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1 Introduction

We consider the following C alderon-Zygm und singular integral operator [10]

(K u )(x )  =  v.p. K (x  — y )u (y )d y , x  G R m, (1.1)
J Rm

in the Lebesgue space L 2(R m) and its discrete analogue o f the following type

(K dud)(x) =  ^  K d (x  — y)u d (y )h m, x  G hZm, (1.2)
yehZm

in the space L 2(h Z m) =  l2 o f  functions ud o f a discrete variable x  G hZm .
We recall [10] that that a sym bol <r(£) o f the operator K  is the Fourier 

transform o f its kernel in principal value sense

a ( 0  =  lim [  K (x )e ix ^dx,v ' e^0,N ^ J w
£<|x|<N
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and such sym bol is called an elliptic sym bol if

inf |<r(£)| >  0 .

Our main goal is the following. Starting from the operator (1.1) we intro
duce the discrete operator ( 1 .2 ) acting in infinite dimensional space so that 
it preserves basic properties o f the operator ( 1 .1) related to an ellipticity and 
invertibility [18,19 ,2 0 ,2 1 ,22]. Further to obtain com putational algorithms we 
would like to construct finite dimensional analogue o f the operator ( 1 .2 ) pre
serving same properties, and to obtain results on com parison o f these operators 
and solutions o f corresponding equations.

1.1 S o m e  p r e v io u s  a p p ro a ch e s  a n d  s tu d ie s

In books [2,3 ,5 ,6 ,1 4 ,1 5 ,17] authors present studies on convolution equations, 
one-dimensional singular integral equations and multidimensional weakly sin
gular integral equations related to approximate solution o f these equations.

As usual there are the following questions in these studies: 1) to find an 
approximate equation desirable in a finite-dimensional (N -dim ensional) space 
so that under enough large N  this approximate equation will be uniquely solv
able in an appropriate space; 2 ) to  obtain an error estimate between exact 
solution o f an initial equation and exact solution o f approximate equation in 
dependence on N . As far as we know these questions were investigated fully for 
one-dimensional singular integral equations on sm ooth curves L in a com plex

and some their multidimensional analogues [2, 3, 5] and for multidimensional 
integral equations with a weak singularity

where D  is a domain with a sm ooth boundary d D  and the kernel K (x ,y )  
satisfies the estimate

last equations are generated by com pact integral operators in appropriate 
spaces [17].

An algebraic approach based on a local principle for studying certain fi
nite approximations for integral operators was used in many papers, and its

plane C  [8 ,15]

convolution equations with integrable kernel K (x )  on a straight line

a ( x ) u ( x ) +  K (x  — y )u (y )d y  =  v (x ), x  G R,
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development for last years is presented in books for example [2,3 ,6]. But this 
m ethod o f C*-algebras permits to prove a solvability o f approximating equation 
but it can ’t help for obtaining an error estimate for solutions o f these equa
tions. Moreover concrete applications o f the m ethod are related as a rule to 
one-dimensional singular integral operators and equations.

For an error estimate there are some com putational results [9,12,13 ,16], and 
a lot o f  results are related to special equations for applied problem s (see for 
example [7]). M ultidimensional case is more com plicated because there is no 
such advanced theory similar classical Riemann boundary value problem  [4,11].

We would like to note that in general there are no valuable results for 
approximate solution o f multidimensional singular integral equations with Cal
deron -  Zygmund operators although such equations in distinct form arise in 
many problems o f partial differential equations and mathematical physics [10] . 
In our opinion a direct digitization is more convenient for com puter calculations 
than other methods, and we try to use and justify this approach.

2 Discrete spaces and transformations

2 .1  D e fin it io n s  a n d  n o ta t io n s

We accept the following conventions and notations. The kernel K (x )  is a dif
ferentiable function on the unit sphere in R m, K (0) =  0, and K d is a restriction 
o f the kernel K  on lattice points hZm . Let h be a size o f a “spatial quant“ , 
N  be a size o f our “Universe“ . These parameters will be tend to zero and 
infinity respectively. For the operator (1.1) we’ll use the following reduction. 
First we replace the operator (1.1) by the discrete operator (1 .2 ), and second 
we approximate this series by a special finite sum

^  Kd,N (x  — y )u d (y )h m, x  G hZm П Q n . (2.1)
y<EhZmnQN

For K d,N in the formula (2.1) we suggest a following construction. If K d 
is a restriction o f the continual kernel K  on lattice points hZm then we take a 
restriction o f the K d on points hZm П Q n  , where

Q n  =  { x  € R m : x  =  (x 1, • • • , x m), max |xk I <  N )
1<fc<m

and denote by K dN its periodic continuation on the whole hZm.
We would like to justify a following sequence o f transformations, “contin- 

ual“ operator ( 1.1) — > “infinite discrete“ operator ( 1.2 ) — > “finite discrete“ 
operator (2.1) with corresponding estimates on h and N . The com parison o f
(1.1) and (1.2) was given in papers’ series [18,19,20,21,22], and here we consider 
a com parison between ( 1 .2 ) and (2 .1) .

L et’s denote by P N the restriction operator hZm — > hZm П Q n , and the 
space L 2 (h Z m П Q n ) is denoted by lN so that P N is a projector l2 ^  l2N .

D efin it io n  1. Approxim ation rate o f operators K d and K d,N is called the 
following operator norm

^K d,NP N — P NK d\h2^i2N .



It is non-trivial to  obtain an estimate for the operator norm, but w e’ll 
give an estimate for an individual element assuming the existence o f some its 
properties. More precisely we’ll suppose that the element u d is a restriction of 
the function u which has Holder property in R m and u (x ) =  o(|x|Y), |x| ^  to , 
with some 7  >  0 .

We will obtain a “weak estim ate“ for approximation rate but enough for 
our purposes. We assume additionally that a function ud is a restriction on 
hZm o f continuous function with certain estimates [20 ,21]. L et’s define the 
discrete space C h( a ,e )  as a functional space o f discrete variable x  G hZm with 
finite norm

^ d ^ C ^ a ,? )  =  ||ud||Ch +  sup (-------  |+ — +  в .
x,yehZm (m ax {1  +  |x|, 1 +  |y|})e 

It means that the function ud G C h( a ,e )  satisfies the following estimates

|x — y|a

Two-Scale Estimates fo r  Special Finite D iscrete Operators 3 0 3

|ud(x) — ud(y)| <  c
(m ax {1  +  |x|, 1 +  |y|}) в ’

|ud(x)| <  -------------ъ— , Vx, y € hZm, а, в  — a  >  m, 0 <  a  <  1.
| П <  (1 +  |x|)e —a

Let us note that under required assumptions C h (а , в ) С L 2(h Z m), and 
these discrete space are discrete analogue o f corresponding subspaces o f con
tinuous functions [1].

T h e o r e m  1. For operators Kd and Kd,N the following estimate 

||Kd,NPnud — PnKdud||in <  C N m +2(a-e) 

holds, where constant C  doesn’t depend on  N, h.

Proof. Let us write

(P n  Kd — Kd,N P n  )ud =  P n  KdPN ud — Kd,N P n  ud +  P n  Kd ( I  — P n  )ud,

where I  is an identity operator in L 2(h Z m).
First two summands have annihilated, and we need to estimate only the 

last summand. We have

||PnKd(1  — Pn)ud|| <  C||(1  — Pn)ud||

because norms o f operators Kd are uniform ly bounded, and for the last norm 
taking into account above estimates we can write

hm
||(7 — PN )ud||2 <  C  £  |ud(i)|2hm <  C  £  (1 +  ,x|)2(в—a) <

x£hZm\Q n XGhZm\QN

and further
C  f  |x|2(a—в)dx.

./Rm\Qn

The last integral using spherical coordinates gives the estimate N m+ 2(a—в) 
which tends to 0 under n ^  to  if в > а  +  m /2 . □
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Remark 1. Similar theorem was obtained in [19,20] for the space C h(a , в ).

This theorem plays a key role for obtaining an estimate for approximate 
solution o f an multidimensional singular integral equation with the operator
(1.1) and permits to use fast Fourier transform for evaluating a numerical 
solution. Some test calculations were given in [20].

2 .2  D is c r e te  F o u r ie r  t ra n s fo rm

We define the discrete Fourier transform for a function ud o f a discrete variable 
x  G hZm as the series

u d ( 0 =  E  e— ?u d(x )hm, e G hTm,
5ehZm

where h =  h—1/ ( 2n).
This discrete Fourier transform has same properties like standard contin

ual Fourier transform, particularly for a discrete convolution o f two discrete 
functions ud,v d

(ud * vd )(x ) =  ^ 2  ud(x — y)vd (y )h m
y ehZm

we have the well known multiplication property

(Fd(ud * vd ))(e) =  (Fdud)(e) ■ (Fdvd)(e).

If we apply this property to the operator Kd we obtain

(F d(K dud))(e) =  (F dK d)(e) ■ (Fdud)(e).

Let us denote (F dK d)(e ) =  <̂ d(£) and give the following

D efin it io n  2. The function <rd(£), e G hTm, is called a periodic sym bol o f the 
operator K d.

We will assume below that the sym bol <rd(£) G C (h T m) therefore we have 
im mediately the following

Property 1. The operator K d is invertible in the space L 2(h Z m) iff <rd (£) =  
0, ve  g  hTm.

D e f in i t io n  3. A  continuous periodic sym bol is called an elliptic sym bol if 
ad(e) =  0 , ve  g  hTm.

So we see that an arbitrary elliptic periodic sym bol <rd(e) corresponds to an 
invertible operator K d in the space L 2 (h Z m).

Remark 2. It was proved earlier that operators (1.1) and (1.2) for cases D  =  
R m, D  =  R!p are invertible or non-invertible in spaces L 2(R m) ,L 2 (R m) and 
L 2 (h Z m), L 2(hZ!p) simultaneously [18,22].



2 .3  F in ite  d is c r e te  F ou r ie r  t ra n s fo rm

D e f in it io n  4. For a function ud,N G lN its finite discrete Fourier transform is 
defined by the formula

Ud,N(£) =  £  e iX< u d,N (X)hm, I  G HZm П Q n .
xehZmnQ n

D e f in it io n  5. A  sym bol o f the operator K d,N is called the function a d,N (£) 
o f a discrete variable £ G hZm П Q n  defined by the formula

^d,N(£) =  £  eiX«K d,N (X)hm, £ G HZm П Q n .
x£hZmnQ n

3 Comparison between infinite and finite discrete opera
tors

T h e o r e m  2. I f  the operator Kd is invertible in the space l2 then the operator 
Kd,N is invertible in the space lN fo r  enough large N .

Proof. Let the function

£  Kd,N(X)eix « hm, £ G K fm 
x€QN

is a segment o f the Fourier series

£  K d (x )e ix «hm, £ G HTm
x£hZm

and according our assumptions this is continuous function on HTm . Therefore 
values o f the partial sum coincide with values o f a d,N in points £ G RN =  
KLm П Q n  . Besides these partial sums are continuous functions on HTm . □

3 .1  S o m e  a u x ilia ry  resu lts

L e m m a  1. The norm o f operator K d ; l2 ^  l2 doesn’t depend on h 

For the p roof see [19].

L e m m a  2. The norm o f operator K d,N : lN ^  lN doesn’t depend on N , h.

Proof. Using the Theorem  2 and the property that the norm o f the operator
K d,N is equivalent to max |<rd,N (£)| (see also [10]) we obtain the required

’ ^GftZmnQN ’
assertion.

Two-Scale Estimates fo r  Special Finite D iscrete Operators 3 0 5
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3 0 6  A. V. Vasilyev and V. B. Vasilyev

The proved Theorem  1 is a very rough estimate. It is possible to  obtain more
exact error estimate for finite discrete solution taking into account a location
o f the point x  and relations between parameters N  and h.

We consider three types o f equations

K u  =  v, (4.1)

Kd ud =  Pdv =  vd, (4.2)

where Pd is a restriction operator which given continuous function v defined 
on R m maps to a collection o f its values on Z m, and

Kd,N ud,N =  vd,N =  P n  vd (4.3)

and would like to have an estimate for nearness o f their solutions.
Let us denote by r (x )  the distance between x  G hZm П Q n .

T h e o r e m  3. Let vd G C h(a , в ) . Then  Vx G Z m П Q n  the following estimate

f N a—в ln (1 +  C2N /h ), i f  r (x )  ~  N —1,
|ud(x) — ud,N(x)| <  c 1 < лга_ в . ^N a в , in other cases

holds, C1,C2 are constants non-depending on h, N .

Proof. Assuming N  is enough large so that both  operators K d and K d N are 
invertible in spaces l2 and lN respectively let us consider the difference

ud(x) — ud,N (x) =  (K —1vd)(x) — (K —N vd,N )(x ) =  ( (K —1vd)(x)

— (K d 1 vd,N ) ( x ) ) +  ( (K d 1 vd,N)(x ) — (K —N vd,N) (x ) ) =  A  +  ^2,

where

/1  =  (K —1vd)(x) — (K —1vd,N )(x ),

^2 =  (K —1vd,N )(x ) — (K —N vd,N) ( x ) .

W e’ll consider summands separately and give pointwise estimates for them. For

/ 2(x ) =  (K —1vd,N )(x ) — (K d 1  vd,N)(x )

we have / 2 (x ) =  0 because this difference is not zero for points from hZm \ Q n  
only, so we need to estimate / 1(x ) only.

First we need to  say some words on a structure o f operators K —1 and K —N 
which we have constructed for operators K d : l2 ^  l2 and K d N : lN ^  l 2 . 
Lemma 1 [19] implies that the norm o f the operator K d doesn ’t depend on 
h. A lso we have an analogue assertion for the operator K d N (Lemma 2 ). 
Moreover the operator K d- 1 is generated by C alderon-Zygm und operator with 
sym bol 1(e) and corresponding kernel K —1(x ), so that the kernel K —1(x ) o f



the discrete operator K —1 is a restriction o f the kernel K - 1(x ) on the lattice 
hZm .

Further the operator K —1  is constructed by the same way. We take the 
discrete kernel K - 1 (x )  then we take its restriction on Q n  and a periodic con
tinuation on a whole hZm. A  sym bol o f a such operator will be a — 1N (£), and 
we conserve all required properties.

Let us start to  estimate I 1(X).

^1(X ) =  £  K - 1(X -  y ) [vd(y ) -  vd,N (y )] h“
yGhZm

=  £  K —1(X -  y )vd (y )h m
yEhZm\QN

and we need to estimate the last sum only.
1) r(X  ) ~  N —1. Here taking into account that |X — y| >  h we obtain

|x -  y | ~  |X -  У | +  h.

W e’ll represent I 1(X) as a sum I 1(X) =  I 11(X) +  I 12(X), where

I 11(X) =  £  K —1(X -  y )v d(y)hm,
y EAn(hZm\Q n )

I 12(X) =  £  K —1(X -  y )vd(y)hm
y GBn(hZm\QN)

and for y G A  П (h Z m \ Q n ) we have r (y ) ~  N —1, for y G B  П (h Z m \ Q n ) we 
assume that r (y ) ^  N —1. Then

|I11(X )|<  £  (|X -  y| +  h )—m( i  +  |y|)a—e hm
x eAn(hZm\QN) 

and for enough small h we have

|I11(X)| <  с [  (|X -  y| +  h )—m (1 +  |y|)a—e dy,
J d n (x )

where D N (X) is a ball with a center in X and radius ~  N . Using spherical
coordinates with a center in X we obtain

Two-Scale Estimates fo r  Special Finite D iscrete Operators 3 0 7

p C2 N
|In(X )|< C1N a—e /

0

dt
t +  h 

and thus
|In(X)| <  C1N a—e ln (1 +  C2N /h ).

For I 12 (X) we use another estimate. We write

1112 (X )| <  £  (|X -  y | +  h )—m (1 +  |y |)a—e hm
y e£n(hZm\Qn  )

=  £  (|X -  y| +  h )—m (1 +  |y |)“ - e hm
x £Bn(hZm\Qn  )n{|x |<c|51}

M ath. M odel. A na l., 2 2 (3 ):3 0 0 -31 0 , 2017.



+  E (|x — y | +  h )—m (1 +  |y |)a—e hm
yeBn(hZm\QN )n{|y|>c|x|}

=  / 121(x ) +  /122 ( x ) .

For /121 (x ) we have |x  — y | ~ |x |, and

|/121 (x )| < c|x |—m J  (1 +  |y |)a—e dy |̂x |a—e ,

I X|<| y |<c| X|

consequently |/ 121(x )| < c N a—в . For / 122(x ) we have |x  — y | ~ |y |, and then 

|/ 122( x )| < c f  (1 +  |y |)a—e—mdy ~ |N |a—e .
^ |y| >N

2) r (x ) ~ N . Here we have |x  — y | ~ N . Thus

|/ 1( x )| =  | E K —1(x — y)vd (y)hm|< E |K —1(x — y )||v d (y )|hm
yehZm\Qn yehZm\QN

< c N —m E (1 +  |y |)a—в hm .
yehZm\QN

Since we are interested in small h the last sum can be dom inated by the fol
lowing integral

/  |y |a—в dy
« m\Q»

and calculations with spherical coordinates give the estimate for в — а  >  0

|/ 1( x )| < c N a—в .

3) r (x ) ~ 1. So we have the following estimate

|/ 1( x )| =  | E K —1(x — y)vd (y)hm|< E |K —1(x — y )||v d (y )|hm
yGhZm\Qn y^h Zm\Qw

< c E (1 +  |y|)a—e—mhm,
yehZm\QN

because |x  — y | ~ 1 +  |y |. Since we are interested in small h the last sum can 
be dom inated by the following integral

f  |y |a—e —mdy
JRm\QN

and calculations with spherical coordinates give the estimate for в — а  >  0

|/ 1( x )| < c N a—в .

□

3 0 8  A. V. Vasilyev and V. B. Vasilyev
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5 Conclusions

Our considerations give a certain algorithm for solving a simplest singular inte
gral equation in a whole space R m, and also in Rip taking into account authors’ 
conclusions in [21,22]. The error estimate for finite discrete solutions shows that 
varying N , h we can obtain a necessary sharpness. Collecting all authors’ re
sults [18,19 ,2 0 ,2 1 ,22] related to  equations (4 .1 ), (4 .2 ), (4.3) we conclude that 
there is a certain correspondence between solvability o f these equations and 
their solutions.
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