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Abstract. We introduce a discrete pseudo-differential operator in an appropriate discrete functional space and study the invertibility 
properties for such simplest operators in certain canonical domains of an Euclidean space. We construct special projectors for 
studying these operators according to a type of canonical domain and show how these operators are related to special boundary 
value problems for holomorphic functions of several variables.

INTRODUCTION

A classical pseudo-differential operator in the Euclidean space Rm is defined by ([1, 2])

(Au)(x) =  J  J  A (x , %)el(%-y)u(%)d%dy ,

Rm Rm

where the sign ~ over a function denotes its Fourier transform

T7(%) = J '  u(x)eix% dx .

Rm

Given a function ud of a discrete variable x  e Zm, we define its discrete Fourier transform by the series

(Fdud)(%) = ud(? ) = У  e&^u(x) , % e Tm,
xeZm

where the partial sums are taken over cubes

Qn  =  {x e Zm : x  =  (x1, • • •, xm), max |xk| < N } .
1<k<m

Let D  с  Rm be a cone, Dd = D  n  Zm, and L2(Dd) be a space of functions of a discrete variable defined on Dd,
and A(x) be a given function of a discrete variable x  e Zm. We consider the operators

(Adud)(x) =  [  У  ei(y - x>%A(%)ud (%)d%, x  e Dd , (1)
jT myTDd

and introduce the function
Ad(%) = 2  eix'%A(x), % e Tm.

xeZm

Definition 1. The function A d (%) is called a symbol o f  the operator A d, and this symbol is called an elliptic symbol 
i f  Ad (%) Ф 0, V% e Tm.
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DISCRETE PSEUDO-DIFFERENTIAL OPERATORS

Definition 2. The formula (1) defines a discrete pseudo-differential operator in the canonical domain Dd.
Exam ple 1. If K(x), x  e Rm \  {0}, is a Calderon-Zygmund kernel, then the corresponding operator is defined by

[3]
(Kdud)(x) = ^  K (x -  y), x  e Zm.

yezmy+x

Exam ple 2. If a first order finite difference of a discrete variable xk is defined by

6kud(x) = ud(xk + 1) -  ud(xk),

then the discrete Laplacian is

(Adud )(x) = ^  (ud (xk + 2) -  2ud (xk + 1) + ud (xk)),
k=1

and its symbol is the function
m

^ (£) = £ ( e ^  -  1)2.
k=1

Discrete Sobolev-Slobodetskii Spaces
Let H s(Zm) denotes the space of functions of a discrete variable for which

= J fa(^)i2(1 + i^Ad(^)i)sd^ < + ~ .
Tm

We say a discrete operator A d has order a  if its symbol A d(£) satisfies the condition

A (O  -  (1 + i^Ad(O)a .

The class of such symbols will be denoted by S a (Tm).
Lem m a 1. Pseudo-differential operator A d o f order a  is a linear bounded operator H s(Zm) ^  H s-a(Zm). 
Indeed,

i {Adud i i s = J  A (& U d (£) i 2(1 + i ̂ Ad(£) i )sd£ < c j  fad(£)i 2(1 + i ̂ Ad(£) i Y+ad£.
Tm Tm

DISCRETE PROJECTORS AND COMPLEX VARIABLES

Let us denote by PDi the projection operator on Dd, PDd : L2(Zm) ^  L2(Dd), so that for an arbitrary function
ud e L2(Zm), (PDdud)(x) = ud(x) if x e Dd, and ud(x) = 0 otherwise.

Half-Space Case and Periodic Cauchy kernel
If we consider a half-space case, then the Fourier image of the operator PDi can be evaluated ([3, 4]) and we’ll 
demonstrate it in the following 

Exam ple 3. I fD  = Rm, then

71

(FdPDdud)(g ,£m) = -1  lim f  ud(£',nm)cot —— nm + lTdnm.4m  t^o+ J  2
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Thus we use a periodic one-dimensional Riemann problem with a parameter g  e Tm-1 which is the following. 
Finding a pair of functions Ф±(£ ,gm) which are boundary values of holomorphic functions in half-strips П± = {z e 
C : z = gm ± vt, t  > 0} such that these are satisfied a linear relation

Ф+(£)(£', gm) = G(g', gm)Ф- (£)(£', gm) + g(g), g e Tm,

for almost all g' e Tm 1, where G(g), g(g) are given periodic functions. It looks like the classical cases [5, 6].

Conical Case and Periodic Bochner kernel
Let D  be a sharp convex cone, and D  be a conjugate cone for D, i.e.,

D = {x e Rm : x ■ y > 0, y e D}.

Let T(D ) с  Cm be a set of the type Tm + i D . For Tm = Rm such a domain of multidimensional complex space is called 

a radial tube domain over the cone D  ([7, 8, 9]). We introduce the function

Let us define the subspace A(Tm) с  L2(Tm) consisting of functions which admit a holomorphic continuation into 
T(D ) and satisfy the condition

In other words, the space A(Tm) с  L2(Tm) consists of boundary values of holomorphic in T (D) functions.
Let us denote

B(Tm) = L2(Tm) © A(Tm), 

so that B(Tm) is a direct complement of A(Tm) in L2(Tm).

A jum p problem

We formulate the problem in the following way: finding a pair of functions Ф±, Ф+ e A(Tm), Ф- e B(Tm), such that

where g(g) e L2(Tm) is given.
Lem m a 3. The operator Bd : L2(Tm) ^  A(Tm) is a bounded projector A function ud e L2(Dd) iff its Fourier 

transform ud e A(Tm).
Theorem  1. The jump problem has unique solution fo r  arbitrary right-hand side from  L2(Tm).
Exam ple 4. I fm  = 2 and D is the first quadrant in a plane then a solution o f a jump problem is given by formulas

Bd(z) = J ]  eix'z, z = g + iT, g e Tm, t  eD ,

Ф+(£) -  Ф- (£) = g(g), g e Tm, (2)

п П

g (ti, t2)dtidt2

Ф- (^) = Ф+(£> -  g(g), t  = (Ti,T2) e D.
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A general statement

It looks as follows. Finding a pair of functions Ф±, Ф+ e A(Tm), Ф-  e B(Tm), such that

Ф+(€) = G ( № - (Z) + g(€), € e Tm, (3)

where G(€), g(€) are given periodic functions. If G(€) = 1, we have the jump problem (2).
Like classical studies [5, 6], we want to use a special representation for an elliptic symbol to solve the problem

(3).

Periodic wave factorization

Let us denote H s(Dd) a subspace of H s(Zm) consisting of functions of discrete variable x  for which their supports
belong to Dd, and H s(Dd), H s(Zm) their Fourier images.

Lem m a 4. For i s|_< 1/2, the operator Bd is a bounded projector H s(Zm) ^  H s(Dd), and a jump problem has 
unique solution Ф+ e H s(Dd), Ф- e H s(Zm \  Dd) fo r  arbitrary g e H s(Zm).

Definition 3. Periodic wave factorization for elliptic symbol A(€) is called its representation in the form

f a  (€) = A*(€)A=(€)

where the factors A ;1 (€), A=1 (€) admit bounded holomorphic continuation into domains T (± D ).
Theorem  2. I f i  s i < 1/2 and the elliptic symbol A d(€) e S a (Tm) admits periodic wave factorization, then the 

operator Ad is invertible in the space H s(Dd).

CONCLUSION

These considerations have to be useful for statements of boundary value problems for discrete elliptic pseudo­
differential equations in canonical non-smooth domains. Such boundary value problems will appear when an index of 
the wave factorization is not zero. Moreover we hope to establish a correspondence between discrete and continual
[9] cases and to describe a limit transfer from discrete case to continual one.
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