On a digital approximation for pseudo-differential operators

Alexander Vasilyev and Vladimir Vasilyev*
Belgorod National Research University, Studencheskaya 14/1, Belgorod 308007, Russia

1 Introduction
We introduce a concept of a discrete pseudo-differential operator using general ideas of the theory and would like to show correlations between continuous and discrete cases.

2 Digital pseudo-differential operators
2.1 Digital Fourier transform
Given function \(u_d \) of a discrete variable \(\tilde{x} \in h\mathbb{Z}^m, h > 0 \), we define its discrete Fourier transform by the series
\[
(F_d u_d)(\xi) \equiv \tilde{u}_d(\xi) = \sum_{\tilde{x} \in h\mathbb{Z}^m} e^{i\tilde{x} \cdot \xi} u_d(\tilde{x}) h^m, \quad \xi \in h\mathbb{T}^m,
\]
where \(\mathbb{T}^m = [-\pi, \pi]^m, h = (2\pi/h)^{-1} \), partial sums are taken over cubes \(Q_N = \{ \tilde{x} \in \mathbb{Z}^m : \tilde{x} = (\tilde{x}_1, \cdots, \tilde{x}_m), \max_{1 \leq k \leq m} |\tilde{x}_k| \leq N \} \).

2.2 \(h \)-operators and \(\bar{h} \)-symbols
Let \(D \subset \mathbb{R}^m \) be a domain, and \(D_d = D \cap h\mathbb{Z}^m \).

We consider the following operators
\[
(A_d u_d)(\tilde{x}) = \int_{h\mathbb{T}^m} \sum_{\tilde{y} \in hD_d} e^{i(\tilde{y} - \tilde{x}) \cdot \xi} \tilde{A}_d(\xi) \tilde{u}_d(\xi) d\xi, \quad \tilde{x} \in hD_d,
\]
and the function \(\tilde{A}_d(\xi), \xi \in h\mathbb{T}^m \) is called a symbol of the operator \(A_d \).

Also the function
\[
A_d(\tilde{x}) = \int_{h\mathbb{T}^m} e^{i\tilde{x} \cdot \xi} \tilde{A}_d(\xi) d\xi,
\]
called a kernel of the operator \(A_d \).

Definition 2.1 The symbol \(\tilde{A}_d(\xi) \) is called an elliptic symbol of the operator \(A_d \) if \(\text{ess} \inf_{\xi \in h\mathbb{T}^m} |\tilde{A}_d(\xi)| > 0 \).

Example 2.2 The digital Laplacian is the following
\[
(\Delta_{d} u_d)(\tilde{x}) = h^{-2} \sum_{k=1}^{m} (u_d(x_1, \cdots, x_k + 2h, \cdots, x_m) - 2u_d(x_1, \cdots, x_k + h, \cdots, x_m) + u_d(x_1, \cdots, x_k, \cdots, x_m)),
\]
and its symbol is
\[
\tilde{\Delta}_d(\xi) = h^{-2} \sum_{k=1}^{m} (e^{inh^k} - 1)^2.
\]

Example 2.3 The digital Calderon–Zygmund operator is defined as follows [4]
\[
(K_d u_d)(\tilde{x}) = \sum_{\tilde{y} \in hD_d} K_d(\tilde{x} - \tilde{y}) u_d(\tilde{y}) h^m, \quad \tilde{y} \in hD_d,
\]

* Corresponding author: e-mail vbv57@inbox.ru, phone +74722301300, fax +74722301012
3 A comparison between discrete and continual cases

3.1 An approximation rate

Let \(P_h \) be a projection \(\mathbb{R}^m \to \mathbb{Z}^m \) so that a function \(u \) defined on \(\mathbb{R}^m \) corresponds to a function \(u_d \) of a discrete variable defined on \(h\mathbb{Z}^m \), \(P_h u = u_d \). If we consider the equation

\[
(Au)(x) = v(x), \quad x \in D,
\]

where \(A \) is a classical pseudo-differential operator with the symbol \(\tilde{A}(\xi) \) [1–3] of the form

\[
(Au)(x) = \int \int_D \int_{\mathbb{R}^m} e^{i(x-y) \cdot \xi} \tilde{A}(\xi) u(y) dy d\xi,
\]

which acts in certain functional spaces \(X \to Y \), for example Sobolev–Slobodetskii spaces [3]. We say that an element \(u \in X \) is an admissible element if \(P_h u \) is defined.

Definition 3.1 An approximation rate for operators \(A \) and \(A_d \) on an admissible element \(u \in X \) is called the following norm

\[
\mu_h(A, A_d, u) = \| (A_d P_h - P_h A) u \|_{X_h},
\]

where \(X_h \) is so-called digital realization of the space \(X \) so that the operator \(A_d : X_h \to Y_h \) is a linear bounded operator.

One of main problems is the following. How we can choose the operator \(A_d \) to obtain a good approximation rate for the operator \(A \)? We need to fix a domain \(D \) and spaces \(X, Y \).

Theorem 3.2 Let \(D \) be a domain with a Lipschitz boundary and \(X = Y = L_2(D) \), \(X_h = Y_h = L_2(D_d) \). If \(\tilde{A}(\xi) \) is a smooth bounded function on \(\mathbb{R}^m \) and

\[
A_d(\tilde{x}) = \int_{\mathbb{R}^m} e^{i\tilde{x} \cdot \xi} \tilde{A}(\xi) d\xi
\]

then \(\mu_h(A, A_d, u) \leq c u_h \) for arbitrary smooth function \(u \in L_2(D), c_u \) is a constant.

3.2 Digital solution and comparison

Definition 3.3 A digital solution for the equation (2) is called a solution of the equation

\[
(A_d u_d)(\tilde{x}) = (P_h v)(\tilde{x}), \quad \tilde{x} \in D_d,
\]

if it exists.

Remark 3.4 It is not evidently that a digital solution always exists. Thus, second of main problems is obtaining a solvability for the equation (3) in the space \(X_h \) at least for small \(h \) from the solvability of the equation (2) in the space \(X \). For this purpose we need to study a solvability of discrete equations, some steps in this direction were done in [6, 7] for special conical domains \(D \) and for the whole space \(\mathbb{R}^m \) and the half-space \(\mathbb{R}^m_+ \) [4].

Theorem 3.5 Let \(D \) be \(\mathbb{R}^m \) or \(\mathbb{R}^m_+ \), the conditions of above theorem hold. \(A \) be an elliptic invertible operator, \(u \) be a solution of the equation (2) with a smooth right-hand side \(v \), \(u_d \) be a solution of the equation (3). Then

\[
\| P_h u - u_d \|_{X_h} \leq c h.
\]

4 Conclusion

In authors’ opinion these considerations will be useful for studying certain applied problems [5] because such operators and equation are very typical for these problems.

Acknowledgements This work has supported by the State contract of the Russian Ministry of Education and Science (contract No 1.7311.2017/B).

References