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The analysis of fixed points of the evolution equation for temperature in thermal fluctuation area in
semiconductor film is done. It is shown that there exists a stable fixed point being more than the threshold of the

breakdown regime development.

1. INTRODUCTION

In this communication, it is analysed the stabilisation
condition for the evolution regime which can appear
when the direct electrical current getting through the
thin semiconductor film. Such a regime generates the so-
called thermal breakdown. This phenomena consists of
the localisation of the extracted Joel heat in those areas
on the film where sufficiently large thermal fluctuation
are concentrated, it gives the strong heating of these
areas. Due to increasing dependence of the electrical
conductivity of the material on the temperature. Such
positive feedback may give the local increasing of the
temperature up to the melting temperature of the
material or to its eutectic point in the case of an intrinsic
semiconductor. This physical process is called {\it the
thermal breakdown}, it is developed during several
microseconds and gives the functional destruction of the
material.

2. THE EVOLUTION EQUATION AND THE
WAGNER APPROXIMATION

It has been obtained in Ref. [1] the evolution integral
and differential equation of the temperature field on the
film, which describes the breakdown development and
also one-dimensional solutions of this equation have
been analysed. It has been used such an approximation
when the effect of the voltage transfer during the
breakdown regime is neglected. It may; really, neglect
this effect at the origin stages of the breakdown regime
and if the circuit resistance being external to the film is
not sufficiently large. In this work, we shall analyse the
evolution equation taking into account the influence of
the voltage transfer. We shall show that if the external
resistance is sufficiently large then it is possible the
stabilisation of the evolution regime. As a result, the
melting temperature (the eutectic one) is not attained.

We start from the thermal conductivity equation in
the form
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It describes the temperature distribution T (r' ,t) on the

film when there are non-lincar dependencies of the
temperature conductivity coefficient «(T) and the
electrical conductivity 0 (T). The integral denominator
in the second summand takes into account the effect of
the change of the voltage applying to the film during the
evolution process. In Eq. (1) E is the voltage on the film
in the equilibrium state, ¢ is the average electrical
conductivity characterising the external resistance, S is
the film square, d and is its thickness. Further, we shall

consider in Ref. [2] that x(T)=x is constant and
6 (Ty=0,0+v(T-T)%/2).

T, is the temperature of the electrical conductivity
mininmum.

We realise the investigation of the solution stability
of Eq. (1) using the approximation, which we name the
Wagner one. It was used in the thermal breakdown
theory in dielectrics. We consider that the heat
localisation may be modelled by introducing of the
thermal channels having a critical diamete D. These
channels are passing through the film. The temperature
in these channels is approximately constant when the
spatial point changing in them. It is changed essentially
in each of them only in thin boundary layer having the
thickness 1. We put that the temperature is equal T(t)



in channels outside these boundary layers. Outside
channels, it is put to constant temperature T, of the
thermal surrounding.

The breakdown originates at 7, = 7,,. At these
conditions, the equation for relative temperature
fluctuation

8o H-=T0 0)-T,

is obtained on the basis of Eq. (1), if there is one
cylindrical channel with diameter D on the film. This
value is not equal to zero only in the channel. The
equation has the form
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Here, we introduce non-dimensional parameter
1= (0, /0)@ D?/4S)

characterising the speed of the voltage transfer and we
denote 0 (1)= T'(t)- T,. Averaging Eq.(2) over the
channel domain having the volume }/ and using the
transformation of integral on the volume to the integral
on the surface (it is considered that the heat flow aside
of the channel is absent), we obtain
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Here, we take into account that the heat flow through

cylinder side surface having the square T Dd is directed
along the radial temperature gradient. This gradient we

change approximately by the finite difference 0 (l ) /1.
At last, we simplify the averaging equation changing the
temporal scale 7./y /2F 2 = ¢ and introducing the

decrement ¢ = «2/v (4 , /Do E 2y,
1+ 0 2(n)
L+ 02@o)*

Our further analysis is reduced to the investigation of
the solution stability of this equation.
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3. ANALYSIS OF THE SOLUTION STABILITY
If ® inEq. (3)is small then one can consider that

0 (1) = -0 (1)+1

and, therefore, solutions are stable. If ©(f) is

sufficiently large but the value 7 is very small such as
we may neglect by the value 7 (1+ 0 2(l)) in
then we obtain the

denominator equation

é ()= -0 (1) + 6 2(r) Possessing the peaking regime

which describes the thermal breakdown development,
i.e. its solution
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0 (0)> @ goes to infinity during the finite time 7, ,

which is identified with the breakdown time. Let us
study now the possibility of stabilisation in the case

0)=a(- (- Dety !

when 7 (1+ 0 2(t)) is sufficiently large in comparison
with the unit. In this case we neglect the unit at the
denominator of second summand in Eq. (3) and after
that we take away the extra parameter in the obtained
equation  introducing  the new  temperature

n1/2® = @ . the decrement nl/za = ¢ and the

time g 1/2, = f. As a result we obtain the equation with

one parameter
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Let us find some fixed points of this equation, i.c.
solutions /(8 )= 0. Such solutions consist with § = 0

and solution of the equation § = ¢ (1+ i 2)2. Let us

introduce the notation x = 1+ g 2. Then this equation
has the form

PX)=eX*-X+1=0.

There is the unique minimum of the polinom (X)) in
the point X, = (d¢ 2)‘1/ 3 It satisfies the equation
P'(X)= 0. There are not other fixed points different

from § = O at P(X:)2 O (the breakdown regime is
not realised). If

P(X.)=1-3a >y 3 /4<0,

ie. o< (3/4)3 /4, then there are two solutions
X:,X. > X_ of the equation P(X)= 0. They are
both positive since P(0)= 1. At this case X, >1 is
fulfilled for sure, since X« > 1. Consequently, X_ > 1
.since P(1)= a 2 > 0. Therefore. two fixed points 0 +
correspond to solutions X, . It is easy checked that these
fixed tend as §_ -1/3

asymptotically at small ¢ .
Let us analyse the stability of those found fixed
points. For this, it is necessary to sct the sign of the

derivative df (9 )/ df in each of these points. It is
obvious in the point § = O that

(dr@)/dd),=-u .

points ~0,0, ~a



This is in accordance with the above conclusion about
its stability. In points § + we obtain

Fe)=a-3%2)1+02)
on the basis § + = 0. Since the following conditions
X, > Xo= (4 2)'1/3 > 4/3,
302=3X, -5 3(X.-D=1

take place. Consequently, the point 0, is stable and, the

point §_. should be unstable on the basis of some

topological arguments. Just this point corresponds to the
threshold of the fluctuation value from which the
breakdown is developed.

4. CONCLUSIONS

Thus, the stable fixed point ¢ places above the
threshold point @ _ . The "breakdown" solutions © (1)

are attained to this point and if its value corresponds to
the temperature 7. being less the melting one (or the
eutectic one) then the breakdown is not realised. In this
casc only some arcas having very large temperature (the
mesoplasma channels) may be occur.
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CTABMWJIM3AIIUA PASBUTHUA TEIIJIOBOI'O ITPOBOA
B MMOJIYIPOBOJHUKOBBIX INTEHKAX

H.B. Anopeesa, FO.I1. Bupuenxo

[IpoBeneH aHanMM3 HEMOABIDKHBIX TOUCK 3BOJIOIMOHHOTO VPABHCHHS JJII TEMIICPATYPHl B OONACTH TEILIOBOH
(uIyKkTyaluum Ha TOJYNMPOBOAHMUKOBOW IUIEHKE. [l0Ka3aHO, YTO CYHIECTBYET YCTOMYMBAS HEMOJBI)KHAS TOYKA,
60pIIas Mo BEIMYHHE MOPOTA BO3HUKHOBEHHS PEKIMA IPOOOSL.

CTABLIIBALIA PO3BUTKY TEILIOBOI'O ITIPOBOIO
Y HAIIIBIIPOBITHUKOBHUX TLIIBKAX

H.B. Anopeesa, FO.11. Bipuenxo

[IpoBeneHo aHAM3 HEPYXOMHX TOUOK CBOJIFOIIIHHOTO PIBHAHHS A TEMIICPATYPH B 00acTi TemnoBoi (uiyKryarrii
V HamBIPOBIAHUKOBIN muIiBmi. JIOBEACHO, IO iCHY€ HEPYXOMA CTIMKA TOUKA, SKA € OLIBIIO0 32 BETHIHHOIO MOPOTY

BHHHKHCHHSA PCKHMY TPOOOFO.



