo-differential operators and related equations.

3.1. Discrete Calderon—Zygmund Operators
A simplest Calderon—Zygmund operator is defined by the formula [6]

(Ku)(x) = lim f K(x - y)u(y)dy, xeR", (3)
N i:oo e<|x—y|<N

where a kernel K(x) is called Calderon-Zygmund kernel and satisfies the following conditions
e K(x) is homogeneous of order —m;

e K(x) has vanishing mean value on the unit sphere S"~! c R™

f K(6)d6 = 0;

Sm-1

o K(x) € CI(R™ \ {O}).

Such an integral (3) is called an integral in principal value sense [6].
One can put by definition K(0) = 0 and define discrete Calderon-Zygmund operator (see example 1.1)
by the formula

Ko@) = Y K@ - Pua(i), Tez"

]?EZ'"

Moreover, one can refine the lattice Z™ and consider a family of discrete Calderon-Zygmund operators
{K4(h)} on the lattices hZ",h > 0,

(Kaua)® = Y, K(E = Jua(ph", % ehz".
jehzm
Symbols for Calderon-Zygmund operators and their discrete analogues are defined by Fourier integral
and series [6, 12, 13]

ok(¢) = vp. f K(x)e™tdx, &eR™\ {0},

R™



V. Viasilyev / Filomat 32:3 (2018), 975-984 979

oxm(@ = Y K@En", &ent".

xehzm
Let us denote ZI = Z" N RY.

Proposition 3.1. Operators K and Ky simultaneously both are invertible or non-invertible in spaces L,(R™) and
Lo(hZ'™) respectively ¥ h > 0. The same is valid for spaces Lo(R") and Ly(hZ!}) under additional condition
GK(OI Tty O/ _1) = GK(OI Tty 0/ +1)

One can find a proof for this proposition in [12, 13]. These achievements in studying discrete operators
have moved the author to generalize these constructions on more large classes of discrete operators.

3.2. Discrete Difference Operators

Another class of discrete operators very similar to pseudo-differential operators is a class of difference
operators [16-18]. Such difference operators can be defined by the formula

+00

Y a(utx+ ) = 0(x), x€D, @)

|kl=0

where D is R" or R, k is multi-index k = (ki, -+ , k), B = Bry, -+ , Px,,) € D.
If we consider the equation (4) with constant coefficients in the whole space R"

+00

Z apu(x + i) = v(x), xeR", (5)

k=0
then we can use the Fourier transform
(&) = feix'gu(x)dx
IRI”

and obtain an equivalent equation in the space L,(IR"™)

a(&)i(&) = o(8),

where
+o00 )
o(&) = ) aes, SeR™. (6)
k=0

It implies necessary and sufficient condition for a unique solvability of the equation (2): if 0 € Loo(IR™) then

ess é1€r]l1zfm lo(&)] > 0.

Unfortunately, we cannot use this approach if we are in the space R and consider the equation (1) with
constant coefficients

+00

Z agu(x + i) = v(x), xeRY, )

|k|=0

since we have no description for Fourier image of the space L,(IR"). Hence the first step is to obtain such a
description, it was done in [2].

Remark 3.2. To obtain such a description we will use a factorization technique for all cases (see below).
For the case D = R} it was used in [4] where one has considered special homogeneous symbols.
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3.3. General Pseudo-Differential Operators

We introduce a general discrete pseudo-differential operator by the formula (2) taking into account
refinement of the lattice

Qi@ = [ Y TR euatade, <D,

™ genD,
Definition 3.3. We say a discrete operator A, has an order « if its symbol A,4(&) satisfies the condition
a1 +1oa,NEN? < 1A(E)] < ea(1 + o, (ME)D*
with constants c;, c; non-depending on h.
The class of such symbols will be denoted by S,(HT™).
Lemma 3.4. Pseudo-differential operator A, of order a is a linear bounded operator H*(hZ™) — H*~*(hZ"™).
Proof. Indeed,

IAquallZ = flgd(é)ﬁd(é)lz(l +loa,(NE)N)dE < CIIJd(é)IZ(l +loa, (M) TS,

'j[r’ﬂ T"l
QED. O

Remark 3.5. It is very important for forthcoming considerations that according to definition 3.3 a norm of
the discrete pseudo-differential operator A; does not depend on & (see also [14]).

3.4. Discrete Pseudo-Differential Equations
Consider corresponding discrete equation

(Aqug)(X) = v4(X), % € hDjy. 8)

Let D C R be a sharp convex cone and D be its conjugate cone.

Definition 3.6. Periodic tube domain T(D) over the cone D is called a subset of multidimensional complex
space C™ of the following type

Ty(D) = KT™ +iD.
Let us define the subspace A(FT™) C Ly(AT™) consisting of functions which admit a holomorphic

continuation into T(D) and satisfy the condition

sup f |ii4(E + iT)[PdE < +oo.
w€D pim

In other words, the space A(RT™) C L,(FT™) consists of boundary values of holomorphic in Th(f))
functions.
Let

B(HT™) = L,(WT™) © A(HT™),

B(nT™) be a direct complement of A(RT™) in L, (AT™).
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3.4.1. A jump problem

We formulate the problem in the following way: finding a pair of functions ®*, ®* € A(FT™), P~ €
B(iT™), such that

O (&) — D7 (&) = g(&), & enT™, )
where g(&) € L,(HT™) is given.

Lemma 3.7. The operator By : L,(WT™) — A(WT™) is a bounded projector. A function ug € Ly(hDy) iff its Fourier
transform iig € A(WT™).

Proof. According to standard properties of the discrete Fourier transform F; we have

Fic-Oua0) =timy [ Butz = n)s(n,
I

where (%) is an indicator of the set hD;. It implies a boundedness of the operator B;. The second assertion
follows from holomorphic properties of the kernel B4(z). In other words for arbitrary function v € A(FT™)
we have

mm=jfm—mwwmzen®>

HTm

It is an analogue of the Cauchy integral formula. [
Theorem 3.8. The jump problem has unique solution for arbitrary right-hand side from Ly(HT™).

Proof. Indeed it is equivalent to one-to-one representation of the space L,(hD;) as a direct sum of two
subspaces. If we will denote by x.(x), x—(x) indicators of discrete sets hDy, h(Z™ \ D) respectively then the
following representation

ua(%) = X+ (Dua(®) + x-(X)ua(¥)
is unique and holds for arbitrary function u; € Ly(hZ™). After applying the discrete Fourier transform we
have

Faug = Fa(x+ua) + Fa(x-ua),
where Fy(x+u4) € A(BT™) according to lemma 2, and thus Fy(x-ug) = Faus — Fa(x+uq) € B(HT™) since
qud € Lz(hTm) I
Example 3.9. If m = 2 and D is the first quadrant in a plane then a solution of a jump problem is given by
formulas

hn hn

N _ 1 . f f ]’l(él + 111 — t1) h(éz +ity — 1)
D7 (&) = —(4711')2 11136 cot > cot > g(t1, tr)dtidt,

—hn —hn
D (&) = DT (&) —g(&), T=(11,72) €D.

3.4.2. A general statement
It looks as follows. Finding a pair of functions ®*, ®* € A(FT™), d~ € B(AT™), such that

DF(E) = G(ED™(E) +9(8), EenT™, (10)

where G(&), g(€) are given periodic functions. If G(£) = 1, we have the jump problem (9).
Like classical studies [5, 7], we want to use a special representation for an elliptic symbol to solve the
problem (10).
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3.4.3. Periodic wave factorization
Let us denote by H*(hD,) a subspace of H*(hZ") consisting of functions of discrete variable ¥ for which
their supports belong to hD,, and H*(hDy), H*(hZ™) their Fourier images.

Lemma 3.10. For |s| < 1/2, the operator B, is a bounded projector ﬁSQLZ"’) - Hs(hDd), and a jump problem has
unique solution ®@* € H*(hDy), @~ € H*(hZ™ \ hD,) for arbitrary g € H*(hZ"™).

A proof for this assertion can be obtained by methods of functions theory of many complex variables
[1, 20] by reasoning like Paley—Wiener theorem [2, 20].

Definition 3.11. Periodic wave factorization for elliptic symbol A(&) is called its representation in the form
Aq(&) = AL(E)A(E)

where the factors A.(&), A=(£) admit holomorphic continuation into domains Tj(+ 15) respectively and

A4(&) € Sx(T™), A=(&) € Sy-2(AT™). The number e is called index of periodic wave factorization.

Theorem 3.12. If the elliptic symbol Ay(&) € S,(WT™) admits periodic wave factorization with index e so that
lee —s| < 1/2 then the the equation (8) has unique solution in the space H*(hD,) for arbitrary right-hand side
vy € H**(hDy).

Proof. Let {v; be an arbitrary continuation of v; on a whole hZ™ so that {v; € H*™*(hZ™). Let
wa(%) = ((04)(X) — (Agua) (%)
and rewrite
(Agua) (%) + wa(%) = (Cvg)(X).
Further applying the discrete Fourier transform and using the periodic wave factorization we write
AL©)a(&) + A2 ©)wa(€) = AZN(E)C0a(©)-
Accgding to lemma 3.4 we have A, (&)iiy(&) € ﬁs‘*(hZf), AN (O wy(8) € ﬁs“"*“‘ae(hl’”) and analogously
AZN(&)tvy(E) € H=(hZ™). Moreover, really A, (&)iia(E) € H™®(hD,) in view of a holomorphy property, and

accurate considerations with supports of A_(&) and @,(&) show that in fact AN (&)@4(E) € H™*(hZ™ \ hDy).

Thus we obtain a variant of a jump problem for the space H**(Z") which can be solved by the lemma
3.10. According to this lemma we have

AL(E)14(E) = Ba(AZ(E)lva(E))

or finally

14(8) = A7 (E)Ba(AZN(E)a(&))
QED. O

Remark 3.13. Itis easy to see that the solution does not depend on choice of continuation ¢v,.

4. Future Extensions: Discrete (Periodic) Boundary Value Problems

4.1. Ellipticity and Solvability

As before in a continual case pseudo-differential operators considered in a whole space Z™ are invertible
in corresponding functional spaces iff these are elliptic. For example, this assertion is valid for discrete
Calderon-Zygmund operator K; : Ly(hZ™) — Ly(hZ™) and for general pseudo-differential operator A, :
H(hZ"™) — H**(hZ™) of order a. Thus the equation (8) for D = IR™ is uniquely solvable in appropriate
functional spaces for arbitrary right-hand side under an ellipticity condition only. If D # IR™ there are a
lot of difficulties defined by a type of canonical domain D. We will discuss these difficulties and possible
generalizations in next sections.
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4.2. Discrete Half-Space Case

If we consider the equation (8) in a discrete half-space hZ we have an explicit form for a Fourier image
of the projector Pp, (see example 2.2) but it is applicable to solve an auxiliary jump problem if the following
condition

Il’ldAd =0

holds. Here Ind A4 denotes a topological index of the symbol A4(&) in other words it is a variation of an
argument of the symbol A4(&) on the last variable &, under fixed others & = (&1, -+, &w-1). This definition
can be given by the following integral

hn
1 ~
x = E fdargAd(', ‘Sm)
—hn

The @ is an integer and it does not depend on & according to a homotopy property. It was shown earlier
[16-18] at least for the space Ly(hZY) if & # 0 the equation (8) is underdetermined (e > 0) or overdetermined
(e < 0). For these cases to obtain unique solution one needs to add some additional conditions (as usual
these are boundary conditions) or to introduce additional unknowns (as usual these are represented by
potential like operators).

Taking into account all mentioned above this leads to the following

Problem 4.1. Adapting a factorization concept to discrete H*-spaces and general discrete pseudo-differential operators
to describe all possible statements of well posed boundary value problems for discrete elliptic pseudo-differential
equations in H*(hZ') like continual case [2].

4.3. General Conical Case

It is more complicated case in a comparison with a half-space case because for corresponding multidi-
mensional analogue [11] of classical Riemann boundary value problem [5, 7] we have no explicit description
for the space B(AT™). But a concept of the wave factorization introduced by the author has permitted to
describe solvability cases for continual elliptic pseudo-differential equation (8) [11]. Moreover, according
to sec.3 it is possible to apply this idea for a discrete case also. Collecting these facts one can formulate the
following

Problem 4.2. Applying the periodic wave factorization for a periodic elliptic symbol to include into consideration an
arbitrary index of periodic wave factorization, order of an operator and parameter s of the Sobolev—Slobodetskii space
H*(hDy).

5. Conclusion

These considerations have to be useful for statements of boundary value problems for discrete elliptic
pseudo-differential equations in canonical non-smooth domains. Such boundary value problems will
appear when an index of the wave factorization is not zero. Moreover, we hope to establish a correspondence
between discrete and continual [11] cases and to describe a limit transfer from discrete case to continual
one.
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