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Abstract— We study the solvability of multidimensional difference equations in Sobolev–
Slobodetskii spaces. In the simplest model case, we describe the solvability picture for such
equations. In the general case, we present conditions for the Fredholm property and a theorem
on the zero index.
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1. The main goal of the present paper is to show that a key role in the theory of (multidi-
mensional) difference equations is played not by the order of an equation (or an operator) but
by some integer topological characteristic, which determines the number of additional (boundary)
conditions or conditions to be imposed on the right-hand side of the equation so as to ensure the
unique solvability in certain function spaces. We use the theory of the classical Riemann boundary
value problem and one-dimensional singular integral equations as well as the general ideas of the
theory of boundary value problems for elliptic pseudodifferential equations [1–5].

2. A multidimensional difference equation is an equation of the form

(Au)(x) ≡
∞∑

|k|=0

ak(x)u(x + αk) = v(x), x ∈ D, (1)

where D ⊂ R
m is a convex set, k is a multi-index, |k| = k1 + · · · + km, and {αk} ⊂ D.

Difference equations of the form (1) arise in numerous theoretical and applied studies. The clas-
sical theory of difference equations with constant coefficients can be found in the monographs
[6, p. 543; 7, p. 384]; however, studies on general boundary value problems in nonsmooth domains
(in contrast to the smooth case [5, p. 200]) also necessitate considering difference equations with
variable coefficients [8, 9].

We denote the compactification of the space R
m by Ṙ

m. In the present paper, we consider the
case in which D = R

m
+ ≡ {x ∈ R

m : x = (x1, . . . , xm), xm > 0}.
The symbol of the operator A is defined as the multiple series

σA(x, ξ) =

∞∑

|k|=0

ak(x)e
−iαk ·ξ, x ∈ D, ξ ∈ R

m,

provided that σA(x, ξ) ∈ C(D × Ṙ
m).

The symbol σA(x, ξ) is said to be elliptic if σA(x, ξ) �= 0, (x, ξ) ∈ D × Ṙ
m. By

ũ(ξ) ≡ (Fu)(ξ) ≡
∫

Rm

e−ix·ξu(x) dx
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we denote the Fourier transform of a function u. The Sobolev–Slobodetskii space Hs(Rm), s ∈ R,
consists of (generalized) functions with finite norm

‖u‖s =
( ∫

Rm

|ũ(ξ)|2(1 + |ξ|)2s dξ
)1/2

.

3. The case of constant coefficients in Eq. (1) can be studied in detail by the Wiener–Hopf
method. Set

(Bu)(x) ≡
∞∑

|k|=0

aku(x+ αk) = v(x), x ∈ R
m
+ . (2)

A factorization of the elliptic symbol σB(ξ) is a representation of the form

σB(ξ) = σ+(ξ)σ−(ξ),

where the factors σ±(ξ) ∈ L∞(Rm) admit analytic continuation into the upper and lower half-plane,
respectively, in the last variable ξm for given ξ′ = (ξ1, . . . , ξm−1).

The factorization index of the elliptic symbol σB(ξ) is the number κ ∈ Z defined as the increment
divided by 2π of the argument of σB(ξ

′, ξm) as ξm varies from −∞ to +∞. By virtue of homotopic
properties of the index, one can readily show that it is independent of ξ′. It can be represented by
the Stieltjes integral

κ =
1

2π

+∞∫

−∞

d argσB(·, ξm).

We introduce the following notation: Hξ′ is the Hilbert transform with respect to the vari-
able ξm; i.e.,

(Hξ′ ũ)(ξ
′, ξm) =

1

πi
v.p.

+∞∫

−∞

ũ(ξ′, ηm) dηm
ξm − ηm

;

Pξ′ = (I +Hξ′)/2, and σ±(ξ) are the elements of factorization of the symbol

(ξm + i|ξ′|+ i)κ(ξm − i|ξ′| − i)−κσB(ξ);

P ′ is the operator of integration with respect to the last variable; i.e.,

(P ′ũ)(ξ′) =

+∞∫

−∞

ũ(ξ′, ξm) dξm;

Hs(D) is the space of (generalized) functions in Hs(Rm) supported in D; Hs
0(D) is the space

of generalized functions consisting of v ∈ S′(D) [linear functionals on the Schwarz space S(Rm) of
infinitely differentiable functions rapidly decreasing at infinity and supported in D ] that admit

continuation lv into the entire space Hs(Rm); h̃(ξ) = (ξm − i|ξ′| − i)−κσ−1
− (ξ)l̃v(ξ); g̃ = Pξ′(Q

−1
n h̃),

and Qn(ξ) is an arbitrary polynomial of degree n without real zeros.

Theorem 1. If |s| < 1/2 and κ = 0, then Eq. (2) has a unique solution u ∈ Hs(Rm
+ ) for

an arbitrary right-hand side v ∈ Hs
0(R

m
+ ). If s + κ < −1/2 and n ∈ N satisfies the condition

−1/2 < s + κ + n < 0, then dimKerB = n, and all solutions of Eq. (2) in the space Hs(Rm
+ ) are

defined by the formulas

ũ(ξ′, ξm) = (ξm + i|ξ′|+ i)κσ−1
+ (ξ)Qn(ξ)g̃(ξ

′, ξm) + (ξm + i|ξ′|+ i)κσ−1
+ (ξ′, ξm)

n∑

k=1

c̃k(ξ
′)ξk−1

m ,
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where ck ∈ Hsk(Rm−1) are arbitrary functions and sk = −κ+ k− 1/2, k = 1, . . . , n. If s+κ > 1/2
and n ∈ N satisfies the condition 0 < s + κ − n < 1/2, then dimCokerB = n and the solution of
Eq. (2) admits the representation

ũ(ξ) =

n∑

k=1

c̃k(ξ
′)

σ+(ξ)Λk−κ(ξ′, ξm)
+

1

σ+(ξ)Λn−κ(ξ′, ξm)
(Pξ′Λ

nh̃)(ξ′, ξm),

where c̃k = (P ′Λk−1)h̃, ck ∈ Hsk(Rm−1), sk = s+ κ − k + 1/2, and Λ(ξ′, ξm) = ξm + |ξ′|+ i.

4. The local principle [10, p. 23] allows one to make some conclusions for equations with variable
coefficients.

Theorem 2. Let σA(x, ξ) ∈ C(D × Ṙ
m) and σA(x, ξ) �= 0 for all (x, ξ) ∈ D × Ṙ

m, and let the
following relation hold :

+∞∫

−∞

d argσ(·, ·, ξm) = 0.

Then A is a Fredholm operator of index zero in the space Hs(Rm
+ ), |s| < 1/2.
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