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Abstract. Effect of cold rolling on the microstructure and mechanical properties of a Fe-23Mn-

0.3C-1.5Al (in wt. %) TWIP steel with an initial grain size of 24 m was studied. Extensive 

deformation twinning occurred upon reduction by rolling. The volume fraction of the deformation 

twins attained about 0.2 at a reduction of 20%. Then, the intensity of deformation twinning 

gradually decreased with increasing the total rolling reduction. The average twin thickness of about 

20 nm remained unchanged, although the distance between twins progressively reduced with 

increasing strain. The deformation banding was observed after a reduction of 60%. The thickness 

and volume fraction of microshear bands increased with increasing rolling reduction. The cold 

rolling led to significant strengthening of the steel that is accompanied by a drop on ductility. The 

yield stress (YS) increased from 235 MPa in the initial state to 1400 MPa after cold rolling with a 

reduction of 80%, whereas the elongation to failure decreased from 96% to 4%, respectively.  

Introduction 

An increase in the structural strength of automotive parts is an attractive way to reduce vehicle 

weight, that provides lower fuel consumption and exhaust emissions [1,2]. In addition, the use of 

high-strength steels enhances the safety of passengers. High-Mn steels exhibiting the effect of 

twinning induced plasticity (TWIP) are very promising material for vehicle body components due 

to their unique combination of strength and ductility resulting from the excellent deformation 

hardening [3,4]. The TWIP-effect is attributed to the formation of deformation twins with 

nanometer thickness. Extensive twinning is observed in steels with medium stacking fault energy 

ranging from 20 to 40 mJ/m
2
 [5], which in turn depends on the chemical composition. Austenitic 

steels exhibit high Hall-Petch response and extensive formation of nanotwins leads to the so-called 

dynamic Hall-Petch effect resulting in an exceptionally high strain hardening [6]. 

The practical applications of TWIP steels require detailed analysis of the mechanisms of 

microstructure evolution during extensive rolling and careful analysis of the relationships between 

deformation structures and mechanical properties. Recent studies of TWIP steels with different Mn 

content showed the following structural evolution during cold rolling takes place [1,7,8]. A rapid 

increase in the dislocation density takes place initially. Then the deformation twinning 

progressively develops throughout the deformation microstructures at low to medium strains. 

Finally, the shear banding occurs at rather large strains. The development of shear bands at large 

strains leads to rearrangement of twin lamellae along the rolling plane. The aim of the present work 

was to examine the microstructure evolution during cold rolling and its effect on mechanical 

properties in advanced TWIP steel. 
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Experimental 

An ingot of TWIP steel with a chemical composition given in Table 1 was subjected to solution 

treatment at 1150C for 4 hours followed by forging from 140 mm to 50 mm thickness in 3 passes 

and subsequent final annealing at 1150C for 4 hours. The forged steel was hot rolled at an initial 

temperature of 1150C to 10 mm thickness and then annealed at the same temperature during 1 

hour. This thermo-mechanical processing resulted in the formation of uniform microstructure 

composed of equiaxed grains with an average size of 24 m. This material was used as the starting 

material. The plate samples were cold rolled to reductions 20, 40, 60 and 80%. The rolling direction 

was the same as that in the hot rolling. For structural characterization the thin foils of 3 mm 

diameter were cut out parallel to RD-ND plane and grinded to 0.1 mm thickness. Then the discs 

were polished using a double jet TENUPOL-5 electrolytic polisher at voltage of 20 V at room 

temperature using an electrolyte containing 10% perchloric acid and 90% acetic acid. The foils 

were examined using a JEOL JEM-2100 transmission electron microscope (TEM) operated at an 

acceleration voltage of 200 kV. The dislocation density was determined by analysis of X-Ray 

diffraction profiles using an ARL-Xtra diffractometer and Cu K radiation. The value of the 

dislocation density  was calculated from the average values of the crystallite size D and 

microstrain <ε
2
> by using the following relationship [9]: 

  
(1) 

where b is the Burgers vector (b = a/√2 for the FCC structure where a is the lattice parameter). 

Tensile tests were carried out by using an Instron 5882 testing machine on specimens with a gauge 

section of 1.5 mm × 3 mm cut out parallel to the rolling plane. 

 
Table 1. Chemical composition [wt.%] of the investigated steel 

 

С Mn Al Si Cr S P Fe 

0.304 23.1 1.5 0.09 0.08 0.006 0.017 bal. 

Microstructure Evolution 

The cold rolling provides a rapid increase of the dislocation density and extensive deformation 

twinning in some favorably oriented grains. Figure 1a shows an example of bright-field image (BF) 

of deformation structure after a rolling reduction of 20%. The grain on the left side in Figure 1a is a 

twinned grain as it was proved by selected area diffraction pattern indicating the [1_1_0] zone axes 

(Fig. 1b), while the grain on the right side does not contain deformation twins. The dark-field image 

in Fig. 1c suggests that the deformation twins appear as bundles of thin and straight twins. An 

average thickness of the deformation twins is about 20 nm and an average distance between twins is 

200 nm at a strain of 20%. Further rolling leads to flattening and elongation of initial grain 

towards the rolling direction. At a reduction of 40%, the deformation twins appear in almost all 

grains. Multiple deformation twining results in the development of complicated microstructures 

composed of frequently intersected twins belonging to different twinning systems (Fig. 2). The 

deformation twins tend to rearrange along the rolling plane.  

Further increasing strain leads to the appearance of microshear bands, which pass over a grain 

and shear the previously formed deformation twins (Fig. 3a). The thickness of shear bands tends to 

increase with increasing strain that leads to the development of narrow regions of localized shear. 

At a reduction of 80%, the mutual intersection of microshear bands with twins (Fig. 3b-e) leads 

to the formation of highly misoriented crystallites with a size of approx. 20 nm and the development 

of a spatial net of shear bands. Nanoscale crystallites bounded by twins rotate providing alignment 

of twin boundaries along the rolling plane. Figure 3d indicates the [2_3_3] zone axis of austenite 

matrix with additional reflexes of [2_5_1] zone axis of deformation twins. The missorientation 
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between the austenite matrix and twin lamellae was calculated to be 58.7. Therefore, the 

deformation twins retain their orientation relationship within Brandon criterion even after large 

strain. This suggests that reorientation of twins along the rolling plane takes place like a rigid body 

rotation of twinned islands assisted by shear banding. In addition, twin boundaries are not 

transparent for gliding dislocation and the twin spacing or distance between twins can be considered 

as the grain size, d, in the Hall-Petch law. 

 

  
 

Fig. 1. TEM image of microstructure developed after 20% of cold rolling: a) BF-image,  

b) Diffraction pattern, c) DF-image. RD indicates the rolling direction. 
 

 
 

Fig. 2. TEM image of microstructure developed after 40% of cold rolling: a) BF-image,  

b) Diffraction pattern, c) DF-image. 

 

Figure 4 summarizes the effect of cold rolling on some structural parameters. At a reduction of 

20%, the dislocation density rapidly increases to about 210
15

 m
-2

 followed by slow increase during 

further straining and finally approaches about 410
15

 m
-2

 after 80% rolling reduction. The twin 

thickness of 20 nm is almost invariant of rolling reduction. On the other hand, the distance between 

twins decreases during the rolling. At a reduction of 40%, the distance between twins becomes 180 

nm. With increasing reductions from 60 to 80%, the distance between deformation twins sharply 

decreases from 100 to 40 nm (Fig. 4). Therefore, the deformation twinning continuously operates 

during cold rolling to large strains.  

 

(a) (c) 

(b) 

(b) 

(a) (c) 
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Fig. 3. TEM image of microstructure: a) BF-image of 60% cold rolled steel, b) BF-image of 80% 

cold rolled steel, c) BF-image of deformation twins aligned with rolling direction (80% 

deformation), d) Diffraction pattern of (c), e) DF-image of (c). 

 

 
 

Fig. 4. Effect of cold rolling on the microstructure parameters of the Fe-23Mn-0.3C-1.5Al steel. 

 

Figure 5 illustrates a schematic describing the evolution of the microstructure. Three well-

defined stages of microstructural evolution could be distinguished. At stage I, a rapid work 

hardening is associated with drastic increase in the dislocation density and single twinning within 

separate grains. At Stage II, in the rolling reduction range of 20-40% the extensive multiple 

twinning occurs and density of lattice dislocations remains unchanged. The interiors of initial grains 

are subdivided to nanoscale crystallites having rectangular shape and delimitated by twin 

boundaries. At stage III, upon further rolling the evolution of microshear bands occurs concurrently 

with multiple twinning producing a hierarchy of grain boundary assembles. Micronscale crystallites 

delimited by boundaries of shear bands are subdivided to nanoscale crystallites bounded by twin 

boundaries. 

(a) (b) 

(d) (c) (e) 
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Fig. 5. Scheme of microstructure evolution during cold rolling of the Fe-23Mn-0.3C-1.5Al steel. 

Mechanical Properties  

In the initial annealed condition the Fe-23Mn-0.3C-1.5Al steel is characterized by a relatively low 

yield stress (YS) of 235 MPa (Fig. 6). Extensive strain hardening takes place up to failure providing 

exceptionally high necking resistance and, therefore, very high ductility. Cold rolling highly 

increases YS. Ultimate tensile strength (UTS) also increases significantly, and ductility tends to 

drop with increasing rolling reduction (Fig. 6). After rolling reduction of 20%, the sample exhibit 

apparent steady state flow. Samples subjected to extensive rolling with higher reductions show 

well-defined peak stress. After reaching a maximum stress, the flow stress progressively decreases 

until fracture. Increasing strain leads to progressive strain softening that highly decreases ductility 

owing to facilitating plastic instability. The YS increases threefold by a 20% rolling reduction. It is 

obvious that dislocation strengthening gives the main contribution to this increment of YS. An 

increase in the rolling reduction to 80% increases the YS to 1400 MPa thus providing +218% 

increase in comparison with 20% reduced sample which is attributed to the grain size strengthening 

in accordance with the Hall-Petch relationships, mainly. Cold rolling with a reduction of 20% leads 

to insignificant increase in the UTS. Further straining to 80% provides twofold increase in the UTS 

value. The strengthening by cold working is accompanied by remarkable degradation of the uniform 

elongation from 90% in the annealed condition to about 30% at a rolling reduction to 20% and 

then drops down to a few percent upon subsequent rolling to strains above 40%. 

 

 
 

Fig. 6. The stress-strain curves of the Fe-23Mn-0.3C-1.5Al steel. Specimens marked as CR (cold 

rolled) with rolling reduction in % (40). 

 

It is apparent that increments in dislocation density and density of twins under tension of the 

annealed steel and cold rolling with a reduction of 20% are nearly the same. This is why the UTS 

value of initial material and the steel rolled to a reduction of 20% are similar. Subdivision of all 

original grains to nanoscale crystallites after a rolling reduction of 40% and accumulation of very 
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high dislocation density of well above 10
15

 m
-2 

after a rolling reduction of 20% makes further strain 

hardening during tensile tests difficult. The TWIP steel becomes susceptible to extensive necking 

and failure occurs in way which is much similar to various nanocrystalline materials [10,11].  

 

Summary 

The deformation microstructures and mechanical properties of the Fe-23%Mn-0.3%C-1.5%Al 

TWIP steel subjected to cold rolling were studied. Cold rolling with a reduction of 20% brings 

about high dislocation density and the formation of numerous deformation twins belonging to one 

system within initial grains. +200% increase in the YS takes place, while the UTS value remains 

almost unchanged, and ductility decreases by a factor of 3. Upon further rolling the multiple 

twinning occurs and the distance between the twins gradually decreases during cold rolling, 

approaching 40 nm after rolling reduction of 80%, while the twin thickness of 20 nm is independent 

on strain. Cold rolling with reductions higher 40% leads to the development of microshear bands, 

which also contribute to strengthening. The deformation microstructure evolved after a rolling 

reduction of 80% consists of separate micron scale crystallites delimited by shear bands which are 

subdivided to nanoscale crystallites bounded by twin boundaries. The YS increased from 650 MPa 

to 1400 MPa with increasing rolling reduction from 20 to 80%, the increment in the UTS is nearly 

the same, whereas the elongation to failure decreased from 36% to 4%, respectively.  
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