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The stochastic model th a t describes radiative heat tran sfe r in dielectric medium is 
analyzed. The model is based on the representation th a t heat tran sfer is realized both by 
its  heat conductivity and by electrom agnetic radiation  th a t is generated by therm al fluc
tuations in the medium. Such physical suppositions, using fluctuation-dissipative theo
rem , are realized in the form  of the in fin ite  dimensional Ornstein-Uhlenbeck process th a t 
describes medium fluctuations. In the model fram eworks, the energy flux density  of 
fluc tuating  electrom agnetic field is calculated in the form  of a functional of the tem pera
tu re  d istribu tion  in real three-dim ensional media sample.

Keywords: radiative heat transfer, fluctuation-dissipative theorem, in fin ite  dim en
sional Ornstein-Uhlenbeck process.

Анализируется стохастическая модель радиационно-кондуктивного теплообмена в 
твердотельной диэлектрической среде. Модель основана на представлении о переносе 
тепла, наряду с собственной теплопроводностью среды, такж е посредством теплового 
электромагнитного излучения, которое порождается тепловыми флуктуациями. Эти 
физические представления, используя флуктуацинно-диссипационную теорему, реали
зованы в виде бесконечномерного процесса Орнштейна-Уленбека, описывающего флук
туации среды. В рамках модели вычислен поле плотности потока энергии флуктуаци- 
онного электромагнитного поля в реальном трехмерном образце среды в виде функци
онала от распределения температуры.

Струм енерги електромагштного поля у стохастично модаш радоащйно-кондуктивного 
теилообмшу у ;»електричному твердоильному середовшць Ю.П. Шрченко, Лаж Тан Фат.

Анал1зуеться стохастична модель рад1ацшно-кондуктивного теплообмшу у твердотшь- 
ному д1електричному середовишД. Модель утворена на шдстав1 уявлення о перенесенш 
тепла, поряд з власно! теплопровадшстю, також внасладок теплового электромагштно- 
го випромшювання, що породжуеся тепловими флуктуащ ями. Щ  ф1зичш уявлення 
реал1зоваш, за допомогою флуктуацшно-дншапативно! теореми, у вигляд1 нескшчен- 
новим1рного процесу Орнштейна-Уленбека, що описуе флуктуацп у середовишД. У рам
ках модел1 рахуеться поле р1дини струма енерги флуктуацшного электромагштного 
поля у реальному трьохвим1рному середовишД у вигляд1 ф ункционалу в1д розподшу 
температури.

The heat transfer in solids is realized by two mechanisms. They are the thermal conductivity and the 
heat transfer by electro-magnetic radiation. The last is generated by therm al fluctuations of medium local

T (x ,t)  at fixed time moment t may be written phenomenologically in the form (see, for example, [l]-[3])
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where к  > 0 is the medium conductivity coefficient and к is its volume heat capacity. We assume that 
these quantities do not depend on tem perature. The vector field S (x ,t) is the energy flux density of elec
tromagnetic radiation associated with fluctuations of charges and currents induced by them. The value 
of (V, S (x ,t)) multiplied by the small volume of the spatial medium region centered near the point x  is 
the flux part which is spent on its heating at the time moment t. Inclusion of this term  is essential when 
heat transfer problems are solved in optically transparent media with low electrical conductivity and at 
sufficiently large tem perature drops on character distances. In this case, it is necessary to build a closed

theory of radiation transfer which is based on: geometrical optics concepts applying them  to heat radiation 
inside the medium, on the Kirchhoff law about the relationship of irradiation and absorption intensities

field in such theoretical building does not exist. Such a situation exists due to the lack of a consistent 
microscopic theory of radiation-conductive heat transfer which should be based on the quantum theory

We shall not concentrate on a detailed analysis of the problems which are related with the construc
tion of the radiation transfer microscopic theory in the framework of statistical physics (see, for more 
information, [5]-[7]). We point out only th a t there is a statistical approach th a t occupies an intermediate 
position in the radiation transfer theory between the microscopic and phenomenological ones. It is based

field (see, [8]-[9]) without specifying the microscopic transition mechanism of its energy into heat. This 
field is caused by therm al fluctuations of charges and fluctuations of electrical currents induced by them. 
The currents at short distances appear in the medium even if it has very low electrical conductivity. 
The amplitude of these fluctuations increases on tem perature, so, at sufficiently large its value, thermal 
vibrations of medium atoms (ions) leads to fluctuations of electrical charges on those spatial scales which

At present work we analyze, within the mentioned fluctuation approach, the stochastic model thermal 
radiation transfer proposed in [10] which is based on explicit statistical description of thermal fluctuations 
of charges and currents in the medium. Due to complexity of used mathematical constructions, we focus 
our considerations only on the case when the inhomogeneity of tem perature distribution is concentrated

Thermal electromagnetic field is described by a pair {E(x, t) ,H (x , t)}  at each space-time point {x,t}, 

с iŝ  the vaccum light velocity. This field substantially varies over distances having the order of thermal

much smaller than the characteristic length of the heat transfer process. In addition, it should be averaged 
over time intervals which are much greater than the characteristic period of thermal radiation oscillations, 
but it is much smaller than the characteristic time of thermal conductivity. Such an averaging allows to 
ignore the small rapid changes of the divergence (V, S(x, t)) over space and time, which have no a relation 
to the heat transfer process. The pointed out space-time averaging is equivalent to the averaging using 
probability distribution of random electromagnetic field, when the pair random fields E (x ,t)  and H (x, t)
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the mathematical expectation S(x, t) = ( S(x, t)). It should be calculated in the frameworks of the model 
th a t describes the heat transfer by radiation.

The stochastic electromagnetic field is seemed by random realizations {E(x, t ) ,H (x ,t)}  which satisfy 
the system of stochastic Maxwell equations in the continuous dielectric medium neglecting its variance

e <9Ё 47t~ ~ , _  4тг _
-  ~K7 H J =  V, H  , (V, E) =  — p,  
с at с e

(3)

( V ,H ) = 0 ,

where Ё  and H  are intensities of electric and magnetic fields, correspondingly. At the same time, e is the 
electric permeability of uniform dielectric medium and p  is the magnetic one. We consider them to be 
independent of {x,t}.

The values e and p, generally speaking, depend on the tem perature. This dependence may be sub
stantial at large tem perature drops when distances between spatial points have the order of the medium 
sample size. Therefore, it is necessary to take into account in problems of heat transfer by radiation when 
such drops are present. It is supposed th a t tem peratures are equal to the local tem perature T(x, t) of 
the value order in these dependencies. In general case, spatial and temporal derivatives of e(T(x, t)) and 
p( T(x , t ) )  should be appeared in the Maxwell equations when these dependencies are taken into account. 
However, these derivatives are extremely small in comparence with those length and time scales which 
are characteristic of the thermal radiation by virtue of these slow T (x ,t)  dependence. Therefore, these 
derivatives are not accounted in the equations (3).

Solutions of the system (1) are determined by setting of stochastic sources j, p which are the elec
tric current and charge densities, respectively, th a t are nonzero in micro-regions having the order of the 
characteristic wavelength. Besides, for complete determination of the solutions, initial and field bound
ary conditions corresponding to physical situation under consideration are im portant. As for boundary 
conditions, we shall study the simplest physical situation in present work. It consists of the attenuation 
of the localized thermal non-uniformity in unbounded medium. This non-uniformity is concentrated in 
a bounded space area with the linear size L  having the order of 1cm Ч-102 cm. In such a situation, 
the medium tem perature tends to a constant value when the point x  goes to infinity. More complicated 
physical situation from the boundary conditions viewpoint has been investigated in [5]-[7] on the basis of 
more simple stochastic model.

Densities j, p which are spatially distributed stochastic sources, define completely the model. At the 
same time, they should be subm itted to the continuity equation

P+  (V ,j) =  0 . (4)

For this reason, the model is completely determined by the form of the stochastic field j(x , t). The current 
density j is composed of the internal «electromotive force» of the medium th a t arises as a result of the 
thermal fluctuations. It should be contained the term  which is determined by Ohm ’s law a E. At the same 
time, we note th a t the coefficient a  > 0 which plays the role of electrical conductivity, is not connected 
with genuine macroscopic electrical conductivity of the medium th a t may be very small in the physical 
situation under consideration. It performs an «effective conductivity» which should be different from zero 
due to the so-called .fluctuation-dissipative theorem (see, for example, [9]). It is necessary to account from 
the mathematical viewpoint in order th a t a regular dissipative constituent is present in the system of 
stochastic evolution equations (1) with additive noise. In turn, it is connected with necessity of stationary 
evolution regime presence.

The part of the fluctuation current density a(x ,t ;T)(p  th a t serves stochastic source of electromag
netic field should be certainly contained with probability one the vortical term  (fluctuation «Foucault 
current») in spite of the radiation transfer occurs in a dielectrics (or high-resistance semiconductor). Here, 
the source intensity a (x ,t ;T )  depends functionally on the local tem perature T  = T (x , t ) .  Therefore, it 
may be changed spatially and temporally. This changing is much slower in comparison with the change 
of the therm al electromagnetic field. The irradiation of electromagnetic waves which transfer of heat is
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namely associated with the availability of the vortical part. In connection with the dielectric character of 
medium, the fluctuation current (its correlation function) is concentrated at small space scale th a t has 
the order of interatomic distance. Thus, the current density j should be replaced in equations (3) and (4) 
by j ( x , t) = <p(x,t)a(x,t;T) + <rE(x,t) where the intensity a (x ,t ;T )  should be defined on the basis of 
statistical physical consideration for completion of the model construction. We suppose th a t the squared 
intensity is determined by thermal photons irradiation in a small spatial area which concentrates near 
the point x  at the moment time t. Therefore,

OO

dco. (5)

where /  is the distribution function of radiation photons frequencies ш. It depends on the tem perature 
T (x ,t)  distribution. In this case, we have a 2(x ,t;T )  ~  T 4(x ,t), when it is the Planck function. As the 
result of substitution of the explicit form of j (x ,t) into the Eq. (3), we obtain the stochastic equations 
system with the additive noise ф where the field E(x, t) is determined by the equation

<9E ~ 4-7Г c r„  ~ 47та
—  + 7 EH a<  ̂ =  - V , H ,  7 = --------,
O t  £  £ £

and the evolution equation of the charge density has the form

P + IP  +  (V) аф) = 0,

(6)

(7)

where, as above, we have neglected spatial derivatives of tem perature distribution. In general case, the 
coefficient a  depends on the local tem perature which changes slowly on x  and t. But we neglect this 
dependence for reasons above pointed out.

The random field ф in Eqs.(6),(7) is Gaussian with zero average value (y>(x,t)) =  0 due to sup
posed physical smallness of thermal fluctuations. At the same time, (p(x,t)) = 0. Then the Gaus
sian field ¥>(x,t) is completely determined by the pair correlation function K jU-2( x i , t i ; x 2 , t 2) = 

■ For physical reasons, the random field y>(x,t) is translational invariant on x 
in stochastical sense and it is stationary on t  in the sense of the theory random processes. Besides, we 
assume th a t this field is stochastically isotropic and temporally reversible. So, its correlation function is 
represented in the form

Kjij2  ( x i , ^lj x 2, t2) =  K { |xi  -  x 2 |, \ti - t 2\)Sju•32 (8)

In this case, the source аф(х, t) of therm al radiation is uniform on x, it is stationary on t  and it is 
stochastically isotropic along directions in Eqs. (6),(7) if we neglect the pointed out slow dependence on 
the local tem perature T (x ,t) .

Further, we use some supplement assumptions about properties of the function K(r ,s ) ,  r, s > 0 .  
These properties are associated with the locality of correlation functions K j 1j 2( x i , t i ; x 2 , t 2 ). For physical 
consideration, the random field ф(х, t) should have extreme small correlation time. Such correlations 
should be disappear during the temporal interval equal to several periods of stochastic electromagnetic 
field oscillations. Then we suppose th a t K ( r , s) ~  6(s). In this case, the field y>(x,t) is transformed to 
a generalized random Gaussian field of the «white noise» type on the temporal variable. Correlations of 
the field y>(x,t) values are also short-ranged. They disappear at the distance equal to some interatomic 
lengthes. So, the correlation length is the smallest param eter of linear size dimension in the problem under 
study. However, for the reasons th a t will become clear from subsequent analysis, we may not assume that 
the function K(r ,s )  is proportional to S(r) by the analogy with the temporal variable. So, we use the 
next representation

K ( |x i x 21, |ti - t 21) =  K ( |x i — x 21)<5(ti - t 2),  (9)

where the function K(r)  is absolutely integrable / R3 |if(x ) |d x  < oo and it is localized in the zero neigh
borhood having the order of ro, th a t is K ( r ) = r 0_3Q (r2/2ro) where ro > 0 is a small param eter and
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the same time, the random function S ( x , t )  is a functional on T (x ,t) , and its mathematical expectation

pressions is reached when the small parameters are taken into account. The natural problem formulation 
consist of the calculation of the 5 j(x ,i)  expression as the form of main asymptotic term  when these small

the significant varying of the tem perature T(x, 0) distribution takes place at the initial moment. We note 
th a t the characteristic time during which the tem perature distribution change is occurred due to the heat

radiation overcomes the distance L  and goes out of the non-uniformity region (during ~  3 • 10~13sec when 
L  ~  10~ 2 cm) where the heat transfer processes occurs. The radiation does not effect on the heat transfer 
process when it comes out of the system. The natural time for the heat transfer process is determined

in solid high-resistance semiconductor crystal. Therefore, the characteristic time of thermal conductivity

Further, we assume th a t the medium is so semi-transparent th a t the characteristic distance of the 
radiation damping is much larger than the above-introduced size L. In this case, if we use typical val

ro/L  are fulfilled in the case of dielectrics on basis of the mentioned typical values of model parameters. 
As we can see from the above estimations, the param eter 7 L /c  is not small for semiconductors in general 
case. Thus, the calculation of the energy flux density of the fluctuation electromagnetic field suggested

Since asymptotic term  is calculated on many parameters, so, it is needed the refinement of the order 
of transitions to zero limit. We assume th a t these transitions are understood as repeated in concordance

initial conditions of the fields E (k ,t) , H (k ,t)  and p (k ,t) become inessential after passing the temporal
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Since the field <£>(x, t) is stationary temporally, then we may neglect the time dependence of the tem
perature distribution T(x, t) in the amplitude a (x ,t;T )  when we use the transition to the asymptotic 
region t  kL 2/ x  ~  10~7sec. Therefore, we may do such a neglect in the sources j(x ,t) ,  p(x,t ).  In this 
case, the stochastic fields {E(x, t), H (x ,t)}  may also be considered as stationary ones. In such a situation, 
it is natural to go to some equations which control the evolution of the amplitudes defined by the fields 
spectral expansion. They are some generalized functions of к  and w,

OO OO
E(x, t) = J  exp[*(k, x)]c£x J  £(k,oj )eMtdoj , H (x, t) = J  exp[*(k, x)]c£x J  ^ ( k ,  ш)ешгс1ш , (11)

OO
a(x, t; Т)ф(х,  t) = J  exp[*(k, x)]c£x J  t(k , w)eluJtdio , (12)

p(x.,t) = exp[*(k, x)]c£x g(k, ш)е dco, (13)

where the generalized random fields t(k , w), g(k, w) are complex-valued Gaussian random ones due to 
Gaussian property of the field <p(x,t), and they have zero average values (t(k, w)) =  0, (g(k, oj)) = 0.

In view of the field a(x,t;T)<p(x,t)  is real, the field t ( k ,w) realizations has the following proper
ty t* (k ,w) = Z(— k, — w) with probability one. Therefore, this field is completely characterized by the 
correlation function Кц/(к, w, k ',w ') which is positively definite matrix-function on к  e  I 3 and u>. It is 
connected with the correlation function Ku>(x, t ;x ' , t r) by the following way

K{  k ,k '

K w (k, w, к ', a /) = 6WK { к, к ' ) 5 { J  -  ш) , 

1 Г
(2t t) exp i ( (k , x  ) — (к, x) I K ( |x — x |)dxdx ,

(14)

(15)

taking into account the properties of the field <p(x,t): the stochastic uniformity on x, the stationarity on 
t and its stochastic isotropy.

Substituting these expansions to Eqs. (3) and (6) and using the uniqueness of Fourier images, we 
obtain the completely equations system:

~ ~ Air %c ~
iuj£{к, ш) + 7 ^ (k , ш) + —  t(k , ш) =  — [к, 'H(k,  w)] (16)

~ С — ~ A-7Г? ~
U(k,uj )  = -------[k ,£ (k ,w )], (k ,£ (k ,w )) = --------- e(k ,w ), (к, П (к ,  w)) =  0 , (17)

f lU )  £

ш д (к, ш) +  7 g(k, ш) +  г(к, t(k , ш)) = 0 , (18)

The solutions of the equations system defined Fourier images £ (k , w) and ^ ( k ,  w) are performed by the 
formulas:

_ 4ТГ ( ( ^ 2 -  *^7 ) t (k ,  w) -  c2( k , t ( k , w ) ) k j

 ̂  ̂ ' £ (w — *7)(w2 — c2k 2 — icj-f)

* (k>w) =  _ i ^ £  M ( k ,* )]
ep (oj2 — c2k 2 — ioj 7) 

Here, the Fourier images £ (k , u>), 'H(k,  w) are generalized functions.

(19)

(2 0 )
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5. Energy flux density at th e  stationary regim e

Let us calculate the average value of the energy flux density S j (x , t ) ,  j  = 1 ,2,3 of irradiation using 
the explicit expressions (19) and (20) of Gaussian random fields

S j (x , t )  = j  R j ( x  — y i , t  — s ;x  — y 2, t  — s ) K ( \ y 1 -  y 2 |)a (y b s;T )a (y2, s ;T )d y 1dy2d s , (21)

where

i? j( x ,  t ; x ; , t ' ) = -— -g- I R j (k ,  uj; к ', uj') exp i ((k, x) — (k', x ')) +  i(ujt — uu't') dkdk'dujduj' , (22)
(2 7г) J  L J

Rj (k ,  ш; к' ,  uj') = - R -
-  i-f) -  c2k 2) +  c2kj (kmk ,m ) Sj

(23)

(24)

(uj — *7 )(w2 — c2k 2 — iuj^/)(uj'2 — с2к '2 +  гш'7 ) ’

R  = Ажс2/е  .

The transformation of the expression (22) on the basis of Eq.(23) leads to the following formula:

5 j(x ,t)  =  ^ u)(x ,t) +  S^v){x.,t) + S^w){x.,t) , (25)

where each of performed term s has the form:

S^u)(x ,t) =  - i R  [  £/(x -  y b t -  s)Vj-y*(x -  y 2, t  -  s) x 
./r7

X # ( |y i  - y 2 |)a (y i,s ;T 1)a (y 2,s ;T 1)rfyirfy2rfs, (26)

= - R  [  [У(х - y i , t  -  s)][Vj-y*(x - y 2, t  -  s)] x

x # ( |y i  - y 2 |)a (y i,s ;T 1)a (y 2,s ;T 1)rfyirfy2rfs:

5^№)(x ,t) =  ic2 R  [  [VmVjVF(x -  y b t -  s)][VmV"*(x -  y 2, t  -  s)] x
JR7

(27)

X # ( |y i  - y 2 |)a (y i,s ;T 1)a (y 2,s ;T 1)rfyirfy2rfs, (28)

and generalized functions U(x,t ) ,  V (x , t ) ,  W ( x , t )  are defined by following integral representations:

1 f  exp(*(k, x) +  iu>t)
c,(x-‘)= ( ^ / :

R4

-tikdw .
uj — г 7

exp(*(k, x) +  iu>t)
UJ2 — c2k 2 — i

dkduj.
ILÔj

exp(*(k, x) +  iu>t)
(uj — ij)(uj2 — c2k 2 — iuj 7)

dkduj .

(29)

(30)

(31)
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6. A sym ptotic expressions o f generalized functions U, V, W .

Let us find some asymptotic formulas of generalized functions U (x, t), V (x, t), W (x, t) when the small 
param eter 7 L /c  tends to zero. For the generalized function U, one can find easily the explicit form

U(x, t )  = iO(t)S(x)e' -7 1 (32)

where ©(•) is the Heaviside function. The functions V (x , t )  and W ( x , t )  have no such a simple explicit 
representation. Therefore, we show the main terms of their asymptotic representation at 7 L /c  —> 0:

V (x, t) = ~ e 7t/ 2_D_(r, t ) , D±(r, t)  = 6(r + ct) ±  6(r — ct) ;
Ancr

W { x , t )  = -
iQ(t) 
An rc2

e - 7 t  _  I e -7 t/ 2 sgn(r +  ct) +  sgn(r — ct) —

[|r + ct\ -  \r -  ct\]j -  —  ('Kjt) 1/2

(33)

(34)

7. Integral representations S jU\x . , t ) ,  S jV\x . , t ) ,  S jW\ x , i ) .

Using the asymptotic formula (33), we find integral representations of the functions S^u\ x , t ) ,
S j V\ x , t ) ,  S jW\ x , t )  which do not contain (5-function singularity when t  > 0

V (x, t) = ~ e~7*/2(5(r — c t ) .
Ancr

(35)

R
Attc2

S jV\ x , t )
R

4-7ГС2

= - 7 | У 2 | / 2 с

-V (2 )
I У 2 I

~ 7 | У 2 1 / 2 c

I У 2 I
-V (2 )

K { |y2 - y i | ) a ( x  - y i , t  -  s; T )a (x  — y 2, t — s;T)  

x U ( y i, |y 2 |/c )d y id y 2 ,

K ( |y2 - y i | ) a ( x  - y b t -  s; T)a (x  — y 2, t -  s;T )

: IУ2 I /с

Я = |У2|/с

(36)

s<“ >(x t) =  - ^  / ^ 7 |У2|/25у ( Р у ( 1)у (2)J  ̂ ’ J 4?r J  |y 2| v 7 Vm Vm

x V (y i, |y2 |/c )d y id y 2 , (37)

# ( |У 2 - y i | ) a ( x  -  y i , t  -  s ;T )a (x  -  у 2, t  -  s;T)
Я =|У2 |/c

хИ/ (у 1, |у 2 |/с)йу!йу2 . (38)

To obtain the asymptotic behavior of integrals in Eqs.(36-38) when k / L ck, —>• 0, we assume th a t the 
tem perature distribution T (x ,t)  has the following asymptotic T ( x , t  — s) = T(x ,  t ) ^ l  +  x sO (1 )/k L 2  ̂
due to E q .(l). Then, if the limit transition is applied to the integrals (36-38), we need to neglect the 
temporal shifts in the functions a(x, t  — s) = a (T (x , t  — s)), since

a (x , t  -  s;T) = a(x, t; T) + ( ~ ^ ^ ) T(x t)(T (x ^  “  s) ~ T (X^ ))  + 0 ( ^ )  '

As a result, we obtain from formulas (36-38) the following integral representations which permit to 
calculate the pointed out densities after substitution of the correlation function in the form Jf( |x |)  =  
r 0_3Q (x2/ 2 r 2). It is done for the purpose to introduce their dependence on ro in the explicit form:

S jU\ x , t )  = i
. r0R
4-7ГС2

~ 7 r 0 IУ 2 I /  2 с

|y 2 1
v f }Q ((y2 -  y i ) 2/2 )a (x  -  r 0y 2, t; T ) U (r0y b r 0|y 2 \/c)
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x a(x  -  r0y 1, t ; T ) d y 1dy2 , (39)

b f ’ lx .O  =
rpR
47ГС2

D- 7 r o | y 2 | / 2 c

|У2 I
v f }Q ((y2 - y i ) 2/ 2 )a(x -  г0у 2, 4;Т )У (г0у ь г о |у 2 |/с)

sf>(x,t)
iR  /* e—K̂ o|y2|/2e

47гго IУ 2 I

x a ( x - r 0y i , t ] T ) d y 1dy2 , (40)

V^1} A (1)Q ((y2 -  y 1 )2/2 )a (x  -  r 0y u t; T ) W (r0y b r 0|y2 \/c)

x a ( x  -  r0y 2,t; T ) d y 1dy2 (41)

8. The asym ptotic expression o f S j ( x , t )  at th e  lim it ro /L  —s- 0 .

Passing to the limit ro —> 0, we calculate main terms of asymptotic expressions of densities SjU\ x , t ) ,  
SjV\ x , t ) ,  S jW\ x , t ) ,  using the asymptotic expressions of functions U(x, t) ,  V (x , t ) ,  W {x , t ) ,  respectively. 
The main terms are obtained when the amplitude a(x , t ;T )  as well as the asymptotic functions U(x,t ),  
V (x , t ) ,  W ( x , t )  in subintegral expressions are not differentiated on spatial arguments. As the result, we 
obtain the asymptotic formula

S ju) = - a 2( x , t ; T ) ( ^ ^ )  J Y M dy + r o M l h (42)

where the integral is equal to zero due to the spherical symmetry of the correlation function. Finally, we
have = r 0_2o(l) when ro —> 0 .

We shall calculate the asymptotic of the integral S jV\ x , t )  using the function V ( x , t )  asymptotic. At 
the same time, the temporal derivative of this asymptotic is equal to

V ( x , t )  =  - | u ( x , t )  -  e- 7*/2(5, (r _  ct) (43)

when t  > 0. Substitution of this expression and transformation of the subintegral expression leads to the 
following final result:

8-7ГС2 |y|a
a (x - y , t ; T ) d y . (44)

This formula shows th a t functions S^u\ x , t ) ,  S jV)(x ,t )  may be neglected when the main asymptotic term  
S j (x , t )  is calculated.

Substituting the asymptotic expression (34) into Eq.(41) and using the change of integration variables 
roYj  =>■ У j ,  j  =  1, 2, we find

Av)

- i ( w )  ( „    r o  RS)W)(x ,t )  =
(4'7ГС

= - 7 | У 2 | / 2 с

|У2 1 |yi I
У^)Д(1)д((у2 -  y i ) 2/2 r 2)] a(x -  y i , t ; T )a (x  -  у 2, t ; T ) x

2 7|y2,/5+ 'y|y2'/2e ( l  +  sgn(|y i | -  |y2|) -  ^=[|yi| + IУ2 1 -  ||yi| -  |У2 1|])-

I У1 1 ( c \
2| У2 13/2 ^ 7 /

1 / 2 -,

d y \ d y 2 (45)

It is easy to show th a t the last term  does not lead to the faster asymptotic when ro —> 0. It tends 
to a finite limit in the mentioned case. Similarly, we may neglect the next-to-last term  in the subintegral
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expression (45). Thus, it is necessary to calculate the asymptotic associated with the first two terms. The 
coefficient at the asymptotic term  proportional to r ^ 3 of the first summand

r n 6R
(4'7ГС

» - 3 7 | y 2 / 2 c

|y2||yi|
v f )A (1)g ( (y 2 - y 1 )2/ 2r 2

is equal to zero.

x a(x  - y u t;T )a (x  -  y 2 , t ] T ) d y 1dy2

Thus, the main asymptotic term  of the function Ŝ jW\ x , t )  is determined by the following summand 

S f ’2)(x ,t) = rn 3R = —т | у 2 l / c

(4 t t c ) 2  J 1У21 |yi |
К 6 : | У 1 | > | У 2

vJ.1)A (1)g ( (y 2 - y 1 )2/ 2r (

x a(x. -  у i , t ; T)a(x. -  y 2 , t ] T ) d y 1d y2 .

Making the same changes of integration variables when we have done at the analysis of the function 
SjW,1\ x , t )  and passing to the limit ro —> 0, we obtain the main asymptotic term  of analyzed function in 
the following form:

S (jw\ x , t ) ~ S ) w^ )(x, t ) =0 .2 ), r o 3RQo f Vje - ^ l/s
8-7ГС2 |y|a

\ x - y , t ; T ) d y . (46)

9. Conclusion.

The expression (46) which has the main order as ro —> 0, gives final expression of the energy flux 
density asymptotic of the fluctuating electromagnetic field

S j ( x , t )  =
ro 3RQo f  ( x - y ^ - e - ^ - y l / 2

47ГС2 | x - y | 3
a2( y , t ; T ) d y , (47)

where the function a2(x , t ;T )  is given by the expression (5). It solves the problem formulated at the 
beginning of present work.

The derived expression of the energy flux density may be obtained in principal on the basis of ar
guments used in the theory of radiation transfer in medium (see [l]-[3]). However, we must to improve 
these arguments substantially. Such a modification is connected with the fact th a t there is the significant 
difference from the formula of the standard theory. In frameworks of radiation transfer theory, the energy 
flux density is derived on the basis of geometric optics presentation applying them  for physical situation 
th a t is under study at present work. Then, the obtained formula differs from Eq.(47) by the supplement 
multiply |y |~ 2 in integral kernel. The appearance of this weight shows th a t the Beer-Bouguer-Lambert 
law which describes the passage of radiation through medium, is not completely true for therm al radiation 
generated by the medium and it is spread in it. The appearance of the modification may be understood 
from the general physics view point. Besides damping of the radiation is obeying to the Beer-Bouguer- 
Lambert law when it passes thorough the medium, there is also the damping connected with the presence 
of isotropic «dissipation» of radiation th a t is em itted by each spatial point when the last come to it. At 
this, the appearance of the supplement weight |y |~2 in the energy flux density th a t is irradiated from 
the point у  =  0, is connected with the total energy conservation at such a dissipation when the radiation 
passed the distance |y|. Namely, if we shall not take into account the Beer-Bouguer-Lambert absorption, 
the total energy flowing through the sphere surface with the square 47г|у |2, is constant. Such an effect is 
not taken into account in frameworks of the standard radiation transfer theory.
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