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Abstract. In the paper, we consider the evolution of the free boundary separating two immiscible viscous fluids with 
different constant densities in an absolutely rigid solid body and in an elastic skeleton. The motion of the liquids is 
described by the Stokes equations driven by the input pressure and the force of gravity. For flows in a bounded domain, 
we prove the existence and uniqueness of classical solutions and emphasize the study of the properties of the moving 
boundary separating the two fluids.
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1 Introduction

It is well known [14] that the Darcy system of filtration, describing the macroscopic flow of an incompressible 
viscous liquid, is a result of exact homogenization of the Stokes system for an incompressible viscous liquid 
occupying periodic pore space in an absolutely rigid solid body.

The more complicated macroscopic motion of two immiscible incompressible viscous liquids is governed 
by the Muskat problem. In this model, one looks for the free boundary Г (t) c  Q that separates two different 
domains Q +(t) c  Q and Q - (t) c  Q, Q +(t) U Г (t) U Q-  (t) =  Q, occupied by different fluids. In each of the 
domains Q ± (t) the liquid motion is described by its own Darcy system of filtration, and at the free boundary 
the normal velocities of the liquids coincide with the normal velocity of the free boundary.

Thus, we may expect that, as in the case of the filtration of a single liquid, the Muskat problem should be 
a homogenization of the initial boundary value problem for the Stokes system with an inhomogeneous liquid

(iA u£ +  gp£e =  0, V  • u £ = 0, ^  =  0,
d t

in a periodic pore space Q£ of an absolutely rigid solid body Q with the following boundary and initial condi
tions:

u£(x ,t)  =  0, x  £ dQ£, (1.1)

Pe(x , 0) =  p0(x ), x  £ Qe,
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Figure 1. Numerical simulation: successive positions of the 
free boundary in a single capillary.

x

Figure 4. The limit of rigorous numerical upscaling.

x

Figure 3. Homogenization by increasing number Figure 5. The Muskat problem.
of capillaries. Concentration of water s for increasing 
times (left to right).

where

p0(x) =  p+ = const, x  £ Q+ (0), p0(x) =  p-  = const, x  £ Q-(0),

Q f  (0) U Q7(0) = Qe, 11 is the viscosity, and ge is the acceleration due to gravity.
Due to the boundary condition (1.1), the contact points of the free boundary and the solid skeleton will 

be permanently fixed at the initial position. Numerical implementations predict the appearance of a water 
tongue, which grows with time (see Fig. 1). The gradual growth of the number of capillaries (Fig. 2) leads 
to homogenization of the liquid motion. The domain occupied by the water tongues at a fixed time becomes 
under homogenization a mushy region, where the concentration s of water varies from 1 to 0 (Figs. 3 and 4).

Now, if we return to the Muskat problem, then we may see that the solution of the Muskat problem cor
responding to the macroscopic joint motion of two different liquids has a very simple structure. The free 
boundary separates two liquids and moves with a constant velocity (Fig. 5).
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So, we cannot obtain the Muskat problem of the liquid motion in the pore space of an absolutely rigid 
body as a homogenization of the corresponding initial boundary value problem for a Stokes system with 
an inhomogeneous liquid.

However, if we look for the motion of an inhomogeneous liquid in an elastic solid body, then the situation 
changes. The contact points of the free boundary and solid body begin to move, and homogenization conserves 
the free boundary that separates the two liquids [11].

In its simplest setting the problem has the following formulation. Let Qf  C Q C R 2, where Q is the unit 
cube

Q = {x: - 1  <  Xi < 1, i = 1, 2}, and Q f  = 1 x: - 1  <  х г < 1, <  x 2 <  ^

In dimensionless variables the evolution of the flow is driven by the input pressure and the force of gravity. 
More precisely, in this problem, we must find the velocity u f  (x, t), pressure pf  (x, t), and density pf  (x, t) of 
the inhomogeneous liquid in Q f , and displacements u s(x ,t)  and pressure ps(x, t )  of an elastic skeleton in
QS = Q \  Qf  from the following system of differential equations:

where

V - P f  +  pf  e =  0, V - u f  =  0, 

V - Ps +  pse =  0, V - u s =  0,

x  e Q f , 0 < t  < T ,  

x  e Qs, 0 < t  < T ,

d Pf
dt

dpf
dt +  V - (Pfu f

dpf
dt

+  u f  - V p f  =  0, x  e Q f , 0 < t  < T ,

P f 2^ D ( u f ) -  pf  I, D (u^) =  i ( V u '  +  (V u ')* ) ,

Ps =  2 A D (u s) -  psI,

(1.2)

(1.3)

ц  =  const is the viscosity of liquids, A =  const is the Lame coefficient, e is a given vector, ps is the density 
of the solid body, and I is the unit tensor.

The mass and momentum conservation laws dictate the coincidence of velocities and normal tensions of 
the liquid and solid components:

d u s
u f  = Р /  • П =  Ps ■ n  (1.4)

dt
on the common boundary S  =  dQ f  П dQs with unit normal vector n.

The boundary condition on the lateral part S 0 =  {x2 =  ±1} of the boundary dQ for 0 < t < T  has the 
form

u s(x ,t)  =  0. (1.5)

At the “entrance” and “exit” boundaries S±  =  {x  e dQ: x\  =  ^1},

P s - e i =  —p+ (x )e i , x  e S+, P f  - e i =  —p+ (x )e i , x  e S+ , 0 < t < T ,  

P s - e i =  0, x  e S - , P f  - e i =  0, x  e S - , 0 < t  < T ,
(1.6)

where p+ (x) is a given function, S±  =  S±  П d Q f , S±  =  S±  П dQs, and e» is the unit vector of the x^-axis 
for i =  1,2.

To simplify our considerations, we pass to the homogeneous boundary conditions at S ±

Pi - e i =  0, x  e S±,  i =  f , s ,  0 < t  < T , (1.7)
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by introducing the new pressure

Pf ~ >P f ~  P°(x ), P°(x ) =  7̂ + ( x ) ( l  -  Xi).

With this new pressure the dynamic equations take the form

V - P /  +  f  +  pf e =  0, V - u f  =  0, x  e Q f , 0 < t < T ,  

V -  P s +  f  =  0, V  - u s =  0, x  e Qs, 0 < t  < T ,

(1.8)

(1.9)

where

and

Finally,
x (x)

f  (x) =  (1 -  X(x))Pse +  V p0(x),

1 for x  e  Q / and x (x ) = 0  for x  e  Q 

u s(x, 0) =  0, x  e  S 0.

(1.10)

(1.11)

The initial and boundary conditions for the density are equivalent to specifying the surface Г0 that separates 
two subdomains Q±(0) initially occupied by different fluids. For simplicity, we suppose that

and

Г (0) =  j x  G Qf : X! = h(x2), ~  < X‘2 <  ^ j

-~2 + 5 < h ( x 2) < ^ - 5
1 1

for —- < Ж 2 < -

(1.12)

(1.13)

with some 0 < 5 < 1.
So, we may expect that the free boundary Г (t) will not touch the given boundaries S ±, at least for some 

time interval 0 < t < T .
At the boundaries S  ± for 0 < t < T  and at initial moment t =  0, the density p/  is piecewise constant and 

assumes two positive values characterizing the distinct phases of the flow:

p/ (x, t )  = p± =  const >  0, x  e  S±,  0 < t  < T ,  (1.14)

Pf (x, 0) =  po(x), x  e  Q / , (1.15)

where p0(x) =  p± for x  e  Q ± (0).
Suppose for simplicity that

p-  ^  p0 (x) ^  p+.

If the velocity u /  (x, t) is sufficiently smooth, then the Cauchy problem

dx
dt

u /  (x, t ) , t > t 0, x \t=t0 =  £

determines a mapping

x  =  x{£,t;  u / ; t0) , Y : Q/  ^  Q / .
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In particular, the free boundary Г (t) is determined as the set

Г  (t) =  {x  e Q f : x  =  Y {( , t ] u f  ; 0), £ e Г  (0)}, 

and subdomains Q ±( t ) = {x  e  Q f : p f  (x , t ) = p±} as the sets

Q ± (t) = { x  e  Q f : x  = Y {£, t; u f ; 0), £ e Q ± (0)}

П {x  e  Q f : x  = j (£ , t ;  u f ; t0) , £ e S±,  t0 >  0}.

It is shown that the evolution described by the above equations preserves the existence and uniqueness 
of two subdomains Q ±(t), each occupied by one of the fluids, that are separated at time t  > 0 by a reg
ular free boundary Г (t ). Thus, the problem studied is equivalent to finding {u , p f , w , p s } and the moving 
boundary Г (t ).

Theorems on the existence of generalized solutions to the Navier-Stokes system for inhomogeneous in
compressible fluids were obtained in, for example, [2 , 3,4 ,5 , 7 ,9, 10, 13, 14] and [ 8] (without detailed analysis 
of a set where the density is discontinuous). The existence and uniqueness of a classical solution to the Stokes 
equations for an inhomogeneous liquid with Dirichlet boundary conditions have been proved in [1], and with 
the Neumann boundary conditions in [12]. The weak solutions to problem (1.2)- (1.15) at the microscopic level 
for arbitrary smooth periodic pore space followed by homogenization has been considered in [10]. Let us call 
the obtained homogenized free-boundary problem describing the motion of two immiscible incompressible 
viscous liquids at the macroscopic level as the generalized Muskat problem.

2 The Muskat problem

2.1 A single capillary in an absolutely rigid skeleton: Dirichlet boundary conditions

We consider a flow of two immiscible viscous fluids with different constant densities in a bounded domain 
Q С Mn with C 2-smooth boundary S  = dQ  for dimensions n  ^  2. The evolution is driven by the force of 
gravity. The moving boundary, which appears naturally, separates the subdomains occupied by different fluids.

More precisely, the problem is to find the velocity u  =  ( u \ , . . . ,  un) e  Mn , pressure p e  M, and density 
p e  M from the system of equations for velocity and pressure

A u  =  Vp  +  ape,  V - u  =  0, (2.1)

where e is a given unit vector, and a  = const a given scalar constant, and the transport equation for density

L , |  +  V . ( Pu) =  !  +  u .V p  =  0.

Time t enters the equations for velocity as a parameter, so it needs no initial condition. 
The boundary condition on the boundary S  = dQ  is

u  =  0. (2.3)

At the initial moment t =  0, the density is piecewise constant and assumes two positive values characteriz
ing the distinct phases of the flow:

p(x,  0) =  po(x)
p+, x  e  Q+(0) 

p- , x  e  Q - (0)
p± = const, p+ > p > 0. (2.4)
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In this case, the initial condition for the density is equivalent to specifying the surface Г (0) =  Г° that sepa
rates the two subdomains Q± (0) initially occupied by different fluids. We further suppose this surface to be 
sufficiently regular.

The problem treated here is that of finding u (x , t), p(x,  t), and the density p(x, t) from the above equations 
and the initial and boundary conditions. Note that it is nonlinear because of the coupling term u  - V  p in (2.2).

We further show that the evolution described by the above equations preserves the existence of two sub
domains Q±(t),  each occupied by one of the fluids, that are separated at time t > 0 by a regular free bound
ary Г (t). Thus, the problem studied is equivalent to finding u, p, and the moving boundary Г (t).

Theorems on the existence of generalized solutions to the Navier-Stokes system for inhomogeneous in
compressible fluids were obtained in, for example, [2 , 3, 4 , 5 , 13, 15, 16] (without detailed analysis of the set 
where the density is discontinuous).

Theorem 1. If  the initial configuration o f the free boundary is a surface Г° o f class C 2, then problem (2.1)-  
(2.4) with piecewise constant initial density has a unique solution in the interval [0,T] of arbitrary length 
T  > 0. The elements o f this solution have the following properties:

(i) For arbitrary q > n and \  =  1 — n/q, the velocity satisfies the relation

u  e L (0, T; W 2’q(Q)) П L x  (0, T; C г’х) П C °’A(0, T; C  1’X) .

(ii) The free boundary Г  (t) is a surface o f class C 1,A at each time t e  (0, T], and the velocity Vn(x, t) of  
the free boundary in the direction o f its normal n  at position x  is uniformly bounded,

sup |Vn (x ,t) | <  те.
te(°,T) 
xer  (t)

(iii) The density has bounded variation,

p e  L ^ ( 0 , T ;  BV(Q) )  П B V ( Q t ), Qt  = Q x  (0,T ).

2.2 A single capillary of an absolutely rigid skeleton: Neumann boundary conditions

As in the previous subsection, we consider the flow of two immiscible viscous fluids with different constant 
densities in a single capillary Q = {x  e  R 2: —1 < x 1 < 1, —h < x 2 < h}. The evolution is driven by 
input pressure and the force of gravity. More precisely, in this problem, we must find the velocity u (x , t) =  
(u1(x, t ) , u2(x, t)) e  R 2, pressure p(x,  t), and density p(x, t) from the system of equations for velocity and 
pressure

p A u  — Vp  +  gpe = 0,

V - u  =  0, (2.5)

where p = const is the viscosity of liquids, e is a given unit vector, and g is the acceleration due to gravity, 
and the transport equation for the density

dp
d t

dp
dt

+  V ■ (pu)
dp
d i

+  u  ■V p 0. (2.6)

At the initial moment t =  0, the density is piecewise constant and assumes two positive values characterizing 
the distinct phases of the flow:

p(x,  0) =  p°(x)
p+, x  e  Q +(0), 

p- , x  e  Q- (0),
p± = const, p > p+ > 0. (2.7)

Time t enters the equations for velocity as a parameter, so it needs no initial condition.

Lith. Math. J., 58(3):284-308, 2018.
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The boundary condition on the lateral part S° =  {x  e R 2: —1 < x 1 < 1, x 2 = ±h}  of the boundary
S  = dQ  is

u ( x , t ) = 0 . (2.8)

The boundary condition on the “entrance” S -  = {x  e  R 2: x i =  —1, —h < x 2 < h } c  S  and “exit” S  + =
{x  e  R 2: x 1 =  1, —h < x 2 < h } c  S  are

P (u ,p )  • n  =  —p°n, p = p±, x  e  S±,

where

P(u,p)  = 2 g D ( u ) - p I ,  D (u) =  ^ (V u  +  (V u)*),

I is the unit tensor, p°(x) is a given function, and n  =  (1,0) is the unit normal vector to S ±. Note that we 
need the boundary condition for the density only at points x  e S±  where ± u  • n  <  0.

The initial and boundary conditions for the density are equivalent to specifying the surface Г° that separates 
the two subdomains Q± (0) initially occupied by different fluids. For simplicity, we suppose that Г (0) =  
{x  e  Q: x 1 = 0, —h < x 2 < h}, Q± = {x  e  Q : 0 <  ± x 1 < 1} .

If the velocity u (x , t) is sufficiently smooth, then the Cauchy problem

dx
dt

u (x , t ) , t > t o , x \t=t0 =  £

determines a mapping

X =  7 (C ,f ;u ;t0), 7

In particular, the free boundary Г (t) is determined as the set

Г (t) =  {x  e  Q : x  =  у (£,t; u ; 0), £ e Г (0^ ,

and subdomains Q±(t)  =  {x e  Q: p(x,  t) =  p±}  as the sets

Q±(t)  =  { x  e  Q : x  =  y (£,t; u ; 0), £ e Q±}
n  {x e  Q: x  =  Y(£,t; u; to), £ e  S±(0), to >  0}.

(2.9)

The problem treated here is that of finding the velocity u (x , t), pressure p(x,  t), and density p(x, t) from the 
above equations and initial and boundary data. Note that it is nonlinear because of the coupling term u  •'Vp in 
(2.6).

To simplify our considerations, we pass to the homogeneous boundary conditions

P (u ,p )  • n  =  0, x  e  S ± , (2.10)

by introducing a new pressure p ^  p — p0(x ):

p A u  — V p  =  f  = Vp° — gpe,  (2.11)

where Vp0 is a bounded function:

|V p °(x ,t) | < P°  =  const. (2.12)

We further show that the evolution described by the above equations preserves the existence of two subdomains 
Q ±(t), each occupied by one of the fluids, that are separated at time t > 0 by a regular free boundary Г (t). 
Thus, the problem studied is equivalent to finding u, p, and the moving boundary Г (t).

Let Q(m') =  {x  e  Q : — 1 +  1 /m  < x 1 < 1 — 1/m }, where m > 1 (i.e., any real positive number).
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Theorem 2. Under condition (2.12), problem (2.5)—(2.8), (2.10)—(2.11) has a unique solution in the interval 
[0, T) for some T  > 0. The elements o f this solution have the following properties:

(i) For arbitrary positive m  £ N, q > 2, and X = 1 — 2/q, the velocity u  and pressure p satisfy the 
regularity conditions

u  £ L ^ ( 0 , T ;  W 2’q (П(т ))) П L (0 ,T ; C 1’X (Q(m ))),  p £ L 00 (0 ,T ; W ( П(т ))),

equations (2.5), (2.11) almost everywhere in ПТ  = П x  (0, T), boundary condition (2.8) in the usual 
sense, and boundary condition (2.9) in the sense o f distributions as the integral identity

J  (P (u (t),p(t)) : D (p) +  f  • p)  dx =  0
Q

for almost all 0 < t < T  and for any smooth solenoidal functions p  vanishing at x  £ S°.
(ii) The free boundary Г (t) is a surface o f class C 1,A at each time t £ [0,T), and the normal velocity 

Vn (x, t) o f the free boundary in the direction o f its normal n  at position x  is uniformly bounded,

sup |v n (x ,t) | <  те.
t e(o, T ) 
xe r  (t )

(iii) The density p has bounded variation,

p £ L ^ ( 0 , T ;  B V  (П(m))) П B V  ( П ^ ), 

and satisfies the transport equation (2.5) in the sense o f distributions

/ , ( f + u . V , ;
Qt

d x  d t po(x ) f ( x , 0) dx

Q

for any smooth functions ф vanishing at t = T  and x  £ S  ±.

The time T  o f the existence o f the classical solution depends on the behavior o f the free boundary Г  (t). 
Namely, let (t) be the distance between Г (t) and the boundary S ± , and let 5(t) = m in ()_ ( t) , ) + (t)). Then
5(t) > 0 for all 0 < t < T  and 5(t) -£ 0 as t -£ T.

We use the standard notations of functional spaces and norm there.

2.3 A single capillary of an elastic skeleton: Neumann boundary conditions

We consider a flow of two immiscible viscous fluids with different constant densities in a single capillary 
Qf  C Q C R 2, where Q is a unit cube. Suppose for simplicity that

Q = {x: —1 < x i  < 1, i = 1,2}, Qf  =
1 1

1 <  xi  < 1, - -  < x 2 < -

In dimensionless variables the evolution of flow is driven by the input pressure and the force of gravity. More 
precisely, in this problem, we have to find the velocity u f  (x , t), pressure pf  (x , t), and density pf  (x , t) of the

Lith. Math. J., 58(3):284-308, 2018.
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inhomogeneous liquid in Q f , and the displacements u s( x , t ) and pressure ps(x ,t) of an elastic skeleton in
Qs =  Q \ Q f  from the following system of differential equations:

V - P f  +  pf  e =  0, V - u f  =  0, x  e Q f , 0 < t < T ,  

V - P s +  pse =  0, V - u s =  0, x  e  Qs, 0 < t  < T ,

d Pf 
df

dpf
dt +  V ' (pfu f V Pf =  ° x  e  Q f , 0 < t  < T , (2.13)

where

Р /  =  2 p D (u / ) -  pf l, D (u / ) =  ^ (V u 7 +  (V u / )*),

Ps =  2AD(us) -  psI,

p  =  const is the viscosity of liquids, A =  const is the Lame coefficient, e is a given vector, ps is the density 
of the solid body, and I is the unit tensor.

The mass and momentum conservation laws dictate the coincidence of velocities and normal tensions in 
the liquid and solid components

d u s
u f  = — , P / - n  =  P s - n  (2.14)

dt
on the common boundary S  =  dQ f  П dQs with unit normal vector n.

The boundary condition on the lateral part S 0 =  {x2 =  ±1} of the boundary dQ for 0 < t < T  has the 
form

u s(x ,t)  =  0. (2.15)

At the “entrance” and “exit” boundaries S±  =  {x  e  dQ: x\  =  ^1},

P s ■ e i =  —p+ (x )e i , x  e  S+, P f  ■ e i =  —p+ (x )e i , x  e S+, 0 < t < T ,

P s ■ e i =  0, x  e  S - , P f  ■ e i =  0, x  e S - , 0 < t  < T ,

where p+ (x) is a given function, S±  =  S±  П d Q f , S±  =  S±  П dQs, and e» is the unit vector of the x^-axis 
for i =  1, 2.

To simplify our considerations, we pass to the homogeneous boundary conditions at S ±

Pj ■ e i =  0, x  e  S±,  i =  f , s ,  0 < t  < T ,  (2.16)

by introducing the new pressure

P f ~ > P f ~  T°(x )> T°(x ) =  ^ + (x )(! -  x i)-

With this new pressure the dynamics equations take the form

V - P f  +  f  +  pf  e =  0, V^  u f  =  0, x  e  Q f , 0 < t < T ; 

V^  P s +  f  =  0, V^  u s =  0, x  e  Q s , 0 < t  < T ,

where

f  (x ) =  (1 — X(x )) ps e +  Vp0 (x )
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and

x (x ) =  1 for x  £ Qf  and x (x ) = 0  for x  £ Qs.

Finally,

u s(x, 0 ) = 0 ,  x  £ S o. (2.17)

The initial and boundary conditions for density are equivalent to specifying the surface Г0 that separates two 
subdomains Q ± (0) initially occupied by different fluids. For simplicity, we suppose that

Г (0) =  < x e Qf : xi  = h(x2), ~ \ < x '2 < \ \

and

l-  + 6 < h { x 2) < l- - 6
1 1

f0T. . < x2 < -

with some 0 < 5 < 1.
So, we may expect that the free boundary Г (t) will not touch the given boundaries S±  at least for some 

time interval 0 < t < T .
At the boundaries S  ± for 0 < t < T  and at initial moment t =  0, the density pf  is piecewise constant and 

assumes two positive values characterizing the distinct phases of the flow

pf (x, t )  = p± =  const >  0, x  £ S±,  0 < t  < T ,  (2.18)

Pf (x, 0) =  po(x), x  £ Q f , (2.19)

where p0(x) =  p± for x  £ Q ± (0).
Suppose for simplicity that

p-  ^  po(x) ^  p+.

If the velocity u f  (x, t) is sufficiently smooth, then the Cauchy problem

determines a mapping

dx
dt

u f  (x, t ) , t > to, x \t=t0 =  £

x  =  ^ £ , t ;  u f ; to ) , Y: Q f ^  Q f .

In particular, the free boundary Г (t) is determined as the set

Г  (t) =  {x  £ Q f : x  =  Y(£,t; u f  ; 0 , £ £ Г  (0)}, 

and subdomains Q ±(t) =  {x  £ Q f : pf  (x ,t)  =  p±} as the sets

Q± (t) =  { x  £ Q f : x  =  y {£, t; u f ; 0), £ £ Q ± (0)}

П {x £ Q f : x  =  Y(£,t; u f ; to), £ £ S±,  to >  0}.

The problem treated here is that of finding the velocity u f  (x, t) and pressure pf  (x, t) of the liquid in pores, 
the displacement u s (x ,t)  and pressure ps(x ,t)  of the solid skeleton, and the density pf  (x ,t)  of the liquid

Lith. Math. J., 58(3):284-308, 2018.
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from the above equations and initial and boundary data. Note that it is nonlinear because of the coupling term 
u f  - V p f  in (2.13).

We further show that the evolution described by the above equations preserves the existence of two subdo
mains Q ±(t), each occupied by one of the fluids, that are separated at time t > 0 by a regular free boundary
Г (t). Thus, the problem studied is equivalent to finding {uf  , p f , u s ,p s} and the moving boundary Г (t).

We use the standard notations of functional spaces and norm there.

Theorem 3. Under the conditions

||fIU ,Q =  Co < ж, Г (0) e  C l+a, 0 <  a  <  1,

problem (2.13)—(2.19) has a unique solution in the interval [0, T) fo r some T  > 0.
The elements o f this solution possess the following properties:

(i) For any 0 < 5 < 1 and 0 < a  < 1, the velocity u  and pressure p satisfy the regularity conditions

u  e L ^ ( 0 , T ;  W23 (Q(s))) П L ^ ( 0 , T ;  C 1+a (Q (<5))),  p e  L 00 (0 ,T ; W f (Q (<5))) ,

equations (2.17) almost everywhere in Q x (0,T), boundary conditions (2.15), (2.18), and initial 
conditions (2.17) and (2.19) in the usual sense, and boundary conditions (2.14) and (2.16) in the sense 
o f distributions as the integral identity

J  (P (u (t),p(t)) : D (p) +  f  ■ p) dx  =  0

Q

for almost all 0 < t < T  and for any smooth solenoidal functions p  vanishing at x  e  S°.
(ii) The free boundary Г (t) is a surface o f class C 1,a at each time t e  [0,T), and the normal velocity 

Vn (x , t) o f the free boundary in the direction o f its normal n  at position x  is uniformly bounded,

sup |v n (x ,t) | <  ж .
te(o,T) 
xer  (t)

(iii) The density p has bounded variation,

p e  L ^ ( 0 , T ;  B V ( Q (s))) П B V ( Q (s) x (0,T)),  

and satisfies the transport equation (2.13) in the sense o f distributions

Qt

d x  d t p0 (x ) f ( x , 0) dx
Q

for any smooth functions ф, vanishing at t = T  and x  e S  ±.

The time T  o f the existence o f the classical solution depends on the behavior o f the free boundary Г  (t). 
Namely, let 5± (t) be the distance between Г (t) and the boundary S ± , and let 5(t) = m in(5_ ( t) , 5+ (t)). Then 
5(t) > 0 for all 0 < t  < T  and 5(t) ^  0 as t ^  T.

Because of the restriction of the volume of the paper, we prove only Theorem 3.
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2.3.1 Proof of Theorem 3

We divide the proof of Theorem 3 into several steps.

1. First, we show that the problem of finding u and p has at least one classical solution for an approximate 
smooth initial density p0 e C <x(Qf ).

2 . Next, we specify a class of functions with certain regularity properties and, using a compactness ar
gument, establish the convergence of smooth solutions to the solution of the original problem with 
piecewise constant initial density p0.

3. Finally, we prove the existence of a smooth surface separating the parts of the domain occupied by two 
different fluids.

In what follows, by C  we denote constants depending only on Co, f , p± , and ps.

2.3.2 Approximate smooth density

Throughout this subsection, we fix the initial density p0 e  C ™(Qf ), e >  0. 
More precisely, we put

Po(x ) = M ^ 2)(po) = ̂2 J . y ^ Po(y)dy

for x  e Q f , where

J(s)  ^  0, J (s) =  0 for |s| >  1, J (s) = J ( - s ) ,

J  e  C ^ (-x > ,  + ro ), J  J (|x |) dx = 1,
K2

and consider the following approximate problem:

V - P f  +  pf e +  f  =  0, V - u f,f =  0, x  e  Q f, 0 < t < T ,

V -  PS +  f  =  0, V - us f  =  0, x  e  Qs, 0 < t  < T ,  u s,f (x , 0) =  0, x  e S,
fjUS’f

u^'£ = , P j  • n  =  P^ • n , x  e  S, 0 <  t < T,

P f ■ e i =  0, x  e  S±,  i = f , s ,  us,f (x , t) = 0, x  e S ° , 0 < t  < T ,

P f  (u f ,f ,pff) =  2^ D (u f ’f ) -  pf  I, Ps (u s,f,pf ) =  2AD(u s’f ) -  psi,

dpf
— - + v e -V pe =  0, x  e Q, 0 <  
dt

pf (x , 0) =  p0(x), x  e Q, v f

< T ,  pf (x , t) =  p±, 

M f1)(M f2) (u f, f)).

x  e  S±,  0 < t  < T ,

(2.20)

(2.21)

Here

M f1) (v)
1
e

J
0

\ t  ~ T \

e
v (x , t ) d r.
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D efin ition  1. We say that a set of functions {u f,£,p£f , u s’£,p£s, p£}

u i>£ e  M ( 0  ,T ); W2 (Qi)), p£ e  L 00((0,T); L 2 (Q )), i =  f , s ,  

p£ ^ C l (QT ), Qt  = Q x (0,T),

is a weak solution of problem (2.20), (2.21) if it satisfies the integral identity

j  P f  {uf ’£,p£f ) : D (p) dx + j  Ps (u s’£,p£) :D (p )d x

Q f Qs

= j  p£(e ■ p) dx + J  f  ■ p  dx (2.22)

Q f Q

for almost all t e  (0, T)  and for arbitrary smooth functions p (x ) vanishing at S 0, and problem (2.21) in the 
usual sense.

To solve problem (2.20)- (2.21), we use the Schauder fixed point theorem [6].
Let Af be the set of all continuous functions

p e C ( G ) ,  G = Qf  x  (0,T ),

such that
P G P(x,t) G p+.

For fixed e > 0, we define the nonlinear operator

Ф: M ^ M ,  p = Ф(р),

where {uf  , p f , u s ,p s, p} is a weak solution of the nonlinear boundary-value problem

V - P f  +  p £e +  f  =  0, V^  u f  =  0, x  e  Q f , 0 < t  < T ,

V^ P s +  f  =  0, V - u s =  0, x  e  Qs, 0 < t  < T ,  u s (x, 0) =  0, x  e S,

P f  ■ n  =  P s ■ n , x  e  S, 0 < t  < T ,u
d u 8
~dt

P i ■ e i = 0 ,  x  e S±,  i = f , s ,  u s (x, t) =  0, x  e S°,  0 < t  < T ,

dp
Q-  +  v e • V p =  0, x  e Q, 0 < t  < T ,  
dt
p(x, t )  = p±, x  e  S±,  0 < t < T ,  p(x,  0) =  p0(x), x  e  Q,-.±

where

p£(x, t )  = M (1) (p), v £ =  m £1} (m £2) (uf ) ) ,

P f  = 2p D (u f ) -  pf  I, Ps =  2AD(us) -  psl.

(2.23)

(2.24)

(2.25)

The properties of the mollifier M£ 1 and continuity equation for u imply the continuity equation for v £:

V^  v £ =  0, x  e  Q f , 0 < t  < T .
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Lemma 1. Under the conditions o f Theorem 3, problem (2.24) has a unique weak solution

c)u.s
u* G Lco((0, T); i = f , s ,  — e L 2((0,Ty,W}(Qa)),

satisfying the following estimates:

T

0 Qf

D (u f ) : D (u f ) d x dt +  m ax D (u s (x , t) )  :D ( u s(x , t ) ) d x  ^  C,

Qs

(2.26)

T
m ax

0<t<T D (u f (x , t)) : D (u f (x , t)) dx  + D

Q f 0 Qs

d u s
~di

: D
<9iF
~dt

dx  ^  C i(e), (2.27)

m ax |u f  (x , t
0<t<T

) 12 dx +  max
0<t<T

Qf Qs

d u s
~dt

(x t)
2

dx ^  C2(e). (2.28)

Proof. First of all, note that, due to the linearity of the problem, it suffices to find the corresponding a priori 
estimates.

To prove estimate (2.26) , we multiply the Stokes equation for u f  by u f  and integrate by parts over do
main Q f , multiply the Lame equation for u s by d u s/dt ,  integrate by parts over domain Qs, and sum the 
results.

To get estimate (2.27), we differentiate the Stokes equation for u f  and the Lame equation for u s with 
respect to time, multiply the first expression by u f  and integrate by parts over domain Qf  x (0, t0), multiply 
the second expression by d u s/ d t  and integrate by parts over domain Qs x  (0, t0), and sum the results:

-
2 J

Q f

to

D (u f  ( x , to)) : D (u f  (x ,to )) dx +  A
0 Q

D

to __
=  /  / ^ ( x , f ) ( u / ( x , f ) . e )  d x d t  = I. 

0 Q f

d u s
~dt (x t) : D

d u s
~dt (x ,t) dx  d t

(2.29)

Thus,

D (u f  (x ,to )) : D (uf  (x ,to )) dx  +
Q f  0 Q

D( : J dxdt
to

J  J  |u f  (x, t ) |2 dx dt +  C0(e).II | ^  I I lllf  (x t) I 2

0 Q f

(2.30)

To estimate the right-hand side in (2.30), we introduce a new function u(x,  t):

u ( x , t ) -  I 9us
u f  (x ,t)  for x  e Q f , 

^ p ( x , f )  f o r x e Q s .

to
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It easy to see that u  e W^(Q),  u (x , t) =  0 for x  e S 0 (see the boundary condition in (2.23)), and

J  lu ( x , t ) l2dx  = J  |u / ( x -t ) |2dx  + J
Q  Q  f  Q  s

d  u5
dt

(x , t) dx, (2.31)

D (u (x ,t) )  : D (u (x ,t) )  dx =  D (u f (x , t )) : D (u f (x , t )) dx

Q Qf

+ D( : J d x d t '
0 Qs

Therefore we may apply the Friedrichs-Poincare inequality [17]

2

t0

|u ( x , t ) |2dx ^  C D (u (x ,t) )  : D (u (x ,t) )  dx, (2.32)
Q Q

which, together with (2.30) and 2.31), implies

to
J  D (u f (x , t 0)) : D (u f ( x , t0)) dx ^  C J  J  D (u f (x ,t) )  :D ( u f (x ,t) )  dx d t +  C0(e).

Qf 0 Qf

In turn, if we put
t

y(t) =  J  J  D (u f  (x ,r ) )  : D (u f  (x ,r ) )  dx dr,

0 Qf
then we arrive at the differential inequality

dу
df

(t) <  C y(t) +  C0(e), y(o) =  0.

This last equation results in

y (t) <  C l (e),

and, consequently, estimate (2.27).
Estimate (2.28) follows from (2.32). □

Lemma 2. Under the conditions o f Theorem 3, problem (2.20) has a unique weak solution.

Proof. For the given solution u f  =  Ф1(р) of problem (2.24), we may solve the initial boundary-value prob
lem (2.25) and find p =  <P2(u f ) =  Ф(р) such that

p~ ^  p (x ,f) ^  p+, p £ C 2,1(G). (2.33)

The first estimate follows from the maximum principle and shows that Ф transforms M  into itself, and the 
smoothness of p follows from existence theorems for parabolic equations with smooth coefficients [9].
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So, if we prove the continuity of the operator Ф, then Ф would be completely continuous due to (2.33). 
Finally, the Schauder fixed point theorem [6] allows us to find a fixed point of the operator Ф and solve 
problem (2.20).

The continuity of the linear operator Ф1

Ф1: M ^ B  = L x ((0,T); W { ( Q f ))

follows from estimates (2.25).
The nonlinear operator Ф2 is also continuous. Indeed, let u { , u2> e  L^( (0,  T); W{ (Qf )). Then

vf  =  M ( 1) ( M f  (u { ) ) e C ° ° ( G ) ,

and for differences

P = Pi -  P2, Pi =  Ф2(и{ ), v  =  v f -  v2,

we have

dp
-77 +  vf • V p =  v  • V p2 j x e Q ,  0 <  t < T, 
dt
p(x, t) = 0, x  e  S±,  0 < t  < T ,  p(x,  0) =  0, x  e  Q.

Therefore

\pi -  P21 =  Ip Ig } <  C 1(e)lv lG1) <  C2(£) \\u { -  uf2 ||B, 

which proves the complete continuity of the operator Ф and the solvability of problem (2.20).
To prove the uniqueness, we suppose that there exist two different solutions (u f,£, u ^ , pf), i =  1,2, of 

problem (2.20).
The difference {uf , u s ,p},

u f u f,f
1 u f,f

2 ,
s  f  f

u  =  u f  -  u 2’ , P = Pi -  P2,

satisfies the following initial boundary-value problem:

V - P f  +  Pe = 0, V - u f  = 0, x  e  Q f , 0 < t < T ,

V - P s =  0, V - us =  0, x  e  Qs, 0 < t  < T ,  u s (x , 0) =  0, x  e  S,

d u s
u f  = Р /  п  =  Р л. • n , x  G S, 0 <  t < T, 

dt

P i ■ e { = 0 ,  x  e  S ± , i = f , s ,  u s(x, t )  = 0 ,  x  e  S ° , 0 < t  < T ,

do
+  vf • V p =  v £ • V pf, x  G Q, 0 <  t < T,

P(x, t) = 0, x  e  S±,  0 < t  < T ,  p (x , 0) =  0, x  e  Q,

v f = M f1) (M f (u )), P f  =  2pD (u f ) -  pf  I, Ps =  2AD(u s) -  psl.

Now we multiply the dynamic equation for u f  by u f  and integrate by parts over domain Qf  x (0,t0), the 
dynamic equation for u s by d u s/ d t  and integrate by parts over domain Qs x  (0, to), the equation for p by p
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and integrate by parts over domain Q f  x  (0, t0), and finally sum all results:

to
n j  J  D ( u : D (u^ (x , t)) d .rd t +  ^  J  |p(x, to ) |2d.r

I f  Q f

+  ^  J  D(u*’(x, t0)) : D (u s (x, t0)) da:

0 Qf

p(x, t) (u f  (x, t)e ) dx d t =  I0.
0 Qf

Introducing the new function

/ о  u f  ( x , т ) d т ,  x  e  Q f
W(X, t ) = {  S  .4 nu s (x, t) ,  X e Q s ,

in the same way as before (see estimates (2.26)- (2.28)) ,we get

u (x ,t)  = 0 ,  x  e  S°,

0 Qf 0 Qf

x,  0)12 dx =  0.

\I0\ ^  f i j  J  |u f  (x, t ) |2 dx d t +  C (5) J  J  |p ( x , t ) |2 dx dt 

for arbitrary small fi > 0 and

|p (x ,t0) |2 dx ^  C (fi) |p(x, t) |2 dx dt, |p(x, 0)

Qf 0 Qf Qf

The Gronwall inequality results in p(x, t) =  0 almost everywhere in G. □

2.3.3 Uniform bounds for the velocity and pressure of fluid

Lemma 3. Under the conditions o f Theorem 3 for the solution u £ o f problem (2.20), we have the following 
estimates:

to

t to o

T

0 Qf
D (u f,£) : D (u f,£) dx d t +  max D (u s,£(x ,t) )  : D (u s,£(x ,t) )  dx ^  C,

Qs

(2.34)

max
0<t<T

Qf

T

,£(x,t)) D (u f,£(x, t)) dx +  J  J  D
f d u s
V dt

0 Qs

m ax |u f,£(x, t) 2 dx  +  m ax [
d u s'£

dt0<t<T 0<t<T |
Qf Qs

:D| ^ § r ]dx^ C'

-(x ,t) dx <  C.
2

(2.35)

(2.36)
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Proof. The proof of these estimates almost completely repeats the proof of estimates (2.26)- (2.28). The only 
difference is in the estimation of the term I  in (2.29):

7? /  D (u / ’e( x ,i0)) : D (u / ’£( x , t0))d.T +  A I I  D ( (x ,t)

Q f

du Sy
dt

0 Qs

^ ^ ( x , t ) ( u ^ ’e(x, t) ■ e) d x d t  =  I е
0 Qf

tU

tU

: D
d u s'£

dt. (x ,t) dx d t

To estimate I £, we use the differential equation for p £ in (2.21) :

r A =

to
(uf,£ ■ e ) V ■ (p£v £) dx d t =

to
(p£v £) ■ V u f,£ ■ e dx dt

0 Qf 0 Qf
to to

^  D (u f,£(x ,t) )  : D (u f,£(x ,t) )  d x d t  +  C (u f,£( x , t ) ) 2d x d t  +  C,
0 Qf 0 Qf

where we have used the evident estimates for modifiers M (1)
£ (m £2) ),

to to

У  У  (v£ ( x , t ) ) 2 dx d t ^  C J  У  (u f,£( x , t ) ) 2 dx dt.

0 Qf 0 Qf

The rest of the proof is the same as that for (2.26)-(2.28). □

Lemma 4. Under the conditions o f Theorem 3, let u f,£ be the solution o f problem (2.20). Then P f  (u f,£,p £) £ 
L .o ((0 ,T ); L 2 ( Q f )),

P s (u s’£,p£) £ Lo( (0,T) ;  L2(Qs)),

m ax Ip f(x ,t) |2dx ^  C,0<t<T fV n
Qf

m ax p s (x , t ) P d x  ^  C,
0<t<T sv ’ '

Qs

and for any Of c  Q f and Qs c  Qs,

uf,£ £ L . ( ( 0 ,T ) ;  W .  ( % ) ) ,  us£ £ L . ( ( 0 ,T ) ;  W.  (Os))

for all any m  > 2.

Proof. Let p  £ W2,Qf) be a test function in the integral identity (2.22). Then this identity takes the form

p f V  ■ p dx =  (2 ^D (u f,£) : D (p) — (f +  p£e) ■ p)  dx. (2.37)

Qf Qf
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Now we choose p  as a solution of the problem

p  =  po +  Уф, Аф = p f , x  e  Q f , ф(х,Ф)=0,  x  e  S, 0 < t < T ,

V -  p 0 =  0, x  e Q f , Уф(хф)  +  p 0 (x ,t)  =  0, x  e S, 0 < t < T .

This problem has a unique solution [7], and

m ax |V p ( x , t ) |2dx ф C\\p£f ||2
0<t<T Л12Qf

Qf

(2.38)

Thus (2.34)- (2.38) result in

max 1p£f ( x , t ) ^ d x  ф C,0< t < T  /v n
Q f

and P f  (u f , £ ,p£ ) e  L x ((0,T); L 2Q )).
Coming back to (2.37), we conclude that P f  (u f,£,p f ) e  L^( (0 ,  T); W2, (Qf )), and (2.37) is equivalent to 

the Stokes equation

p A u f ,£ — V p £f  +  f  +  p£ e =  0, x  e  Q f , 0 < t  < T .

The right-hand side F  =  f  +  p£ e of the differential equation belongs to L^(G) .  Therefore we may use the 
same arguments as in [12] and conclude that, for any Q c  Q f ,

u f,£ e  L ^ ( (0 ,T ) ;  Wm (Q)) for any m >  2.

We may apply the same arguments for the solid component:

m ax
0<t<T

Qs

p£(x, t) |2 dx ф C,

and P s (u s ’£ ,p £ ) e  L ^ ((0,T ); L 2(Qs)). □

Lemma 5. Under the conditions o f Theorem 3, let u f , £  be the solution o f problem (2.20). Then

m ax |u f,£( - , t ) |Q1(l " } ф C(a,  5) (2.39)
o< t < T  Q f

for  0 <  5 < 50 with sufficiently small 50 and any 0 < a  < 1.

Proof. The domain Q f  consist of two disconnected parts. For each part, the proof is the same. Note also 
that

0mt<T |u f , £ (' ,t) | f  ф C(a 5)

for any domain Q (f ’s ) c  Q f  with the distance to the solid part Q s  greater than 5.

So, we may restrict ourselves only with the part in x 2 < 0 and domains Q (<5).
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For 0 < 5 < 1/2, we put

П{6) = j x  e  Q: - 1  +  5 < Xl <  1 -  5, +  5 < x 2 < ~ \  ~  <*}, n f  = n{&) П Qf-

Let Z(S> (x ) be infinitely smooth functions such that Z (S>(x ) =  1 for x  e Q (2S> and Z (S>(x ) =  0 for
x  e Q \  Q(S>.

Then the functions u f,s,S = u f,sZ(S>, p f  = p fZ (S>, u s,s,S =  u s,sZ(S>, and p£s’S = pSZ(S> satisfy the
following linear problem:

u f s >S -  V p f  -

u s,s’& -  V p f  

d f,e,6 , 9 f
W A  + w "

+  r f  =  +  K 's.

F s’S, V • u f s S  = p s ’S ,

- F s’S, V  • u s,s,S =  p s ’S ,

f , s , S  
u 2 ’ )

d s , s , S  .

= At e ai +

1
2 ’ 
1
2 ’

9 „,S,£,S
dx\

u

dX2 
f,s,S _  d

d t Ul
u

dX2 
f,s,S _  d

m u> ’
x 2 =  2 1 0 < t  < T]

US’e’“(x, 0) =  0, x 2 = - ~ .

(2.40)

Here

F s’S = Z(S> (Pse +  f) +  p V u f ’s’S • V Z (S> +  p f  V Z (S>, 

p £'s = u f '£'s - VZ {S), x 2 > ~ ;  ф = ^ - f u f ' s -  X u f f ,  x 2 =

1
2 ’

Fe,S = £{6) f  +  X V u8'£'S ■ VZ{S) +  p f ^ Z {S), v £'8 = u s’£,i • v z {s), X2 < -  - ;

0<t<T +  0m< T | | ^ ’S(; Щ 2 1 2 <  C(5)■

(2.41)

For simplicity, we denote all constants independent of e as C  (or C (5)) and omit for the moment the indices e 
and 5.

Now we reduce (2.40) to homogeneous differential equations by introducing new functions {w f  , r f , w s, r s} 
as a solution to the following problem:

1
p A w 1 — V r /  =  F , V  • w 1 = p, x 2 +  -  >  0, 0 <  t <  T;

AAws — V r s =  F , V  • w s =  <p, X2 +  -  <  0, 0 <  t < T;

' dwf  dwf  
AM ^  +d x 2 dx\

* | = Л ( М + М , = Л
d x2 dx\

(2.42)

P
dw2 л dw2 1 _
тг~̂ ~ + rf  = X— -  +  rs = 0, x 2 = о <  t < T. d x2 d x2 2

i
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Thus, for 

we have

v  =  u  — w, q = p — r,

where

p A v f  — Vq f  =  0, V  • v-f =  0, X'2 +  -  >  0, 0 <  t < T;

\ A v s — V qs =  0, V  • v s =  0, x -2 +  ^  <  0, 0 <  t <  T;

f  dv{ dv{ \  /  dv'l dv2
P d x2 d x .

dv.
d x2 d x .

dv22 2  p —  + qf  = A -—  +  qs, d x 2 d x2
dv\„ „ . f dv2 f 1
—  = v { + i p  1, — = v I2 +ip2, x 2 = - - , 0  < t < T ,

d  w s
(fi(xi,t) = {(pi(xi,t),(p2(xi , t ))  = w f (xi ,0, t )  -  - ^ j - ( x i , 0 , t )

(2.43)

Note that, due to the homogeneous boundary condition in (2.20) for u s at S, we have d u s/d t(x ,  0) =  0 in Qs, 
which implies

d w s
dt

-(x, 0) =  0 and 0) =  w{(x\ ,  0) for i =  1, 2.

To solve (2.43), we apply the Fourier transformation

v ( ( , x 2,t) = —j =  v ( x i , x 2, t )e~^Xl dxi  
2n

with respect the variable x i and get the following system of ordinary differential equations in the variable x 2:

d 2v {  i-2   f ,  
V-Q -T -  4  +  l& f  = 0,

2 f

d2Pf  л2=
~dx* ~ t P f  = °>

d 2v f

p 

i dv.

d2v
dx2
f

~  p£ 2v(  ~  =  0,dx2
1

v i = -  -
£ d x 2 ; 

d 2v2

x 2 + - >  0,

-  K 2v(  +  i£pf  = 0, A— ~ X^ 2 -  i £ r  = °>d x2
92ps
d x2

2 .., _  <>1'>
d x 2

— ( 2Ps = 0, Vi = -T-
i dv'2
£ dx2 ’

x2 +  ^  < 0,

(2.44)

(2.45)

dv f

ft Y ~  fi igvj = Xxp~ ~  X[&d x 2 d x2
s2 , P

dv2
d x2

dv2
+ Pf = X— ^ + p s

dx2
f

v .  +  <vi
dv( f

v2 +  ¥2D V  “2 ' dt ’

vis(£ ,x 2, 0) =  v2s(£,x2, 0) = 0.

x 2
(2.46)dv JS2
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Solutions of (2.44) and (2.45) have a very simple form

f — | ̂  12 f 7 L
Pf = cP e , Vi = l (

T c"

where z =  x  +  l / 2 |,

s £|z s f \ 4ps cpe , Vi =  —l
u '

1

2^ '
f  e- | S|z

^ 1) e |?|z

=  f с /  +  ^ - 4  )e l?l

Щ=  к +  e-l«K2 ^  16

To define the functions cf , c j , cp, and cp, we use boundary conditions (2.46) :

C-5 -|___— cs = - c f ____—  c f
v 2A | £ | P л  2A |e rP ’

Сл’ + 3 Cs =  - - c J  + 3 C fW ; i л ' v 1 о  \  11 1 P  >
2A|C| A 2Aie i

(2.47)

dc 1 dcs■V _|_ 1 P 1
= - с /  + 777777 с/  + “77 = с/ + <p2,

dcs
~didt ' 2A|C| d t ^  ' 2 ц ^ | p ' 4

cp(C, 0) =  csp(C, 0) = 0 .

The first system (2.47) gives us csv and csp as combinations of c j  and cf :

4, = 2 | с /  -  Щ Г \ср ’ 4  = -2 Ж 1  cv +  2 c /

(2.48)

(2.49)

Taking into account (2.48) and 2.49), we define c- and c- from the Cauchy problem for the following system 
of ordinary differential equations:

d c f .A f . 3A f . „.A^ U  A

=  -6А|С|с/ + 2 - с /  + 4i££i -  2A|C|̂ 2,
dc f

dt ~ ц

cV (C, 0) =  c f  (C, 0) =  0.

The last equation is equivalent to the Cauchy problem for the second-order ordinary differential equation 
with coefficient k2 =  32 A/ц  independent of C:

d2c j  2 f о A ^  d(pi A _
- w - k c '  = V 2 + ^ r - T d u

f

с / (£,0) = 0 , ^ - ( £ , 0) = 3 i ^ £ i ( £ .  °) -  Ф - 2 ( $ ,  0).

Thus, for j  = f , s  and l = v,p,

cj (C, t )= 2  2  ( Z i ,r (t)wj'il (C, 0  0 ) +  Gjm (t -  T )wm (C, 0,T)&r
m=f,s i=i

Note that w k(C, 0, 0), z / \  and g f l are known functions and that z j l and g f l are infinitely smooth in t.

ff 2
2V P

1scV

0
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306 A. Meirmanov and O. Galtsev

Gathering all these together, we have, for j  = f , s  and l =  1,2,

2
V & z , t ) =  +

m=f,s i=1 S /  J

+  (  J (cj'™0{z, t - T )  + y g i 'Z ^ z ’ f -  T) )  1 °> T) d r  j  | e_l?lG

where Zjjm (z , t) and G j’im(z, t), k =  0, 1, are linear in z ^  0 and infinitely smooth in t. 
For z =  0, we have

v i ( Z A t ) =  E  (  (  t e ( ° d ) +  f C ( 0d ) ) uT ( ( . 0. 0) )
m=f, s i=l S /  /

t

+  ( /  ( Gw (°>  t ~ T) + у 'G u i ( ° ,  t - т ) )  w™(£, o, r )  d r
и

max IIvj ( ^ t ) ^  L  ^  Ci  m ax ||v  j ( ^ t ) ^  R1/2) ^  C2 m ax ||w  j ( ^ t ) ^  R1/2)
0<t<T 2>Kj 0<t<T 2>K 0<t<T 2>K

^  C3 m ax !|w j ( . , t ) | 21 L , j  =  f , s .  (2.50)0<t<T 2,Rj

Coming back to the previous notations and taking into account (2.41) and the definition of v  j >£ >& and w  j >£ >&, 
from (2.50) we get, for l =  2,

0<m<T||u j  ,e(., t ) | 22Q<4> ^ C (6), j  = f , s . (2.51)

Now we repeat with function ( (2S) and domain Q (2S): ( (2S) (x) =  1 for x  e Q (4Й) and ( (2S) (x) =  0 for
x  e  Q \  Q (2<5).

Namely, for (2.42), (2.51) implies

m ax ||F £’25(., t) 
0<t<T

(i)
2,K2 +  m ax I!<f£,s(., t ) | 2:2;R2 0<t<T 2>K <  C (6),

and, consequently,

max ||v j£,2&( t) 
0<t<T 23R2 ^  C i m ax Hw  j£’2S(.,t)2,R-i П̂ У-̂ Т111 V 7

(3)
2,R2 <  C2(6), j  =  f , s ,

m ax ||u  j,£( ,  t) 
0<t<Tu

(3)
2,Qfs) <  С з(6), j  =  f ,  s .

The corresponding imbedding theorem W f (Q) ^  C l+a(Q) for 0 < a  < 1 [9],

max |u j,£( . , t) I (1(+a) ^  C  m ax | |u j,£(.,t) 
Xt<T Q( ) 0<t<T

(3)
2,Q(2S) <  C4 (6), j  =  f ,  s,

proves (2.39) and the statement of the lemma. □
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2.3.4 Uniform bounds for density

Let Г £(t) c  Qf  be a smooth surface obtained by moving the initial position Г (0) along the trajectories of the 
velocity field v £:

d x
—  = v ^ ( x , t ) ,  x ( 0) = e ,  £ 6 Г (0).

As we have mentioned previously, the time T  is chosen from the condition

d i s t ( r £(t), S ± ) >  0.

Moreover, we suppose that

d i s t ( r £( t ) ,S±)  > e.

Lemma 6. Under the conditions o f Theorem 3, let p£ be the solution o f problem (2.21). Then

max
0<t<T

dp£
~dt (x ,t) dx +

2

E
i=1

Q O)
f

dp£
dxi (X t) dx <  C (5). (2.52)

Proof. Let qi = dp£/ d x i . 
Then

^ + v '
dt +

n
^  qi У '  aij qj ,

j =1
x  E Q, 0 < t < T ,

where a j  = —dv£/ d x i, i , j  = 1, 2, and

m ax lai?-(.,t) 
0<t<T' j

(1)
2,Qfs) <  c (5).

Note that qi = 0 near the boundaries S±  and S 0. This follows from the supposition on the behavior of the 
boundary Г £(t) and from the choice of the time T .

Multiplying the equation for qi by qi/ (q2 +  52)1/2 and integrating by parts over Q, we arrive at the equality

^  j  { q - +S 2) 1/2dx  
Q

qi
(q2 + 62f / 2

dx

and, consequently, the inequality

dу
dt <  C(5)y, y(0) <  c (5)

for y = 2=1 lQ (q2 + 52)1/2 d x .
The Gronwall inequality provides estimates (2.52) for qi, i =  1,2, and the transport equation (2.21) pro

vides estimate (2.52) for the time derivative of p£. □

Passage to nonsmooth initial data, the existence of a regular free boundary, the existence of the maximal 
time interval, and the uniqueness of the solution are proved in the same way as in [1] and [12].

Lith. Math. J., 58(3):284-308, 2018.



308 A. Meirmanov and O. Galtsev

References

1. S. Antontsev, Meirmanov A., and V. Yurinsky, A free-boundary problem for Stokes equations: Classical solutions,
Interfaces Free Bound., 2(4):413-424,2000.

2. S.N. Antontsev, A.V. Kazhikhov, and V.N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous 
Fluids, North-Holland, Amsterdam, New York, Oxford, Tokyo, 1990.

3. M. Bohm, On a nonhomogeneous Bingham fluid, J. Differ. Equations, 60(2):259-284,1985.

4. E. Ferndndez-Cara, F. Guilldn, and R.R. Ortega, Some theoretical results for visco-plastic and dilatant fluids with 
variable density, Nonlinear Anal., Theory Methods Appl., 28(6):1079-1100,1997.

5. Y. Giga and S. Takahashi, On global weak solutions of the nonstationary two-phase Stokes flow, SIAM J. Math. 
Anal., 25(3):876-893,1994.

6. W.A. Kirk and B. Sims, Handbook of Metric Fixed Point Theory, Kluwer Academic, London, 2001.

7. O.A. Ladyzhenskaya, Mathematical Problems in Viscous Incompressible Fluid Dynamics, Nauka, Moscow, 1970.

8. O.A. Ladyzhenskaya and V.A. Solonnikov, Unique solvability of an initial- and boundary-value problem for viscous 
incompressible nonhomogeneous fluids, J. Sov. Math., 9(5):697-749,1978.

9. O.A. Ladyzhenskaya, V.A. Solonnikov, and N.N. Ural’ceva, Linear and Quasi-Linear Parabolic Equations, Nauka, 
Moscow, 1967.

10. A. Meirmanov, The Muskat problem for a viscoelastic filtration, Interfaces Free Bound., 13(4):463-484,2011.

11. A. Meirmanov, O. Galtsev, and R.N. Zimin, Displacement of oil by water in a single elastic capillary, Bound. Value 
Probl., 2017:83,2017.

12. A. Meirmanov, R. Zimin, and K. Shiyapov, The Muskat problem at the microscopic level for a single capillary, 
Boundary Value probl., 2015:71,2015.

13. A. Nouri and F. Poupaud, An existence theorem for the multifluid Navier-Stokes problem, J. Differ. Equations, 
122(1):71-88,1995.

14. E. Sanchez-Palencia, Non-HomogeneousMedia and Vibration Theory, Lect. Notes Phys., Vol. 129, Springer, Berlin, 
1980.

15. J. Simon, Nonhomogeneous viscous incompressible fluids: Existence of velocity, density, and pressure, SIAM J. 
Math. Anal., 21(5): 1093-1117,1990.

16. C.-S. Yih, Dynamics of Nonhomogeneous Fluids, Collier-Macmillan, London, 1965.

17. W. Zheng, On Friedrichs-Poincard-type inequalities, J. Math. Anal. Appl., 304(2):542-551,2005.


