


fragment size. Each value of this function represents the number of fragments at time 
instant t with sizes being not greater than r. Therefore, in the framework o f this ap
proach, the mathematical model of fragmentation is represented by a random process 
|iV (r,0; l e K  i = (0, го )!, r e  OS, with values in R ,1' . In Kolmogorov [2] a simple evolu
tion equation for mathematical expectations EiV(r, /) (we consider the discrete time case) 
is derived. It has Markovian type and is constructed in terms of mathematical expecta
tion E r (r  | r';t)  o fth e other random function v(r | r ' ; f ) : X R + x Nt •— that is the
random number of fragments with sizes not greater than r  and generated at time instant 
I from a specified randomly chosen fragment having the size r'. This equation has the 
following form:

EN (r,t  + \) = ^ E N ^ , t ) d S ( k , t )  (1 .1)

under the assumption that the function E v(r | r';t) = S(k,t)  depends only on the fraction 
к =  r /r ' . Thus, the model formulated in Kolmogorov [2] is obtained on the basis o f some 
phenomenological reasons as it is said in physical literature. These reasons are based on 
the concept of “the average field” that is often in use in statistical physics. Further, in 
Kolmogorov [2], it is proved that the integral limit theorem for the distribution function 
EN (r,l)/EN (cn ,t)  takes place under the assumption that the function E v(k,t)  does not 
depend on time and that its second “logarithmi” m om ent in the variable к is finite. It may 
be considered as the marginal one-dimensional probabilistic distribution of the random  
process \r(t); t €  |0,«>)1, with nonnegative trajectories r(t)  and, physically, as the size of 
randomly chosen fragment from the whole system at time t.

Here we will not discuss the physical question o f applicability of the abovementioned 
approach of the mathematical modelling to some real physical fragmentation processes. 
Our problem consists of the ground of (1 .1 ) on the basis o f an explicit construction of 
the random process | N (r ,t ) ;  t €  |0, oo)|. The idea o f such a ground has been stated in 
the cited work. But it seems that the consequent authors (see, e.g., the fundamental work 
(Filippov [1 ])) have not taken into account the great im portance o f this idea to realize 
it. From our point o f view such an explicit construction o f the mathematical model of 
a higher level, in the frameworks of which the main master (1.1) of Kolmogorov theory 
can be proved as a mathematical statement, may represent the important base for con 
structing more complicated (and, therefore, more adequate) models in the fragmentation 
theory.

2. M athem atical model description

Specify a number Д > 0. Further, divide the positive part (0 ,°o) of the real line into the 
sequence of disjoint half-open intervals (|iA, ( / +  1)A); i e  N , ) being open from the 
right. Their union coincides with [0, °o). Introduce the random process ЭДд with discrete 
time and with values in the set N ,L . The sampling space o f this process consists of some 
random collections of functions I (Vj(t); i G N ,) ;  f e  N + }. Each function takes its values 
in N ,. By its sense, each function v,(f), i = 0 ,1 ,2 , . . . ,  represents the number o f fragments,



having random sizes, that belong to half-interval [/Д,(» + 1 )A). Define the process 91д as 
the Markov branching one with discrete time (see Sevast’ianov [3]) (the Markov chain). 
Generally speaking, it is inhomogeneous in time. Besides, it has an infinite collection N + 
of particle types. The last words are taken from the terminology o f branching random  
process theory. In our problem fragments with specified size r are the particles of some 
definite type from the point of view of this terminology.

Since the countable set N+‘ is the process state space, then for each time instant ( e  N t 
the conditional probabilities

Q(m„ i 6  | n,. j  e  N+;t)  = Privet  + 1 )  = nJt j  e  N+ | v,(t) = mh i e  N+ \ (2.1)

of transitions form an infinite m atrix when arguments ия /?1; €  N+,i, j  €  N+ are changed. 
The matrix (2.1) of transition conditional probabilities defines completely the Markov 
chain with countable set of states. In particular, it defines the evolution of one
dimensional marginal probability distribution of this chain

P(m,i  e  N+;t) = Pr{ v,(() = nh i €  N+1, (2.2)

namely, it is defined uniquely by the Markov chain equation

% j e N t ;(  + l ) =  £ />(»!,. i e N +; 0 Q ( « i , « e N + \tij, j e N +;t) .  (2.3)
Imjl

where, here and below, the symbol o f summation means that it is done with respect 
to all possible distributions of “filling numbers,” that is, with respect to all collections 

( m n i e  ) 6  N+u . For the matrix Q (m „i  €  N, | n j , j  6  N,;f)>H|>m< e  N , i , j  e  N ,, we 
will use also the shorter notation Q(m, | ny,t). ft is constructed for the Markov branching 
process by the following way. Define the function q t(k j , j  e  N +;/) s  tj/(/с, ; / ). It represents 
the probability of the event that describes the fact that a specified fragment with size I (i.e., 
its size r belongs to the half-interval [/A ,(f+  1)A)) gets at the time instant t to the set of  
fragments and this set is characterized by the collection o f filling numbers {к/, j  €  W+). In 
this case, of course, this probability is not zero only if kj - Oat j  > /. Thus, q i ( k j , j  €  N ,; f) 
is the probability o f the fact that the random  function Vt,j(t): N, X N+ X N, — N t takes 
value kj.  The function is the number o f fragments with sizes j  that are formed from 
the specified fragment with size / at the time instant f; here, the second argument j  is 
not greater than /. Further, we introduce the random function / / : N, x  N , x  N X N, — 

N i = V " (t )  + ^ ( 0  + ■ ■ • +  for each pair l ,j  €  N ,. It is the sum of

m 6  N statistically independent random functions vjУ( / ) , ( / ) , . . . , and it rep
resents the set of filling numbers on sizes j  of fragments formed by subdivision from 
m identical fragments having the size I at the time instant t. In such a definition o f  the 
branching condition th at describes the disintegration o f fragments having the size /, the



individuality of each fragment is lost, that is, for each fixed fragment in the final state we 
do not take into account the fact, from which fragment o f the size / appeared as a result of  
the disintegration. Due to the given definition ofthe random function j  e  N+;t)>
its probability distribution qi(m \ kjy j  e N+;0 is defined by the m-multiple convolution 

of the probability distribution collection qi(k{‘\ j  e N i =

q i(m  \kj, j  s  N +;/) =  £  П <7'(*У >> j  e  N +;t).
к\п>0,ыи..ми h l

(2 .4)

Indeed, the probability qi(m \ k j , j  e N+;/) is equal to zero if there exists j 6 N h  j  > I 
such that the inequality к, Ф 0 is valid.

At last, the m atrix Q(m, \ ript) is determined by the formula

Q (m „ i e  N, | n jt j  e N+,*0

=  s
N..

1 [ (wi I kjit I £  ■ ]»> 0
L i'=0 L j=0 V l:l>j /

(2.5)

where S(n — n') = Slu,’ is the Kronecker symbol and the summation is done on all two- 
placed functions k j j : N i X N, . The sense ofthe integer m atrix is that it determines
the fragment numbers with the size j  that are formed from all fragments with size i.

The matrix Q(m, | n t\l) and the probability distribution Pi.fi,, j  £  N +;0) determine 
the random process 91д completely as well as (in particular) its characteristic functional 
Ч 'дМ  : (R +) — C, the value o f which is determined as

/ Д  “  fU'DA \
У д И  = E e x p ( ; ' X  Ut(x)cix) (2 .6)

\ f-0 )-0 № /

for each function sequence И/(х), t =  0 ,1 ,2 , . . .  from the space §*(!& +) of compactly sup
ported functions being infinitely differentiable on R +. Values o fth e  functional exist due 
to the support compactness in x  of the functions ut(x).

Now we give the definition o f the random process with values in К ,J* that describes 
the fragmentation. We will define it as the generalized random process generated by the 
process sequence 91д at A — 0.



Definition 2.1. Generalized random process with the characteristic functional VF [ы ], 
determined by the limit

for each function ut(x) e  S ^ R , ) )  is called the random Kolmogorov fragmentation 
process.

3. Equation for the generating function

Introduce the space §r»(N i ) of infinite bounded sequences where each of them has zero 
components beginning from a number. Further, we will imply that such sequencesX have 
only nonnegative components. The set of all those sequences forms the cone in §™(N ,) .

We also introduce the sequence G [X , /] =  (# [ X ,t ] ;  / 6  N , ) whose components are 
generating functions of probability distributions i j i ( k , ; t ) t I 6  N+)

Formally, they are functions o f countable set of variables. However, due to the variable 
(kji j  e  N+) in the probability distribution is a finite sequence, really, the function g /[X ,/] 
depends only on finite components in X . Each /th function depends on I variables where 
I is determined by the maximal number j  among nonzero components in к j ±  0.

Now compute the sums

vK[u] = НтЧ'лМ
A - 0

(2.7)

(3.1)

(3.2)



Finally, compute the sum

h[nti, i e N t | ri), j  e  N+;X ,z ]

=  Z  ( i e  I nf ’ J '  e  N +’>0
In,} \ j =о /

П * " ' Л ( М> "  X  k l > )
L j=0 \ 1:1* j >

~ tx> / CO \
П П*?'  W(m,|*tf,/eNt;0

-  /=o \ j-0  /

X  f  П А'| )  4 i ( f » i  I * « > 1 e  0
r0iJeM,Aj=0 /

= Z  I
Ih/I ktjг 0; /,;eN*

Г Ы " / 1 e
-/=0

(3 .3)

- П
1=0

(m ,).
- П * Г || х . * ] - П в Г 1 х , и .

(=0 /=0

where we use the rule

П * ? - П  П *? '- П  n *?>
j —0 )=0hi>j 1=0 j:!bj

(3.4)

and also we take into account that probabilities qtinii | кц, I e  N , ; 0  are not zero only if 
kjj = 0 at i < j .

After these preparatory computations, introduce the generating function H ,[X ] o f the 
one-dimensional probability distribution P(ri j ,  j  £  M ,;/)  of the Markov chain at the time 
t according to the formula

Ht[ X ] = X  П * ? № , j e N +,-0.
i«ii 'i= o /

(3.5)

Then, applying the operation S {rrfI( П 7=0Jc”f) *° equiition o f motion (2 .3 ) and using
(3 .3 ), we find the motion equation of the generating function H ,[X ],

H ,+,[X 1  =  X  ( f t * ? )  X  p (™/* i e  N+;/)Q (m »  i e  N f I n}, j  e  N+{ t)
In/I ';= o  /  liM«l

(3.6)

= £  Р(ш ь / e  N| ;i)  £  I J Q (m „ i 6  N, |и;, j e N +;t )
!m,l |k,| \j=o /

=  £  P(trti, i e  i €  N ( | rtj, j  6  N+;X ,t ]
!m<l

= y ; P ( W/>* G N l ; t ) ( f l f t " ' I X , f | j  = H ([G [X ,t)| ,
(m,) N 1=0 /

where G [X ,/ ] =  (gf[X,/];Z e  N , ).



Thus, we have proved the following theorem.

T heorem  3.1. Generating function Hi [X ] o f  the probability distribution P(nJyj  e  N+;/ )  is 
governed by the equation

that together with the initial condition Но |X \ completely determine this distribution.

4. Kolmogorov’s m aster equation

On the basis of (3 .7 ), we now obtain the evolution equation o f mathematical expectations 
for the random process 'Лд. For this we introduce the matrix sij(t)  = EVij(t) o f mathe
matical expectations whose matrix elements are distinguished from zero only at j  < I. It 
is defined by the formula

Further, the mathematical expectation «/(<) =  Ev/(/) of the number V/(/) of fragments 
with the size / at the time instant t is defined by the generating function H ( [X] by means 
of its partial derivative in X/ at the point X  s  1,

H ([X ] =  H ( [G [X ,f]] (3-7)

(4 .1)

(4.2)

Then, on the basis of (3 .7 ) and (4 .1 ), we find

that is,

(4-4)
rn-l

Now introduce the functions

t I
Nt(t) = ^  w*(f)> Sml(t) = У  smk(t). (4.5)



Then, by summing up (4 .4) for all /, we derive the motion equation in terms of this 
function

/ ЛЭ
N/(t +  1) =  X  X  nm(l)smk(t)

k=Om-k
l - l  l-l I к

= X X n m (t)s» ik (0 "*■ X X nttt(l)s m k(l)
k-O m -k k-O m -l t ,

(4.6)I- 1 m po

= X Sm k(0 X f,m (0 $ m l(0
m- 0 1=0 ж=/
l~ 1 «3

=  X  S m m ( 0 [ N * ( 0  -  N „ , - , « ) ]  + X  Sm/( 0 [ W m ( 0  -  N m - l ( 0 ] .
m̂ O m=/

where N  t(t) = 0.
At last, introduce the function N,\(r;l) : К , X N ( —

М д(г;/) =  N/(t), if r  < /А < r + Д. (4 .7)

It is continuous from the left and it is equal to the average fragment number having sizes 
not greater than r. Besides, introduce the function S&(r,r ';t) : R , x l ,  x N ,  — R ,,

Sj\(r,r';t) = Smi(t), if r < /Д < r  +  A, r' <  шД < r + Д (4 .8)

being continuous from the left in both arguments r and r '.  Then tor (/ — 1)Д < r < /Д, it 
follows from (4 .6) that

l- l
N & (r ;l+1)  =  X  5д(г„„ гт ;/)|Л/д(г„, + A ; / ) - N b ( r m;t)\

(4 .9)

+ Х 5л(гт , r ; t ) [N A(rm + A;t)  - N A(r,„;*)]>
m=l

where r„, =  wA. The sums in the right-hand side o f this equality may be considered as 
integral sums of the Riman-Stiltyes integral for step functions N,\(r\t) and SA(r ’,r ; l ) ,  
that is,

Л 1 д (г ;* + 1 )-  f SA(r ',  r ';t)d N A( r ' ; t ) + [ SA(r' ,r ; t)dN &(r';l).  (4 .10)
Jo J r - 0

Assuming that the function SA(r' ,r ;t)  tends to a continuous function S (r ',r ;f )  as A — 0 
and the function Nj\(r;t) tends to a monotone nondecreasing function N (r ,t)  and since 
discontinuity points of functions 5д (г ', r;t)  and NA(r',t)  in the argument r' coincide for 
every t, we may apply the second Helly theorem. It permits to realize the limit transi
tion under the integral sign. In this case, we obtain the equation for evolution o f average



fragm en t n um ber distribu tion  in the form

W (r;t +  1 ) =  Г ° S(r' ,r ' ;t)dN (r' ;t)  +  f S(r' ,r ;t )dN (r' ;l ) .  (4 .11)
Jo Jr-0

Thus, the following statement takes place.

T h e o r e m  4.1. Statistical characteristic N (r, t) = E N (r,t)  o f  the generalized random process 
'Л is governed by {4.11).

At last, we show that (1 .1 ) of the Kolmogorov theory is a particular case of (4 .11). 
We suppose that the function S(r',r ;t)  depends only on the ratio r/r',  that is, S(r',r ;t)  =  
S{r/r';t).  In this case (4 Л 1) is represented in the form

N (r ; t  + l ) - S ( l i t ) N ( r - O i t )  + £  (4 .12)

Applying the integration by parts with the use o f conditions iV («j;/) < n o ,S (0 ;0  = 0. wc 
get

jV (r ;/+  1) =  J t f ( r ' ; f ) « « ( £ ; l ) .  (4 .13)

Introducing the integration variable к =  r / r ' ,  we obtain

N ( r ; t +  1) = J o" ° N ^ ; f ) d S № 0 ,  (4 .14)

Unlike (1 .1), the latter takes into account the fact that the function S(k;t)  may have a step 
at the point к -  1.

5. Conclusion

We have shown how the Kolmogorov equation in statistical fragmentation theory may 
be justified in the framework o f  a certain probabilistic scheme. At the same time, even 
in the framework o f the construction presented in the work, some general mathematical 
questions have been still unsolved. For example, it is necessary to clear lip under what 
conditions the limit distribution o f probabilistic distributions tlt{kn j  €  N+;f) exists and 
how it should be understood. The simplest situation when we try to answer this question 
is when this limit should be understood in weak sense. However, it is desirable that this 
weak limit nevertheless guarantees the existence o f random realizations with probability 
1. They should be regarded as some finite point random sets on R+.

It is necessary to find some conditions for distributions q i { k , , j  e  N+;f )  that guarantee 
the existence of the limit mathematical expectation Ншд .o £ j  :f j.:jA<rEv/j(t) such that it 
is a continuous function S(r',r ; t).

Finally, it is very im portant to prove the existence of the limit characteristic functional 
M'fu] and, moreover, the existence of random trajectories o f the process connected with 
this functional.
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