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Abstract. In the present work the influence of cryo-rolling to a true strain ε=2.66 on twinning 

and formation of ultrafine-grained/nanostructure in commercial-purity titanium and Fe-0.3C-

23Mn-1.5Al TWIP steel was quantified using scanning and transmission electron microscopy. 

Different influence of twinning on the kinetics of microstructure refinement and nanostructure 

formation in titanium and steel was revealed. In titanium twin boundaries during deformation 

transform into arbitrary high-angle grain boundaries thereby promoting the microstructure 

refinement to a grain/subgrain size of 80 nm. In steel twinning has less pronounced influence 

on the microstructure refinement. However, very fine grains/subgrains with the size of 30-50 

nm was observed in the microstructure after rolling at 77K to a true thickness strain of 2.66. 

1. Introduction 
According to the well-known definition [1] any SPD process is associated with a very high 

straining of a material via various deformation methods. Correspondingly the main attention of 

researchers is focused both on the way to attain a high level of strain and on the microstructure of 

severely deformed metallic materials.  

Meanwhile the grain microstructure of some metals and alloys refines quite readily even after 

relatively small strain. For example acicular microstructure of two-phase titanium alloys with a dense 

network of interphase boundaries transforms into an uniform globular ultrafine microstructure with a 

grain size of 0.3 µm already after 70% of height reduction at 550°С [2]. Furthermore, in the hexagonal 

close packed (HCP) metals and some steels with low stacking-fault energy (SFE) a prompt 

microstructure refinement occurs by twinning due to a formation of a large number of high-angle 

boundaries in the very beginning of deformation [e.g. 3, 4]. Therefore, twinning can be considered as a 

tool promoting formation of ultrafine-grained or nanostructure at a relatively small strain by utilizing 

the conventional metal-forming methods. Indeed, the microstructure with a grain size between 100 and 

200 nm could be obtained via sheet rolling at room temperature to a true strain of ε ≈ 2.66 [3]. 

Low deformation temperature increases the critical resolve shear stress of slip while almost does 

not change that of twinning [5] thereby intensifying considerably the contribution of twinning in 

microstructure evolution at cryogenic temperatures. This in turn should affect the kinetics of the 

microstructure refinement during further deformation (after ceasing of twinning). Indeed, some 

previous investigations [6, 7] have shown a potentiality of the microstructure refinement to the 

nanoscale after cryo-deformation of commercial-purity (CP) Ti. However, the microstructure 
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evolution during large cryo-deformation of metals and alloys which deform by twinning has still been 

investigated only poorly. Furthermore, it is of interest to check whether a similar approach can be 

applied for the nanostructure formation in other materials with efficiently operating deformation 

twinning as, for example, TWIP steels. Therefore, the aim of the present work was to quantify the 

influence of cryo-rolling on the microstructure evolution and nanostructure formation during large 

deformation of CP titanium and Fe-0.3C-23Mn-1.5Al TWIP steel. 

 

2. Material and Procedures 
A 4 mm thick slab of CP titanium (Ti-balance; impurities in wt.% less than: 0.2 Fe, 0.1 Si, 0.07 C, 

0.04 N, 0.12 O) and 10 mm thick slab of Fe-0.3C-23Mn-1.5Al TWIP steel were used in the present 

investigation. In the as-received condition, the microstructure of the program materials consisted of 

equiaxed grains with an average size of 15 µm (CP Ti) or 40 µm (steel). The grains in each material 

contained few twins and essentially no internal substructure. 

Samples with dimensions of 4 mm ×10 mm × 30 mm were rolled unidirectionally in few passes at 

liquid nitrogen temperature (77K) using a fixed rolling speed of 30 mm/s to a total true strain of 2.66 

(thickness strain of 93%). Prior to cryo-rolling, each preform was encapsulated between sacrificial 

either titanium (for Ti specimen) or steel (for steel specimen) sheets which were joined by spot 

welding. The pack was then cooled to 77K in liquid nitrogen and rolled between room-temperature 

rolls. The temperature of the canned workpiece during such a pack-rolling process did not increase by 

more than 20°. To ensure nearly isothermal deformation, each pack was cooled in liquid nitrogen 

between each rolling pass. 

The microstructure in the mid-layer of the sheet specimens was characterized by means of 

transmission electron microscopy (TEM) using a JEOL JEM-2100FX transmission electron 

microscope and electron-backscatter-diffraction (EBSD) utilizing a Quanta 600 scanning-electron 

microscope (SEM). The border between low-angle boundaries (LABs) and high-angle boundaries 

(HABs) was assumed to be 15°. Grain misorientations below 2° were excluded from the data analysis. 

To determine the post-rolling mechanical properties, tension tests were conducted at room 

temperature. For this purpose, flat specimens with gauge dimensions of 16 mm length × 3 mm width × 

1.5 mm (or 0.3mm in case of the sheet rolled to ε=2.66) thickness were machined and pulled at a 

constant crosshead speed of 1 mm/min in a screw-driven test machine to fracture. 

 

3. Results 
3.1 Microstructure evolution in Ti 

Transmission electron microscopy of ε = 0.1 rolled specimens of Ti reveals clusters of twins of 

various widths (figure 1a). According to EBSD data the observed twins belong mainly to ( 2211 ) 

(twin/matrix misorientation angle of 64.62° around a common < 0110 > axis), and ( 3211 ) (86.98° 

around < 0110 >) families. The average twin thickness is 1.2 µm (figure 2b). Dislocation density in 

different parts of the microstructure varies in a wide interval: from separate dislocations to dense pile-

ups. An increase in strain up to ε = 0.35 (figure 1b) results in an increase of the twin number, whereas 

their thickness decreases to 0.7 µm (figure 2b). Twin crossing and secondary twinning slices the 

microstructure into rectangular fragments with the size of 0.4 µm. At ε ≥ 0.51 the formation of new 

twins is no longer observed; in turn, the cease of twinning results in a pronounced increase of the 

dislocation density (figure 2a). Substructure consists of dislocation boundaries formed in regions 

between twins (figure 1c). Twins are divided into parts with different contrast. 
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a    b   c 
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Figure 1. Transmission-electron micrographs of CP Ti rolled at 77K to a true strain ε of a) 0.1; b) 

0.35; c) 0.51; d, e) 0.92; f) 2.66. 

 

Cryo-rolling of Ti up to ε = 0.92 results in a formation of (sub)grains either due to dividing of 

twins by transversal boundaries or via formation of deformation-induced high-angle boundaries from 

dislocation walls and subgrains (figure 1d). Finally a heterogeneous microstructure forms consisting of 

grains/subgrains of various sizes (from 50 to 500 nm) and remains of twins (figure 1e). An increase in 

strain up to ε = 2.66 enhances the microstructure homogeneity and decreases grain size. The average 

grain/subgrain size was found to be 80 nm (figure 1f). The presence of equiaxed and dislocation free 

(sub)grains with thin smooth boundaries (figure 1f) suggests the development of recovery and even 

recrystallization processes that seems to be quite unusual for such a low temperature. However, high 

stresses can in some cases compensate for the insufficient thermal activation and induce local 

migration of grain boundaries and recrystallization [8-10]. 

Dislocation density measurements show three stages of its increase in both the matrix and the twins 

of cryo-rolled material (figure 2a). The first stage, characterized by a moderate rate of the increase in 

dislocation density, is observed in the range of ε from 0 to 0.35. During the second stage (for strains 

between ~0.35 and 0.55), the dislocation density increases very rapidly. The third stage is associated 

with the virtually steady-state dislocation density. The dislocation density in the twins is slightly 

higher than that in the matrix at the initial stages of deformation (ε ≤ 0.3), and then the difference 

disappeared (figure 2a). A rather low dislocation activity in the beginning of a deformation suggests 

that the early plastic deformation at 77K is accommodated by twinning rather than by slip. Such a 

trend may perhaps be ascribed to the increase in the critical resolved shear stress for slip with 

decreasing deformation temperature [11]. 
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Figure 2. Dislocation density in the investigated Ti samples as a function of strain (a) and 

grain/subgrain size, twin thickness and spacing between twins as a function of true strain. Data for 

grain size in (b) were obtained by means of EBSD analysis (in the interval of εh = 0 - 0.92) and TEM 

(ε = 2.66). 

 

Further quantitative insight into the microstructure evolution was obtained from EBSD 

measurements of the average grain size following rolling to various strain levels (εt ≤ 0.92) (figure 

2b); the EBSD measurements were supplemented by TEM observations for the largest strain (i.e., ε = 

2.66). The grain size decreases very quickly with strain for ε ≤ 0.2. This behavior is obviously 

associated with the twinning that is apparent from the evolution of twin thickness and spacing between 

twins (figure 2b). In the interval of strain between 0.2 and 0.35, the decrease in grain size becomes 

slower, most likely due to the exhaustion of twinning. During further rolling the grain size continued 

to decrease attaining after ε = 2.66 a grain/subgrain size of ~80 nm. 

 

3.2 Microstructure evolution in Fe-0.3C-23Mn-1.5Al steel 

According to SEM and TEM analysis, twinning in steel during cryo-rolling onsets at ε ≈ 0.05 (at 

room temperature the onset of twinning is observed at ε ≈ 0.1). The initial grains become divided by 

parallel or crossing twins into rather small pieces of various shapes ans sizes (figure 3a). All examined 

twins belong to the family (111) <112> (twin/matrix misorientation of 60° around a <111> axis). The 

minimum thickness of twins in the beginning of deformation was found to be ~ 10 nm; however, much 

thicker twins up to 300 nm are also observed. The matrix practically does not contain substructure or 

dislocation pile-ups at this stage of deformation (figure 4a). With increase in strain parallel twins 

cluster into bands; the number of twins within a band usually does not exceed 10 (figure 3b). The 

average thickness of newly-formed twins slightly decreases with strain (figure 4b). In some thick 

twins (100-500 nm) secondary twins form.  

The dislocation density increases in the matrix relatively fast at the initial stages of stain however 

after ε = 0.2 the increase in the dislocation density becomes much slower (figure 4a). Deformation 

above ε = 0.2 give rise to a cellular microstructure with a high dislocation density (figure 3c and 4a). 

One of features of the largely strained microstructure of Fe-0.3C-23Mn-1.5Al steel is associated with 

the almost complete disappearing of twin boundaries (figure 3d,e). Obviously, this is an only seeming 

effect most likely associated with rotation of the twin planes towards the rolling plane, fragmentation 

of twins and decoration ot twin boundaries by high density dislocation arrays. At the same time, in 

contrast to Ti, formation of new extensive deformation-induced boundaries was almost not observed 

during large deformation. The steel microstructure after ε = 2.66 at low magnification can be 

described as a cellular one with the size of cells of 200 – 400 nm. At higher magnifications the 

microstructure consists of irregular dislocation pile-ups of different shapes and sizes and very small 

grains with the size of ~30-60 nm surrounded by high-angle boundaries (figure 3d,e).  
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Figure 3. Transmission-electron micrographs of Fe-0.3C-23Mn-1.5Al steel rolled at 77K to a true 

strain ε of а) 0.05 (а); 0.1 (b); 2.66 (c-e). Diffraction patterns (inserts in 3a) obtained for the zone axis 

[110] shows the presence of twin reflexes.  
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a       b 

Figure 4. Dislocation density in Fe-0.3C-23Mn-1.5Al steel samples as a function of strain (a) and twin 

thickness and spacing between twins as a function of true strain. Data for twin thickness in (b) were 

obtained by means of SEM and TEM analysis. 

 

A comparative analysis of the microstructure evolution (figure 3), changes of the dislocation 

density and parameters of twinning (twin thickness and spacing between twins) (figure 4) reveals that 

microstructure of the TWIP steel during cryo-deformation evolves distinctly different in comparison 

with titanium. It seems that in the steel twinning and dislocation slip does not compete between each 

other but rather develop simultaneously. In the interval of strain of ε = 0 - 0.2 a decrease of the spacing 

between twins (which is associated with an increase of the number of twins) is accompanied by the 

fast increase in the dislocation density. At ε between 0.1 and 0.2 the twinning generally ceases and the 

further microstructure evolution is associated with the development of the cellular microstructure. The 

formation of new individual grains surrounded by deformation-induced high-angle boundaries are 

observed only at very high strains. 

 

3.3 Mechanical behavior of Ti and Fe-0.3C-23Mn-1.5Al steel 

Typical true stress - true strain curves derived from load-stroke data prior to necking for tension 

testing of samples previously rolled at 77K to various strains are shown in figure 5. For the both 

examined materials, the samples rolled to ε ≤ 0.36 exhibited a steady increase in the true stress with 

strain and a relatively high uniform elongation of ~0.05-0.11 in case of Ti and ~0.1-0.55 in case of Fe-

0.3C-23Mn-1.5Al steel. An increase of ε during cryo-rolling up to 0.51 - 2.66 essentially resulted in 

the elimination of the strain hardening stage and early necking, which is typical for severely cold-

worked materials. 

Principal differences in the mechanical behavior of investigated titanium and steel comprised the 

lower flow stress, strain-hardening rate, and ductility obtained for Ti samples. However, heavily rolled 

titanium and steel had somewhat similar mechanical behavior during tension except for the 

substantially higher absolute strength of the steel. 

From an application standpoint it is worth noting that the maximum ultimate tensile strength of Ti 

after cryo-rolling is ~1100 МPa, which is very close to the respective values of titanium alloys such as 

Ti-6Al-4V. In case of Fe-0.3C-23Mn-1.5Al steel the maximum ultimate tensile strength is  

~1800 MPa. However, most interesting combination of properties is demonstrated by the 20% cryo-

rolled steel, which shows yield stress of about 680 MPa, ultimate tensile strength of 1230 MPa and 

uniform elongation more than 30% (Figure 5b). 
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Figure 5. True stress- true strain curves for the Ti (a) and steel (b) rolled to a true thickness strain 

between 0.05 and 2.66. The temperature of the tension test was 293K. The true thickness strain 

imposed during rolling prior to tension testing is indicated in the figures.  

 

4. Discussion 
The major conditions/causes for the deformation twinning in titanium and TWIP steel are quite 

different: low symmetry of HCP crystalline lattice in titanium and low stacking fault energy in steel 

[4, 11]. That is why twin boundaries in these two types of materials have a considerable difference in 

their energy. Twin boundaries in TWIP steels are of type Σ3 with lowest energy and most perfect 

structure (high coherency). Therefore, in spite of high misorientation (60°) these boundaries are 

supposed to be quite transparent for moving dislocations. If so, these boundaries (i) should have a 

moderate or even low Hall-Petch strengthening in comparison to arbitrary high-angle grain boundaries 

and (ii) sluggish deviation from the coherent state in the course of interaction with lattice dislocations. 

These suggestions are supported by the fact that the nearly perfect twin/matrix orientation relationship 

survives in TWIP steels even after considerable strain [12]. Along to the propensity of dislocations for 

splitting (because of low SFE) all above mentioned factors result in development of a cellular 

microstructure which partially transforms into a grain microstructure only at strains of ε ≥ 2.66. 

The structure of twin boundaries (with misorientations corresponding to Σ7-Σ19 CSL orientation 

relationships) in hcp titanium is much less perfect than that of the coherent Σ3 twin boundary in fcc 

metals. This provides more efficient Hall-Petch strengthening. In addition, (semi)coherent twin 

boundaries in titanium transform during deformation into usual incoherent high-angle grain 

boundaries [13] yielding formation of a very fine microstructure.  

Indeed, a quantitative estimation of the Hall-Petch and substructure strengthening contributions in 

case of Ti and TWIP steel is in good agreement with the suggestion made above. The contribution of 

the various strengthening mechanisms to the overall yield strength σy can be typically expressed as 

PHy −++= σσσσ ρ0
, in which σ0 denotes the friction stress, σρ is the substructure strengthening 

mainly due to the dislocation density and σH-P is the Hall-Petch strengthening. The Hall-Petch 

contribution to the flow stress is typically written in the form 
d

K y

PH =−σ . In a simplified form the 

substructure strengthening σρ can be expressed as ρασ ρ GbM= , where M is the Taylor factor, α is 

a constant, G is the shear modulus, b is the Burgers vector, and ρ is the dislocation density. 

Strengthening of titanium during cold rolling is mainly associated with the Hall-Petch effect (see 

details in [6]). The main contribution in strength in the steel in the current study, however, is due to the 

substructure strengthening. Assuming σ0 = 120MPa, G = 72GPa, M = 3, b = 2.5×10
-10 

m, α = 0.4 and 

Ky = 0.011MPa×m
1/2

 [14] and using data shown in figure 4, the value of Hall-Petch strengthening is 

approximately an order of magnitude lower than that that of substructure strengthening. 
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5. Summary 
Microstructure evolution during plane-strain rolling of commercial-purity titanium and Fe-0.3C-

23Mn-1.5Al TWIP steel at 77K was investigated. Microstructure evolution in both Ti and steel during 

rolling is associated with extensive twinning, following by the development of cell or subgrain 

structure and formation of nanograins. Less perfect structure of twin boundaries in hcp titanium 

provides more efficient Hall-Petch strengthening in comparison with fcc steel. Rolling to a true strain 

of 2.66 at 77K resulted in the formation of a microstructure with a grain size of ~80 nm or ~40 nm in 

Ti or steel, respectively, and ultimate tensile strength of 1100 or 1800 MPa in Ti or steel, respectively. 
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