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Introduction

Analytic functions of complex variable φ(z) = u(x, y) + iv(x, y) are defined as
solutions to Cauchy-Riemann equation

∂φ

∂y
− i

∂φ

∂x
= 0. (0.1)

Substituting it by a more general equation
∂φ

∂y
− i∂φ

∂x
= aφ+ bφ

one is led to the theory of generalized analytic functions which was developed by
I.N.Vekua, M.A.Lavrentiev, and L.Bers in fifties.

Another natural generalization of equation (0.1) is provided by the system
∂φ

∂y
− J ∂φ

∂x
= 0 (0.2)

for vector-function φ = (φ1, . . . , φs), where J is a constant (s × s) matrix having
no real eigenvalues.

From this point of view equation (0.2) was investigated by A.Douglis under
assumption that matrix J is a triangular Töplitz matrix, i.e. its elements only
depend on the difference of indices.

Functions φ satisfying equation (0.2) were called hyperanalytic by A.Douglis
[2]. This topic was further developed in [3], [4], [5], [6], [7], [8], [34] and so on. In
particular, an analogue of the classical theory of analytic (holomorphic) functions
was developed for solutions of equation (2), so they are sometimes called analytic
functions in the sense of Douglis.

As is well known, solutions to Laplace equation

4u =
∂2u

∂x2
+
∂2u

∂y2
= 0 (0.3)

can be described as the real parts of analytic functions. Analytic functions are
also helpful for representing solutions of more general equations with real analytic
coefficients.

A unified approach to the study of such representations was suggested by I.Vekua
[10]. Later on A.Bitsadze [11] obtained representations of general solutions to
elliptic systems through analytic vector-functions and their derivatives.

Recently, it turned out [12], [13] that the representations obtained by Bitsadze
can be substantially simplified using hyperanalytic functions. One can say that
hyperanalytic functions play the same role with respect to elliptic system s with
constant coefficients as analytic functions do with respect to Laplace equation (3).
Analogous statements were obtained by N.Zhura [14] for systems which are elliptic
in the sense of Douglis-Nirenberg, and for systems which are hyperbolic in the
sense of Leray and Petrovsky.

In the present paper we give an updated review of results in this direction. For
reader’s convenience, necessary results from the theory of matrices are included
in §1. In §2 we develop an analog of analytic functions theory for equation (0.2).
Elliptic systems and equations of arbitrary order are considered in §3. Main attention
is given to representation of general solution to such systems in terms of hyperanalytic
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functions. At the end on this section some applications to boundary value problems
are described. In §4 we study various concepts of ellipticity for elliptic system s
of second order which are most important for the applications. The case of two
equations of second order is considered in some detail in §5. The last section
contains results of N.Zhura [15] on representation of general solution to elliptic
system s in the sense of Douglis-Nirenberg. As an illustration we present an application
to the linearized Stokes system of hydrodynamics.

1. Preliminaries from linear algebra

1.1. Functions of matrices. Let Cs1×s2 be the set of all complex s1×s2 matrices
and let Rs1×s2 have the same sense for real matrices. Algebraic properties of
matrices and determinants are well-known, in particular, Cs×s is a C-algebra [16].
Matrices can be written in block form: for A ∈ Cl×s and l = l1 + . . . + lk,
s = s1 + . . . + sr,, notation A = (Aij) means that Aij ∈ Cli×sj . For k = 1
and r = 1 we get block-row and block-column, respectively, in which cases we
write A = (A1, . . . , Ar), with Aj ∈ Cl×sj , or A =↓ (A1, . . . , Ar), with Ai ∈ Clj×s,
respectively. For k = r block-matrix (Aij) is a square-matrix. If li = si for all
i and Aij = 0 for i > j (i < j), one gets upper(lower)-triangular matrix. If
Aij = 0 for i 6= j this matrix is block-diagonal and we write A = diag(A11, . . . , Akk)
(analogously to usual diagonal matrix). The determinant detA of a block-triangular
matrix A is equal to detAii, i = 1, . . . , n. By 0 and 1 we denote, respectively,
the zero and identity matrix. Number z ∈ C is identified with the scalar matrix
z · 1 ∈ Cs×s . If detA 6= 0, then there exists the inverse matrix B = A−1 such that
AB = BA = 1.

Polynomial of degree s

det (z − A) =
∏n

j=1
(z − νj)sj (1.1)

is called the characteristic polynomial of A. In (1.1) is supposed that νi 6= νj for
i 6= j. Complex numbers νi are called eigenvalues of and constitute the spectrum
σ(A). Natural number sj is called the multiplicity of eigenvalue νj.

Each polynomial p(z) = a0 + a1z + · · ·+ akz
k with aj ∈ C defines a matrix

p(A) = a0 + a1A+ · · ·+ akA
k (1.2)

which is called the value of p at A.
From (1.2) immediately follows that for arbitrary polynomials p1, p2 one has

(p1 + p2) (A) = p1(A) + p2(A),

(p1p2) (A) = p1(A)p2(A),

p1[p2(A)] = p(A), p(z) = p1[p2(z)].

(1.3)

This, in particular, implies that

σ(p(A)) = {p(ν), ν ∈ σ(A)}, (1.4)

which is well known [16].
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One has also

B−1p(A)B = p(B−1AB),

p(diag (A1, . . . , An)) = diag (p(A1), . . . , p(An)).
(1.5)

It is said that p(z) annihilates A if p(A) = 0. A famous example of such
polynomial is provided by Hamilton-Cayley theorem [16].

Theorem 1.1. The characteristic polynomial of A annihilates A.

Proof can be easily obtained by considering matrix R(z) consisting of algebraic
complements to elements of z−A, z ∈ C. Indeed, by Cramer’s rule, for each z ∈ C,
one has

(z − A)R(z) = R(z)(z − A) = X(z), (1.6)

where X(z) is the determinant of z − A, i.e. the characteristic polynomial of A.
Moreover, one can write

R(z) = R1 +R2z + . . .+Rsz
s−1,

where Rj commute with A in virtue of (1.6): RjA = ARj. Hence the second equality
in (1.6), which reads

X(z) = (R1 +R2z + . . .+Rsz
s−1)(z − A),

remains true if one substitutes A instead of z and the theorem is proven.
Among all polynomials which annihilate A consider a monic (i.e. with the highest

order coefficient equal to 1) polynomial M(z) of the minimal possible degree r. If
p(z) annihilates A then p is divisible byM , in particular, polynomialM is uniquely
defined and called the minimal polynomial of A.

By Theorem 1.1 polynomial (1.1) is divisible byM , and by (1.4) the set {M(ν), ν ∈
σ(A)} consists of a single point z = 0 for each j. Hence

M(z) =
∏n

j=1
(z − νj)rj , 1 ≤ rj ≤ sj, (1.7)

so that r = r1 + . . . rn. The number rj is called the multiplicity of eigenvalue νj.
Using the minimal polynomial, formula (1.2) can be extended to functions f(z)

which are analytic in the neighbourhood of σ(A). To this end with function f we
associate vector c = Lf ∈ Ck by formula

Lf =
(
f (i)(νj), 0 ≤ i ≤ kj − 1, j = 1, . . . , n

)
. (1.8)

Obviously, Lf = 0 means that f(z) has zero of order not less than rj in each
point z = νj, j = 1, . . . , n. This is equivalent to f(z) = f̃(z)M(z), where f̃ is
analytic in a neighbourhood of σ(A).

Lemma 1.1. On the set Pk−1 of polynomials of degree not exceeding r − 1
mapping L is one-to-one and has an inverse L(−1) : Cr → Pr−1.

Proof. If Lp = 0, p ∈ Pk−1, then p(z) is divisible by (z− νj)rj for each j, hence
divisible by M(z). Since p does not exceed k−1 this is only possible if p = 0. Thus
L : Pr−1 → Cr is one-to-one. Since dimension of Pr−1 is r this mapping has an
inverse L(−1) : C→ Pr−1.

For a given family c = (cij, 0 ≤ i ≤ rj − 1, j = 1, . . . , n) ∈ Ck, polynomial
L(−1)c ∈ Pr−1 is called the interpolating polynomial (with respect to (νj, rj), j =
1, . . . , n)).
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The lemma implies that for each function f analytic on σ(A) there exists a
function f̃ , such that

f(z) = f̃(z)M(z) + q(z), q = L(−1)Lf. (1.9)

Correspondingly, the value f(A) is defined as f(A) = q(A). The following result
shows that this is a reasonable definition.

Theorem 1.2. (a) Let sequence of analytic functions fn(z) → f(z) converge
uniformly in a neighbourhood of σ(A). Then fn(A) −→ f(A) in the sense of
convergence of each matrix entry. In particular, (1.3), (1.5) hold for analytic
functions.

(b) Let g(z, t) be continuous on G×Γ, where G is some neighbourhood of σ(A),
and Γ is some continuous curve. If g(z, t) is analytic in G then the matrix-function
g(A, t) is continuous Γ и

g(A) =

∫
Γ

g(A, t)dt, g(z) =

∫
Γ

f(z, t)dt. (1.10)

Proof. (a) Let qn be defined by fn as in (1.9). Then qn −→ q coefficientwise.
Hence qn(A) −→ q(A) as n −→ ∞. To show (1.3), (1.5) for analytic function s it
suffices to write them for approximating polynomial s and pass to the limit.

(b) Denote by g(i)(z, t) the ith derivativewith respect to z of function g(z, t). As
is known it is continuous on G× Γ and

f (i)(z) =

∫
Γ

g(i)(z, t)dt.

Hence if p(z, t) and q(z) are defined by, respectively , g(z, t) и f(z) as in (1.9) then

q(z) =

∫
Γ

p(z, t)dt.

This in turn implies (1.10).
Some corollaries are immediate. If function f develops in power series in a

neighbourhood of σ(A) as a0 + a1z+ · · · , then by (а) we have a convergent matrix
series

f(A) = a0 + a1A+ · · · ,
which gives a natural generalization of (1.2). In particular, the series

expA = 1 + A+
A2

2!
+ · · ·

converges for any matrix A and defines the value of ez = exp z at A. Analogously,
if the absolute values of eigenvalues of A are less than 1, then the series

(1− A)−1 = 1 + A+ A2 + · · ·
converges and defines the inverse of 1− A.

From (1.3) follows that A−1 coincides with f(A) for f(z) = z−1. One just notices
that zf(z) = f(z)z = 1. By the same reasoning matrix f(A) commutes with A for
any f .

From Theorem 1.2(b) follows an analog of Cauchy formula

f(A) =
1

2πi

∫
Γ

f(t)(t− A)−1dt, (1.11)
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where contour Γ contains σ(A) in its interior and is oriented so that σ(A) lies on
the left of it. For the proof it is sufficient to notice that

f(z) =
1

2πi

∫
Γ

f(t)(t− z)−1dt

and apply (b) to g(z, t) = f(t)(t− z)−1.
We present one more corollary which is important in the sequel.
Lemma 1.2. Let A(τ) be a continuously differentiable matrix-function on [0, 1]

and
A′(τ)A(τ) = A(τ)A′(τ), 0 ≤ τ ≤ 1. (1.12)

Let function f be analytic in an open set containing σ(A(τ)) for all τ . Then matrix-
function B(τ) = f(A(τ)) is continuously differentiable and

B′(τ) = f ′(A(τ))A′(τ). (1.13)

Proof. Consider matrix-function (t − A(τ))−1, t ∈ Γ, 0 ≤ τ ≤ 1, where Γ is
from (1.11). It is continuously differentiable with respect to τ and by (1.12) its
derivative is

[(t− A(τ))−1]′ = (t− A(τ))−2A′(τ).

Hence we can differentiate (1.11) and get

B′ =

[
1

2πi

∫
Γ

f(t)(t− A)−2dt

]
A′.

In remains to notice that by theorem1.2(b) applied to equality

f ′(t) =
1

2πi

∫
Γ

f(t)(t− z)−2dt,

expression in square brackets coincides with f ′(A).
If has a single eigenvalue ν then (1.1) and (1.7) take the form

det (z − A) = (z − ν)s, M(z) = (z − ν)m,

so that (A− ν)k = 0 and according to (1.8)

f(A) =
r−1∑
i=0

f (i)(ν)

i!
(A− ν)i. (1.14)

If ν = 0 matrix is called nilpotent and satisfies Ar = 0.
As an illustration consider triangular matrix

A =


ν 1 0 . . . 0
0 ν 1 . . . 0
...

...
... . . . ...

0 0 0 . . . ν

 , (1.15)

which is called Jordan block (or Jordan ν-block if one wishes to indicate its
dependence on ν). Obviously, all elements of matrix A − ν vanish except the



9

subdiagonal ones which are equal to 1. Thus according to (1.14)

f(A) =


f(ν) f ′(ν) . . . f(s)(ν)/s!

0 f(ν) . . . f(s− 1)(ν)/(s− 1)!
...

... . . . ...
0 0 . . . f(ν)

 . (1.16)

1.2. Jordan normal form. As usual matrix A = (Aij)
s
1 ∈ Cs×s can be considered

as linear transformation of X = Cs which is denoted by the same letter and acts
by formula

(Ax)i =
s∑
i=1

Aijxj, i = 1, · · · , s.

This correspondence is a homomorphism. Moreover,

(AB)(i) = AB(i), (BC)(i) =
s∑
j=1

CjiB(j), (1.17)

where C = (Cij)
s
i and B(i) is the ith column of B considered as an element

(B1i, . . . , Bsi) of Cs.
Subspace X0 ⊆ Cs is called A-invariant if Ax ∈ X0 for x ∈ X0. Such are the

image Im A = A(X) and kernel Ker A = {x,Ax = 0} of . Spectrum σ(A) =
{ν1, . . . , νs} is defined as the set of all ν, for which ν − A is not invertible or,
equivalently, Ker (ν − A) 6= 0.

Transformation P is called projector if P 2 = P or, equivalently, if P is identical
on X0 = Im P . This subspace is A-invariant if and only ifA commutes with P ,
i.e. if AP = PA. Let xi, i = 1, . . . , s0, be a basis in X0. Then A-invariance of X0

means that

Axi =

s0∑
j=1

αjixj, i = 1, . . . , s0. (1.18)

Matrix A0 = (αij)
s0
1 is called the matrix of linear transformation A : X0 → X0 in

basis (xi).
By (1.17) equation s (18) can be written in matrix form AB0 = B0A0, where

columns of B0 ∈ Cs×s0 are xi.
Lemma 1.3. Let Cs = X1 ⊕ . . . ⊕ Xn and each Xi is A-invariant. Let matrix

Bi ∈ Cs×si have columns Xi and Ji be the matrix of A in this basis. Then

AB = B diag(J1, . . . , Jn), B = (B1, . . . , Bn). (1.19)

Proof. As mentioned above, ABi = BiJi for each i. These relations in turn
equivalent to (19).

Matrices A and Ã = B−1AB are called similar. Lemma 1.3 can be reversed: if
B−1AB = diag(J1, . . . , Jn), B = (B1, . . . , Bn), where Bi ∈ Csi×s and Ji ∈ Csi×si ,
then columns of Bi give a basis of an A-invariant subspace Xi. This implies the
following spectral decomposition result [16].
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Theorem 1.3. To each eigenvalue νi of A corresponds an invariant subspace Xi,
i = 1, . . . , n, such that, for each i, transformation A : Xi → Xi has a single
eigenvalue νi and Cs decomposes in direct sum of these subspaces. In particular, we
have (19) with σ(Ji) = {νi}.

Subspace Xi is called the eigenspace of A corresponding to νi. Its dimension
is equal to the multiplicity si of eigenvalue νi in (1.1). Indeed by (1.19) we have
B−1(z − A)B = diag (z − J1, . . . , z − Jn), from where

det (z − A) =
∏

i
det (z − Ji), det (z − Ji) = (z − νi)si ,

where si is the dimension of Xi.
IfA is real then polynomial (1.1) takes real values at real points z. In particular, to

each eigenvalue ν corresponds the complex conjugate eigenvalue ν of the same
multiplicity.

Lemma 1.4. If A ∈ Rs×s then matrix B in theorem 1.3 can be chosen so that
Bi = Bj for νi = νj.

Proof. It suffices to show that νi = νj implies
Xi = {x, x ∈ Xj}. (1.20)

To this end put f ∗(z) = f(z). If f is defined in a neighbourhood of σ(A) then
f ∗ is defined in a neighbourhood of σ(A). If M is the minimal polynomial of A
then M∗ is the minimal polynomial of A. Applying ” ∗ ” to (1.8) one derives that
f(A) = f ∗(A). In particular, f(A) = f ∗(A) for real matrix A. Since (pi)

∗ = pj for
νi = νj we get Pi = Pj, which completes proof of (1.20) and lemma.

A non-zero vector x ∈ Xi satisfying equation (A− νi)r+1 x = 0 is called eigenvector
(for (r = 0)) or adjoint vector (for (r ≥ 1)) associated with νi. Putting xj = (A− νi)r−j ,
j = 0, 1, . . . , r, we get a chain of eigenvectors and adjoint vectors satisfying

(A− νi)x0 = 0, (A− νi)x1 = x0, . . . , (A− νi)xr = xr−1. (1.21)

It is easy to see that vectors xj are linearly independent and generate an A-invariant
subspace. Comparing (1.15) and (1.27) gives that the matrix of A in basis (xj) is
Jordan νi-block. The following fundamental theorem belongs to C.Jordan [16].
Theorem 1.4. (C.Jordan) Each eigenspace Xi of A has a basis consisting of chains
of eigenvectors and adjoint vectors. In particular,matrix B in theorem 1.3 can be
chosen so that each Ji is a direct sum of Jordan νi-blocks. These blocks are uniquely
determined up to a permutation.

Matrix J = diag(J1, . . . , Jn) is called the Jordan (normal) form of A. It is also
said that B brings A to Jordan form.

Equality (1.19) can be written asABi = BiJi, i = 1, . . . , n. Obviously, columns
of Bi are automatically linearly independent if Ji consists of one block. In such case
eigenvalue νi is called simple. In terms of (1.1), (1.7), simplicity of νi is equivalent
to equality si = ri.

1.3. Matrix polynomials. Expression z−A playing an important role in subsection 1.2,
can be considered as first degree polynomial with matrix coefficient A. Consider
more general matrix polynomial of such type:

P (z) = zn −
∑n−1

j=0
ajz

j, aj ∈ Cl×l, (1.22)
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which already appeared in the proof of theorem1.1. Matrix polynomial s are also
called z-matrices [17]. They are usually investigated using so-called elementary
transformations preserving the characteristic equation

detP (z) = 0. (1.23)

Following [18] let us consider these polynomials from the spectral point of view.
Namely, let us refer to roots νj of equation (1.23) as eigenvalues (of multiplicity
si) of polynomialP (z). Matrix P−1(z) is a rational functionwith elements possibly
having poles at νj. The highest order of those poles is called the order of νj. Finally,
with polynomialP (z) associate matrix A ∈ Cnl×nl written in the n× n-block form

A =


0 1 0 . . . 0
0 0 1 . . . 0
...

...
... . . . ...

a0 a1 a2 . . . an−1

 , (1.24)

For n = 1 this matrix coincides with a0.
Lemma 1.5. Matrix A and matrix polynomialP (z) have the same eigenvalues

and the corresponding multiplicities and orders (for ν 6= 0) coincide.
Proof. For n = 1 it suffices to show that orders of eigenvalues of polynomial z−A

and matrix A = a0 coincide. By (1.5), (1.19)

B−1[(z − A)−1]B = diag [f(J1), . . . , f(Jn)],

where f(u) = (z − u)−1. Applying formula (1.14) to f(Ji), with r = ri being
the order of eigenvalue νi, we come to conclusion that ri is equal to the order of
eigenvalue of polynomial z − A.

For n > 1, everything follows from the matrix identity

(z − A)


1 1 1 . . . 1
0 z z . . . z
...

...
... . . . ...

0 0 0 . . . zn−1

 =


z 0 0 . . . 0
0 z2 0 . . . 0
...

...
... . . . ...

P0 P1 P2 . . . P

 , (1.25)

where Pk(z) = a0 + a1z + . . .+ akz
k, k = 0, 1, . . . , k. Correctness of this equality is

verified by direct check.
If ν is an eigenvalue of P (z) then, as in (1.21), vectors x0, x1, . . . , xr ∈ Cl defined

by equalities
P (ν)x0 = 0, P (ν)x1 + P ′(ν)x0 = 0, . . . ,

P (ν)xr + P ′(ν)xr−1 + · · ·+ P (r)(ν)

r!
x0 = 0,

(1.26)

are called a chain of eigenvectors and adjoint vectors of polynomialP (z) corresponding
to eigenvalue ν.

Theorem 1.5. Adopting notation (24), equality AB = B0J0, where B0 ∈ Cs×s0 , J0 ∈
Cs0×s0, is equivalent to

B0 =↓ (b0, b0J, . . . , b0J
n−1), b0J

n =
∑n−1

i=0
aib0J

i
0. (1.27)
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Here matrix J0 is a Jordan block if and only if columns of b0 ∈ Cl×s0 form a chain
of eigenvectors and adjoint vectors of polynomial p(z).

Proof. In one direction this follows from the product rule for block matrices
(1.24) and (1.27). Conversely, let

AB0 = B0J0, B0 =↓ (b0, b1, . . . , bn−1).

Then by (1.24)

bj+1 = bjJ0, j = 0, 1, . . . , n− 1,
∑n−1

i=0
aibi = bn−1J0,

which implies (1.27).
Let J0 = J be Jordan block (1.15) and x0, . . . , xr be columns of b0. According

to (1.16)

(Jp)ij =

{
f (i−j)
p (ν)/(i− j)! , i ≥ j,

0 , i < j,
(1.28)

where fp(u) = up, i, j = 0, 1, . . . , r. Applying (1.17) to (1.27), one obtains:∑
j

(Jn)ji xj =
n−1∑
p=0

ap
∑
j

(Jp)ji xj.

Substituting here expressions (1.28) and remembering that

P (z) = fn(z)−
∑n−1

p=0
apfp(z)

we arrive to (1.26):
i∑

j=0

1

(i− j)!
P (i−j)(ν)xj = 0, i = 0, . . . , r.

Since these considerations can be reversed, the theorem is proven.
If l = 1 write

P (z) =
∏m

j=1
(z − νj)sj , s1 + . . .+ sm = n, (1.29)

where νi 6= νj for i 6= j, and let Ji denote Jordan νi-block of order si. Put

bi = (1, 0, . . . , 0) ∈ C1×si , Bi =↓ (bi, biJ, . . . , biJ
n−1) ∈ Cn×si ,

B = (B1, . . . , Bm) ∈ Cn×n.
(1.30)

As P (j)(νi) = 0, j = 0, 1, . . . , si− 1, according to (1.26) matrix bi is composed of
a chain of eigenvectors and adjoint vectors xkR. Hence by theorem1.5 and remark
at the end of subsection 1.2, matrix B is invertible and brings A to Jordan form

B−1AB = J, J = diag (J1, . . . , Jn). (1.31)

It is clear that eigenvalues νj of matrix A are simple. This follows from lemma
1.5 since for l = 1 the order and multiplicity of eigenvalue νj of polynomial (1.29)
coincide and are equal to sj.

Notice that by (1.28) matrix Bi in (1.30) is composed of columns

h(j)(νi)/j!, i = 0, 1, . . . , si − 1,
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where h(z) =↓ (1, z, . . . , zn−1).

2. Hyperanalyticity in the sense of Douglis

2.1. Basic concepts. Suppose that matrix J ∈ Cs×s is invertible and all its
eigenvalues ν have positive imaginary parts, i.e. lie in the upper half-plane. Consider
in a domainD ⊂ C a continuously differentiable vector-function φ(z) = (φ1(z), . . . , φs(z))
of complex variable z = x + iy. This function is called hyperanalytic (or analytic
in the sense of Douglis) if its partial derivatives satisfy

∂φ

∂y
− J ∂φ

∂x
= 0. (2.1)

For J = i this relation coincides with Cauchy-Riemann equations so this definition
gives the usual analyticity. In general case, in order to emphasize dependence on
J , function φ is called a J-analytic function.

If matrix B ∈ Cs×s is invertible then substitution φ̃ = Bφ transforms (2.1) into

∂φ̃

∂y
− J̃ ∂φ̃

∂x
= 0. (2.1∼)

with a conjugate matrix J̃ = B−1JB. In other words, vector-function φ̃ is J̃-
analytic in D.

By Theorem 1.3 matrix B = (B1, . . . , Bn), Bk ∈ Cs×sk can be chosen so that

J = diag(J1, . . . , Jm), σ(Jk) = {ν}. (2.2)

In this case by introducing the block form (φ1, . . . , φk) of vector φ system (2.1)
splits into collection of systems

∂φk
∂y
− Jk

∂φk
∂x

= 0, k = 1, . . . ,m.

In other words, block components φk are Jk-analytic functions.
By Theorem 1.4 one can also achieve that all matrices Jk in (2.2) are Jordan

blocks (in this case νk may repeat and n is the total number of blocks in Jordan
normal form of J). However in the sequel we do not impose on J additional
conditions of the form (2.2).

As was mentioned, (2.1) can be considered as an analogue of Cauchy-Riemann
equations. In the same spirit one can introduce the notion ofmonogeneity equivalent
to the existence of complex derivative. To each complex number t = t1 + it2 ∈ C
associate s× s -matrix

[t] = t1 + t2J, tj ∈ R. (2.3)

Its eigenvalues are t1 + νt2, ν ∈ σ(J). In particular, [t] is invertible for t 6= 0. The
inverse [t]−1 as a function of t is homogeneous of order −1, hence its norm in Cs×s

can be estimated as
|[t]−1| ≤ C|t|−1. (2.4)

If φ is hyperanalytic in D then for fixed z ∈ D the condition of differentiability
reads

φ(z + ty)− φ(z) = t1φx(z) + t2φy(z) + o(t) as t→ 0.

Taking into account (2.1), (2.3), (2.4) we get

[t]−1{φ(z + t)− φ(z)} = φx(z) + o(1) as t→ 0.
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Thus at each z ∈ D there exists limit
lim
t→0

[t]−1{φ(zt)− φ(z)} = φ′(z), (2.5)

which coincides with the partial derivative φx at z. Conversely: suppose the limit
(2.5) exists for each z ∈ D and the resulting function φ′ is continuous. Then putting
t1 = 0 and t2 = 0 in (2.4) we get φx = φ′, φy = Jφ′ for partial derivatives of φ,
which means J-analyticity of φ.

Thus the concept of J-analyticity may be defined by the monogeneity condition
(2.5). If φ ∈ Cn+1(D) then from its hyperanalyticity follows that all of its partial
derivatives up to order n are also hyperanalytic. Moreover,

φ(k) =
∂kφ

∂xk

may be considered as consequent "complex"derivatives φ(0) = φ, φ(1) = φ′, φ(2) =
(φ′)′ and so on. The rest partial derivatives according to (2.1) are given by

∂kφ

∂xk−r∂yr
= Jrφ(k), 0 ≤ r ≤ k. (2.6)

In subsection 2.2 will be shown that J-analytic functions are indeed infinitely
differentiable in their domains.

Along with s-vector functions φ equation (2.1) is considered for s × s-matrix
functions F (z) under additional commutation condition: F (z)J = JF (z) for all z.
The last requirement guarantees invariance of φ→ Fφ in the class of hyperanalytic
functions φ. Then one also has (Fφ)′ = F ′φ+ Fφ′.

Basic examples of hyperanalytic function s are constructed using functions of
matrices. Let function f be analytic in an open set which, for each ν ∈ σ(J),
contains the image of D under affine transformation

z = x+ iy → x+ νy. (2.7)

Then by (1.2) we get a matrix-function F (z) = f([z]) defined for all z ∈ D. Its
values commute with J and by Lemma 1.2 its partial derivatives are Fx = f ′([z]),
Fy = Jf ′([z]). Hence this function is hyperanalytic and

{f([z])}′ = f ′([z]). (2.8)

Obviously [z] can be substituted by [z− z0] with fixed z0. In particular, for each
integer k, matrix [z − z0]k and vector [z − z0]kc, c ∈ Cs, are hyperanalytic. Thus
the finite sums ∑

k
[z − z0]kck, ck ∈ Cs (2.9)

are rational J-analytic functions. For k ≥ 0, these sums provide J-analytic polynomials.
There exists an invertible linear transformation sending analytic functions to

J-analytic functions.

Theorem 2.1. Let J have block-diagonal form (2.2) and correspondingly s-vectors
have the form f = (f1, . . . , fm) with sk-vector function s fk. Let φ be a J−analytic
function in D with φ = (φ1, . . . , φm) ∈ C∞(D) and Dk be the image of D under
affine transformation x = x+ iy → x+ νky. Then the formula

φk(x+ iy) =
s−1∑
r=0

yr

r!
(Jk − νk)rψ(r)

k (x+ νky), k = 1, . . . ,m (2.10)
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gives a one-to-one correspondence between φ and s-vector ψ = (ψ1, . . . , ψm), where
sk-vector function ψk is analytic in Dk, k = 1, . . . ,m.

Proof. It suffices to consider the case when m = 1, i.e. when matrix J has a
single eigenvalue ν. In such case matrix J = ν is nilpotent:

(J − ν)s = 0. (2.11)

Introduce a linear operation in C∞(D) by

exp

{
y(J − ν)

∂

∂x

}
=
∑
i≥0

yi

i!
(J − ν)i

∂i

∂xi
. (2.12)

By (2.11) this sum is finite, it terminates at i = s− 1.
Writing relation e−zez = 1 in the form of series shows that this operation is

invertible and the inverse is exp(−yJ0∂/∂x), J0 = J − ν. By definition (2.12) we
have: (

∂

∂y
− J

∂

∂x

)
exp

(
yJ0

∂

∂x

)
=
∑
k≥0

yk−1

(k − 1)!

(
J0

∂

∂x

)k
+

+
∑
k≥0

yk

k!

(
J0

∂

∂x

)k (
∂

∂y
− J

∂

∂x

)
,

which gives(
∂

∂y
− J ∂

∂x

)
exp

(
yJ0

∂

∂x

)
= exp

(
yJ0

∂

∂x

) (
∂

∂y
− ν ∂

∂x

)
.

Hence φ satisfies equation (2.1) if and only if vector-function u = exp(−yJ0∂/∂x)φ
satisfies equation

∂u

∂y
− ν ∂u

∂x
= 0. (2.13)

Under transformation (2.7) this equation turns into Cauchy-Riemann equation .
In other words, functionψ defined by u(x, y) = ψ(x + νy) is analytic in domain
{x+ νy |x+ iy ∈ D}. Combined with relation φ = exp(yJ0∂/∂x)u this completes
the proof.

Notice that summation in (2.12) is actually over 0 ≤ i ≤ r − 1, where r is
the order of eigenvalue ν. Correspondingly, in formula (2.10) summation goes over
0 ≤ r ≤ rk − 1, where rk is the order of νk.

If f = ψ is a scalar function then formula (2.10) defines a J-analyticmatrix-
functionF = φ. Taking into account (1.14) this matrix-function coincides with
f([z]) introduced above.

As an illustration consider function f(t) = tζp(ln t) in some sector of complex
plane with vertex t = 0, where ζ ∈ C and p is a scalar polynomial. Write

{tζp(ln t)}(k) = tζ−kpk(ln t), k = 0, 1, . . . , (2.14)

where polynomial pk has the same degree as p and is defined by

pk(t) =
∏k−1

i=0
(ζ − i+ d/dt)p(t).
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Substituting this into (2.10) we get

[z]ζp(ln[z]) =
∑
k≥0

yk(x+ νy)ζ−k

k!
pk(ln(x+ νy))(J − ν)k.

In polar coordinates x = r cos θ, y = r sin θ this takes the form

[z]ζp(ln[z]) = rζ
∑
i≥0

lni r

i!
Ri(θ),

Ri(θ) =
∑
k≥0

sink θ (cos θ + ν sin θ)ζ−k

k!
h

(i)
k [ln(cos θ + ν sin θ)](J − ν)k.

All sums above are finite since hk has the same degree as h. Thus Ri = 0 for i
bigger than this degree.

Notice also the following relation between analytic and J-analytic functions. Let
X(D) be a R-linear space of functions continuous in D. Let us say that X(D) is a
uniqueness class for equation (2.13) if each solution from this class is constant.

For example, the class of functions u ∈ C(D) vanishing on some arc Γ ⊆ ∂D is a
uniqueness class. Indeed, transformation (2.7) sends solutions of (2.13) into analytic
functions in {x + νy, x + iy ∈ D} so this follows from the classical uniqueness
theorem for analytic functions.

Another example is as follows. Suppose D has piecewise-smooth boundary and
X(D) consists of continuous and bounded functions in D with the real parts
vanishing on the boundary. Then X(D) is a uniqueness class for (2.1), which can
be shown in the same way as above. The following lemma is also proved along these
lines.

Lemma 2.1. Let J be triangular and X(D) be a uniqueness class for equation
(2.7) for each ν ∈ σ(J). Then X(D) is a uniqueness class for equation (2.10) as
well. In other words, if φ = (φ1, . . . , φs) is J-analytic with all components φk ∈
X(D), then it is constant in D.

Proof. Let matrix J be lower triangular, i.e. Jkr = 0 for k < r. Then diagonal
elements νk = Jkk are eigenvalues of J and (2.1) can be written as

∂φ1

∂y
− ν1

∂φ1

∂x
= 0,

∂φ2

∂y
− ν2

∂φ2

∂x
= J21

∂φ1

∂y
, . . . ,

∂φs
∂y
− νs

∂φs
∂x

=
s−1∑
k=1

Jsk
∂φk
∂y

.

By assumption φ1 ∈ X(D), so that from the first equation follows that φ1 =
const. Hence the second equation transforms into (2.7) with ν = ν2 and by the
same argument φ2 = const. Repeating this procedure we get φ = const in domain
D.

It is often convenient to use complex derivatives

2
∂

∂z
=

∂

∂x
− i

∂

∂y
, 2

∂

∂z
=

∂

∂x
+ i

∂

∂y
. (2.15)
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In this notation system (2.1) is written as

∂φ

∂z
= Q

∂φ

∂z
, Q = (1− iJ )−1(1 + iJ ). (2.16)

Obviously, eigenvalues q of matrix Q satisfy |q| < 1.
Since z + z Q = 2(1 − iJ)(x + Jy), all considerations can be made for this

system by substituting everywhere [z] by matrix zQ = z + z Q. In particular, (2.14)
becomes

φ(z) =
∑
k≥0

zk

k!
(Q− q)k ψ(k)(z + qz), σ(Q) = {q}.

The picture is especially simple when σ(J) = {i} and matrix Q is nilpotent.
For example, the preceding formula takes the form

φ(z) =
∑
k≥0

zk

k!
Qk ψ(k)(z), σ(Q) = {0}. (2.17)

2.2. Cauchy integral. To get Cauchy integral for hyperanalytic function s it is
sufficient to substitute dt/(t − z) by its matrix analogue [t − z]−1[dt], where the
matrix differential [dt] = dξ + J dη has the same sense as in (2.3).

Let φ be continuous in a compact domain D with piecewise-smooth boundary
Γ and J-analytic inside. Then applying the Green’s formula to the left hand side
of (2.1) we get ∫

Γ

[dt]φ(t) = 0, (2.18)

which is an analogue of Cauchy theorem. Contour Γ is oriented so that D lies on
the left of it.

Further, for each integer k and z ∈ D, one has

1

2πi

∫
Γ

[t− z]−1[dt] =

{
0, k 6= −1,
1, k = −1.

(2.19)

Indeed, consider in Imu > 0 analytic function

f(u) =
1

2πi

∫
Γ0

(ξ − x+ u(η − y))k(dξ + u dη), (2.20)

where z = x + iy, t = ξ + iη. Obviously, for a fixed u = ν, transformation (2.7)
leaves the real axis and upper half-plane invariant. Applying it to integral (2.20)
we get

f(u) =
1

2πi

∫
Γ̃0

(
t̃− z̃

)k
d̃t =

{
0 , k 6= −1,
1 , k = −1.

By Theorem 1.2(b) this implies (2.19).
Using (2.19) it is easy to get Cauchy formula

φ(z) =
1

2πi

∫
Γ

[t− z]−1[dt]φ(t), z ∈ D. (2.21)

Indeed, by (2.19) it suffices to show this assuming that φ(z) = 0 (point z ∈
D is fixed). Applying formula (2.18) to function Φ̃(t) = [t − z]−1Φ(t) in domain



18

D ∩ {t, |t− z| > ε}, where ε > 0 is sufficiently small, one gets:∫
Γ0

[t− z]−1[dt] Φ(t) =

∫
|t−z|=ε

[t− z]−1[dt] Φ(t) =

=

∫ 2π

0

[eiθ]−1 [i eiθ] Φ(z + ε eiθ) dθ.

The right hand side of this equality continuously depends on θ and vanishes for
ε→ 0 since by assumption Φ(z) = 0. This completes the proof of (2.21).

The integral in (2.21) defines a function in D which can be differentiated under
the sign of integral using (2.8). Thus φ is infinitely differentiable and its complex
derivatives φ(n) are expressed as

φ(n)(z) =
n!

2πi

∫
Γ

[t− z]−n−1[dt]φ(t). (2.22)

Cauchy formula has a number of corollaries some of which we delay till subsection
2.3 and the others are collected in the following statement which can be proven in
a standard way.

Theorem 2.2. (а) Let φk(z) be hyperanalytic in D and converge to φ uniformly
on compact subsets of D. Then function φ is also hyperanalytic and φ(n)

k → φ(n) in
the same sense.

(b) Let function φ be continuous in D and hyperanalytic in D\γ, where γ is a
smooth arc. Then φ is hyperanalytic in the whole of D.

Proof. (a) Without restricting generality we may assume that domain D is
bounded and its boundary Γ is piecewise smooth and functionφ is continuous in
D.

Applying (2.21) to φk and taking the limit as k → ∞, we see that φ is a
hyperanalytic function in D. Using (2.22) we can analogously show that φ(n)

k −→
φ(n) uniformly on compact subsets of D0.

(b) Without restring generality we can assume that γ connects two points of
Γ and entirely lies in D except its endpoints. It is sufficient to show that φ is
a hyperanalytic function in D. Let D0, D1 be the two domains on which D is
decomposed by arc γ. Then applying (2.18) and (2.21) to Dk, k = 0, 1, we have:

1

2πi

∫
∂Dk

[t− z]−1[dt]φ(t) =

{
φ(z) , z ∈ Dk,
0 , z ∈ D1−k.

Adding these equalities together and taking into account that the integrals over
the common arc cancel, we come to formula (2.21) which holds for all z ∈ D. This
implies that φ is J-analytic in D.

2.3. Taylor and Laurent series. By analogy with the classical case series (2.9)
over all integer k can be called Laurent series while its part with k ≥ 0 can be
called Taylor series. If its partial sums converge uniformly on compact subsets then
the sum is hyperanalytic.

For studying convergence it is convenient to define norms in Cs and Cs×s as the
sum of absolute values of all components. Then

|Ax| ≤ |A| |x|, |AB| ≤ |A| |B| (2.23)
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for all x ∈ Cs, A,B ∈ Cs×s.
Transformation (2.7) sends the unit circle onto ellipse with half-axes aν and bν .

Thus
bν ≤ |x+ νy| ≤ aν , x2 + y2 = 1. (2.24)

Taking x = 1, y = 0 we get inequalities bν ≤ 1 ≤ aν . Put

a = max
ν∈σ(J)

aν , b = min
ν∈σ(J)

bν , q =
a

b
.

Lemma 2.2. One has the estimates
|[z]k| ≤ C ak|z|k, k ≥ 0,

|[z]k| ≤ C bk|z|k, k ≤ 0,
(2.25)

where constant C > 0 only depends on J.
Proof. Let B−1JB = J̃ and [z̃] is determined by J̃ as in (2.1). Then B−1[z]kB =

[z̃]k. From this and (2.23) we get

|[z]k| ≤ |B| |B−1| |[z̃]k|.
Hence without restricting generality matrix J can be taken in the form (2.2) with
Jordan blocks Jk.Working blockwise we can assume that J is a Jordan block (1.15).
In this case explicit expression for matrix [z]k = fk(J), fk(u) = (x + uy)k, is
given by (1.16). Combining this with (2.24) we get estimates (2.25).

Theorem 2.3. (a) Let φ be hyperanalytic in domain D which contains the circle
{|z − z0| ≤ qR}. Then in {|z − z0| ≤ R} function φ is developable in an absolutely
and uniformly convergent Taylor series

φ(z) =
∞∑
k=0

1

k!
[z − z0]k φ(k)(z0). (2.26)

(b) Let functionφ be hyperanalytic in domain D which contains the annulus
{q−1R0 ≤ |z − z0| ≤ qR1}. Then in {R0 ≤ |z − z0| ≤ R1} functionφ is developable
in Laurent series

φ(z) =
+∞∑

k=−∞

[z − z0]k ck, ck =
1

2πi

∫
Γ

[t− z0]−k−1[dt]φ(t), (2.27)

where Γ is the circle {|z − z0| = R}, R0 ≤ R ≤ R1, oriented counterclockwise.
Series

∑
k≥0 and

∑
k≤0 converge absolutely and uniformly in domains |z| ≤ R1

and |z| ≥ R0, respectively.

Proof. (a) For small ε > 0, the circle Γ : {|z − z0| = q(R + ε)} lies in D so by
Cauchy formula

φ(z) =
1

2πi

∫
Γ

[t− z]−1[dt]φ(t), |z − z0| ≤ R. (2.28)

Write [t− z] = [t− z0] (1 − [t− z0]−1[z − z0]) and use Lemma 2.2 to get that

[t− z]−1 = [t− z0]−1
∑

k≥0
[t− z0]−k[z − z0]k

converges absolutely and uniformly with respect to t ∈ Γ, |z−z0| ≤ R. Substituting
this into (2.28) we get (2.27), where k ≥ 0. Applying formula (2.22) to the integrals
defining ck one gets (2.26).
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(b) Let ε > 0 be so small that Γ1 : |z − z0| = q(R1 + ε) and Γ0 : |z − z0| =
q−1(R0 − ε) lie in D. Then by Cauchy formula

φ(z) =
1

2πi

∫
Γ1

[t− z]−1[dt]φ(t)− 1

2πi

∫
Γ0

[t− z]−1[dt]φ(t), (2.29)

where R0 ≤ |z − z0| ≤ R1. Acting as in (а) we come to

φ1(z) =
1

2πi

∫
Γ1

[t− z]−1[dt]φ(t) =
∑
k≥0

[z − z0]k ck,

where ck is defined as in (2.27) for Γ1. By cauchy theorem the latter circle can be
changed to Γ.

For the second integral use

[t− z]−1 = −[z − z0]−1
∑

k≤0
[t− z0]−k [z − z0]k,

which converges absolutely and uniformly for t ∈ Γ0, |z− z0| ≥ R0. As above we
get

Φ0(z) =
1

2πi

∫
Γ0

[t− z]−1[dt]φ(t) = −
∑

k≤−1
[z − z0]k ck,

where ck is defined as in (2.27) for Γ0, which again can be changed by Γ. Substituting
this into (2.29) we get (2.27).

Point z0 is called an isolated singular point of functionφ, if domain D contains
some punctured neighbourhood {z, 0 < |z − z0| < R}. We say that φ is of order r
in z0 if function |φ(z)||z − z0|−r is bounded in a neighbourhood of z0.

Theorem 2.3 permits to give another version of this definition. Namely, functionφ
is of order r at z0 if and only if ck = 0 for k < r in (2.17) or, equivalently,
function [z− z0]−rφ(z) is hyperanalytic in a neighbourhood of z0. In particular, for
r ≥ 0 the singular point z0 is removable. Indeed, if φ has order r at z0, then by
(2.25), (2.27) we have estimate

|ck| ≤ M Rr−k, (2.30)

where constant M > 0 depends only on k and R0 ≤ R ≤ R1. Since R0 can be
taken arbitrarily small this implies that ck = 0 for k < r. The converse is evident.

Another corollary of Theorem 2.3 is the following uniqueness result: if φ(zn) = 0
and sequence {zn} has an accumulation point inD then φ ≡ 0 inD. Combined with
Theorem 2.2(b) this gives another version of uniqueness theorem: if functionφ ∈
C(D) is hyperanalytic in D and vanishes on a sub-arc of the boundary then φ ≡ 0
in D. The proof is the same as in the analytic case [19].

As usual one may add∞ to C and get the Riemann sphere C = C ∪ {∞} with
the natural topology. The concept of isolated singular point is also applicable for
z0 =∞. The order r at ∞ is determined by the boundedness at ∞ of the function
|z|−r|φ(z)|. Taking in (2.30) the radius R to tend to∞ we see that this is equivalent
to ck = 0 in (2.27). If r ≤ 0 point ∞ is called a removable singularity. For r = −1,
it is usually said that φ vanishes at ∞ as in the case of analytic functions.

Similarly, one gets the Liouville theorem: if φ is hyperanalytic and bounded in
the whole plane then φ is constant. Indeed, one has the estimate (2.20) with r = 0.
Taking R→ 0 for k < 0 and R→∞ for k > 0, we get ck = 0, k 6= 0.
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As a corollary we get decomposition into simple fractions. Namely, if φ is
hyperanalytic on the Riemann sphere except the points zj, j = 1, . . . , n−1, zn =
∞, where it has finite orders rj ≤ 0, j = 1, . . . , n− 1, rn ≥ 0, then

φ(z) =
n∑
j=1

rj∑
k=0

[z − zj]k ckj.

In conclusion we remark that estimates for the radii in Theorem 2.3 are not
exact. Suppose J has a single eigenvalue ν. If ν = i then a = b = 1 in (2.24) and
situation with the convergence radii is analogous to the analytic case.

In general, put φ̃(z̃) = φ(z), z̃ = x+νy. Function φ̃ is defined and J̃-analytic
in D̃ which is the image ofD under transformation z → z̃, where J̃ = iν−1J . Taking
into account (2.24) we conclude that exact conditions on radii are that the circle
{|z̃ − z̃0| ≤ Ra} in Theorem 2.3(а) and the annulus {R0b ≤ |z̃ − z̃0| ≤ R1 a} in
Theorem 2.3(b) are contained in D.

2.4. Indefinite integral. In the class of function s hyperanalytic in D consider
equation

φ(k) = ψ, (2.31)

defined by the operator of k-th derivative. For ψ = 0, all solutions are J-analytic
polynomials

p(z) =
k−1∑
j=0

[z]j cj

of degree not exceeding k−1 as follows from Theorem 2.3(а). This set of polynomials
is denoted by Pk−1.

Theorem 2.4. If D is simply connected then the integral

φ(z) =
1

(k − 1)!

∫ z

z0

[z − t]k−1[dt]ψ(t) (2.32)

does not depend on the integration path and defines a solution of (2.31). For an
arbitrary D, functionφ(z) does not depend on the integration path if and only if∫

Γ

[t]i[dt]ψ(t) = 0, i = 0, 1, . . . , k − 1, (2.33)

for any contour Γ ⊆ D.

Proof. We prove first the second part of the theorem . For k = 1, this statement
is nearly evident. Indeed, according to (2.1), (2.3) for t = ξ + iη, expression

[dt]φ′(t) =
∂φ

∂ξ
dξ +

∂φ

∂η
dη

is a full differential of functionφ so that∫ z2

z1

[dt]φ′(t) = φ(z2) − φ(z1).

In particular, closing the arc z1z2 we get that (2.24) is valid for ψ = φ′. Conversely,
let ψ satisfy this condition. Let γj, j = 1, 2, be two arcs joining points z0 and z in
domain D. Choose a similar curve γ0 so that the curves Γj = γj ∪ γ0, j = 1, 2, are
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contours, i.e. homeomorphic to the circle. Putting in (2.26) Γ′ = Γj, we conclude
that integral

φ(z) =

∫ z

z0

[dt]ψ(t)

does not depend on integration path. The fact that φ′(t) = Ψ(t) in the sense of
definition (2.2) permits direct verification.

The general case k ≥ 2 reduces to the preceding one. For 1 ≤ j ≤ k−1, we have

[t]j φ(k) =
(
[t]j φ(k−1)

)′ − j [t]j−1 φ(k−1).

Repeating this procedure we see that, for ψ = φ(k), functions [t]jψ are full derivatives.
Thus conditions (2.24) are necessary for solvability of equation (2.21) in the class
of single-valued function s. Conversely, assume that these conditions are satisfied.
Writing out expression [z − t]k−1 = ([z]− [t])k−1 rewrite (2.23) in the form

φ(z) =
k−1∑
j=0

1

j! (k − 1− j)!
[z]k−1−j

∫ z

z0

[t]j [dt]ψ(t).

As was shown, here integrals do not depend on integration path. As above, direct
verification shows that function (2.23) is differentiable in the sense of (2.1) and
derivativeφ′ is defined by the same expression where k is substituted by k − 1.
Repeating this procedure we finish the proof.

As to the first part of the theorem , by Jordan’s famous theorema simple contour
Γ decomposes the plane in two parts one of which is bounded and the second is a
neighbourhood of∞. Hence, if D is simply connected and Γ ⊆ D, then the domain
inside Γ entirely lies in D so by Cauchy theorem condition (2.33) is automatically
fulfilled.

If condition (2.33) is not fulfilled then integral (2.32) depends on the integration
path and defines a multi-valued function. An example of such kind in domain
C \ {0} gives function

φ(z) = ln[z] p(z), p ∈ Pk−1, (2.34)

first factor of which was already considered in subsection 2.1. Under a turn around
z = 0 counterclockwise its element φ(z) = φ0(z) considered in a neighbourhood
of z = 1, transforms into φ(z) = φ0(z) + 2πip(z). On the other hand, the k-th
derivative ψ = φ(k) of this function is given by equality

ψ(z) =
k∑
s=1

(−1)k−1

(k − 1)!

(
k

s

)
[z]−sp(k−s)(z),

which defines a single-valued function .
Thus by Theorem 2.4 one of conditions (2.33) for a circle Γ around z = 0 should

fail.
Functions of the form (2.34) enable one to describe the branching of integral

(2.32) in a multiply-connected domain. Recall that domain D ⊆ C is called m-
connected if its boundary on the Riemann sphere C = C ∪ {∞} consists of m
connected components. For example, the boundary of C in this sense consists of
one point {∞} while the boundary of C \ {0} consists of two points z = 0 and
z =∞.
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Theorem 2.5. Suppose D is m-connected, m ≥ 2, and points zj, 1 ≤ j ≤ m− 1,
lie in different components of C \D. Then integral (2.32) is uniquely representable
in the form

φ(z) = φ0(z) +
m−1∑
j=1

ln[z − zj]pj(z), (2.35)

where φ0(z) is single-valued and pj ∈ Pk−1.

Proof. Suppose Γj ⊆ D, j = 1, . . . ,m − 1, surrounds zj and leaves outside
points zk, k 6= j. Write (2.35) as φ = φ0 + φ1 and let ψ = ψ0 + ψ1 correspond to
kth derivatives of these functions.

By Cauchy theorem condition (2.33) of single-valuedness of (2.32) reduces to∫
Gj

[t]i[dt]ψ(t) = 0, i = 0, 1, . . . , k − 1, j = 1, . . . ,m− 1. (2.36)

The space Pm−1
k−1 of vectors p = (p1, . . . , pm−1) with pj ∈ Pk−1 has dimension ks(m−

1). To each p ∈ Pm−1
k−1 associate a vector Lp = (Lijp ∈ Cs, 0 ≤ i ≤ k − 1, 1 ≤ j ≤ m− 1) ,

where Lijp is defined by left hand side of (2.36) with respect to ψ = ψ1. Thus we
get a linear mapping L : Pm−1

k−1 → Csk(m−1).
By Theorem 2.4, equality Lp = 0 means that functionφ1(z) is single-valued.

As in the case of function (2.34) we verify that increment of element φ1 along Γj
equals 2πipj. Hence functionφ1 is single-valued if and only if p = 0. Thus L is a
one-to-one, hence invertible, mapping Pm−1

k−1 → Csk(m−1).

Thus for a given right hand side ψ of (2.31) there exists unique p ∈ Pm−1
k−1 such

that Lijp coincides with the left hand side of (2.36). By Theorem 2.4 functionφ0

from (2.35) is single-valued, which completes the proof.
As is clear from the proof, pj = 0 in (2.35) if and only ifψ = φ(k) satisfies

(2.36) for considered j. In such case we say that functionφ had no branching in
the component of D′ defined by zj.

Let us consider the case when this component is {∞}. LetD be a neighbourhood
of ∞, so that D′ consists of m− 1 bounded components containing points zj, and
of ∞. Then, obviously, the following conditions are equivalent:

1) φ has no branching at ∞;
2)
∑
pj = 0 in (2.35);

3) in Laurent series of functionψ = φ(k) do not appear members with degrees
[z]j,1 ≤ j ≤ k.

Hence if ψ has order −k− 1 at ∞, then φ has order k− 1 and in (2.32) one can
take z0 =∞.

3. Elliptic systems of arbitrary order

3.1. Representation of solutions. Consider in domain D a system of partial
differential equations of order n

∂ny

∂yn
−

n−1∑
r=0

ar
∂nu

∂xr−n∂yr
= 0 (3.1)

with constant real coefficients ar ∈ Rl×l. Under its solution is understood a real
vector-function u = (u1, . . . , ul) which satisfies (3.1) everywhere.
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Consider also matrix polynomial

P (z) = zn −
n−1∑
r=0

arz
r (3.2)

of degree n and scalar polynomial

χ(z) = detP (z) (3.3)

of degree nl. By definition system (3.1) is elliptic if equation χ(z) = 0 has no real
roots. Since coefficients of χ are real its roots come in complex conjugate pairs so
that the number

nl = 2s (3.4)

is even and the upper half-plane contains exactly s roots.
Equation (3.1) is a canonical form of a more general equation

n∑
r=0

a(r)
∂nu

∂xr−nyr
= 0.

Its ellipticity means that χ(z) = det
∑
a(r)z

r has degree nl and its roots are non-
real. In particular, matrices a(0) and a(n) are invertible and this equation can be
reduced to the canonical form (3.1). The ellipticity condition is equivalent to

det
(∑n

r=0
λn−r1 λr2a(r)

)
6= 0

for all non-zero λ = (λ1, λ2) ∈ R2.
The general solution of elliptic system (3.1) can be expressed through hyperanalytic

functions. This is especially visual for elliptic system

∂u

∂y
− a∂u

∂x
= 0 (3.5)

of first order. Then polynomial (3.4) reduces to P (z) = z − a so that ellipticity
means that a ∈ Rl×l has no real eigenvalues. In particular, l = 2s is even. By
Theorem 1.3 and lemmas 1.3, 1.4, matrix a can be transformed to a block-diagonal
form

B−1aB = diag(J, J), B = (b, b); J ∈ Cs×s, b ∈ Cl×s, (3.6)

where eigenvalues of J lie in the upper half-plane. Putting u = bU transforms (3.5)
into

∂U/∂y − diag(J, J)∂U/∂x = 0.

By (3.6) this substitution sends real vector u into a complex vector U of block
structure (φ, φ), where s-vector functionφ satisfies (2.1) and φ satisfies the complex
conjugate equation. Changing now φ to φ/2, we get the following result.

Theorem 3.1. In notation (3.6), each solution u = (u1, . . . , ul) of (3.5) is uniquely
representable as

u = Re bφ (3.7)

with some J-analytic functionφ. This function is related to u by φ = 2cu, where
c ∈ Cs×s, (c, c) = B−1.
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By theorem1.3 matrix B from (3.6) can be chosen so that (2.2) is fulfilled for
matrix J . In accordance with theorem1.4 Jk can be taken as Jordan blocks. If
Jk ∈ Csk×sk , k = 1, . . . ,m and b ∈ Cl×s is written as b = (b1, . . . , bm), bk ∈ Cl×sk ,
then (3.7) is transformed into representation

u =
∑m

k=1
Re bkφk (3.8)

with Jk-analytic function s φk.
Consider now an elliptic systemof order n ≥ 2. By subsection 1.3, with polynomial

(3.2) is associated the matrix A ∈ Rnl×nl written as in (1.24):

A =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . .
a0 a1 a2 . . . an−1

 . (3.9)

By theorem1.5 it can be brought to a block-diagonal form

B−1AB = diag(J, J), B = (B0, B0),

B0 =↓ (b, bJ, . . . , bJn−1), b ∈ Cl×s.
(3.10)

As shows lemma 1.5, in notation (3.3), (3.4) eigenvalues of J ∈ Cs×s are the
roots of characteristic equation χ(ν) = 0 in upper half-plane and their multiplicities
and orders coincide. From theorem1.5 it follows also that matrices b ∈ Cl×s and
J ∈ Cs×s can be considered as solutions of

bJn =
∑n−1

r=0
arbJ

r. (3.11)

If s-vector-functionφ(z) satisfies (2.1) then from (2.6) and (3.11) follows that
l-vector-functionu = Re bφ is a solution of (3.1). As the following theorem shows,
the converse is also true but, unlike to theorem3.1, functionφ is in general multi-
valued.

Consider the class Pn−2 of those polynomials p(z) = c0 + [z]c1 + . . .+ [z]n−2cn−2,
ck ∈ Cs which are J-analytic function s. The following decomposition is standard
[5].

Lemma 3.1. (a) The space Pn−2 decomposes into direct sum of two subspaces

P 0 = {p ∈ Pn−2 | Re bJrp(r)(0) = 0, 0 ≤ k < r ≤ n− 1},

P 1 = {p ∈ Pn−2 | Re bJrp(r)(0) = 0, 0 ≤ r ≤ k < n− 1},
(3.12)

having the same dimension (n− 1)s (over R).
(b) For p ∈ Pn−2, functionRe bp ≡ 0 if and only if p ∈ P 0. In particular, each

polynomial
q(x, y) =

∑
i+j≤n−2

cijx
iyj, cij ∈ Rl (3.13)

is uniquely representable in the form q = Re bp, p ∈ P 1.
Proof. (a) Put Lk,rp = Re bJrp(r)(0) and consider linear mappings L0 = (Lkr, 0 ≤

k < r ≤ n− 1} and L1 = (Lkr, 0 ≤ r ≤ k < n− 1}. As 2s = nl they both act as
Pn−2 → R(n−1)s. Hence L = (L0, L1) acts between spaces of dimension 2(n− 1).



26

Let Lp = 0 for some p ∈ Pn−2. Then we have

Re bJrp(k)(0) = 0, 0 ≤ r ≤ n− 1,

for all k = 0, 1, . . . , n− 2. Using notation (3.6) this can be rewritten in the form

Bxk = 0, xk = (p(k)(0), p(k)(0) ∈ Cnl.

Since B is invertible xk = 0, hence p = 0.
Thus L is an isomorphism between Pn−2 and R(n−1)s × R(n−1)s. In particular,

P 0 ∩ P 1 = 0 и dimP j = (n− 1)s so that Pn−2 = P 0 ⊕ P 1.
(b) Condition Re bp = 0 is equivalent to

∂k

∂xk−r∂yr
(Re bp)(0) = 0, 0 ≤ r ≤ k ≤ n− 2.

By (2.6) and (3.12) they are in turn equivalent to p ∈ P 0. Since the space X
of polynomials (3.14) has dimension (n− 1)s this implies that mapping p→ Re bp
gives an isomorphism between P 1 and X.

Theorem 3.2. (a) In notation (3.10) each solution u(x, y) of (3.1) in simply
connected domain D is representable in the form (3.7) with some J-analytic functionφ
and u = 0 implies φ ∈ Pn−2. Function φ can be recovered from u by

φ(n−1) = 2
n−1∑
r=0

cr
∂n−1u

∂xn−1−r∂yr
, (3.14)

where for B−1 =↓ (C0, C0), matrices cr ∈ Cs×l are defined by C0 = (c0, . . . , cn−1).
This function is uniquely representable as φ0 + p0, where p0 ∈ P 1 and φ0 satisfies
conditions

φ
(r)
0 (z0) = 0, 0 ≤ r ≤ n− 2 (3.15)

at a fixed point z0 ∈ D.
(b) Let D be m-connected, m ≥ 2, and points zj, j = 1, . . . ,m − 1 belong to

different components of C\D. Then in (3.7) functionφ is multi-valued and uniquely
representable in the form

φ(z) = φ0(z) + p0(z) +
m−1∑
j=1

ln[z − zj]pj(z), (3.16)

where functionφ0 is single-valued and satisfies (3.15), and

p0 ∈ P 1, pj ∈ P 0, j = 1, . . . ,m− 1. (3.17)

Proof. (a) Let l-vector-functionu ∈ Cn(D) satisfy (3.1). Set

U = (U0, . . . , Un−1), Ur =
∂n−1u

∂n−1−rx∂ry
. (3.18)

In this notation (3.1) takes the form

∂Un−1

∂y
−

n−1∑
r=0

ar
∂Ur
∂x

= 0.
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Adding n− 1 evident relations
∂Ur
∂y

=
∂Ur+1

∂x
, r = 0, 1, . . . , n− 2,

in accordance with (3.9) for functionU we get the system
∂U

∂y
− A∂U

∂x
= 0.

Applying theorem3.1 with notation (3.11) we arrive to U = ReB0ψ with some
J-analytic functionψ. Taking into account (3.10), (3.17) this representation can be
rewritten as

∂n−1u

∂xn−1−r∂ry
= Re bJrψ, r = 0, 1, . . . , n− 1.

Let a J-analytic functionφ be a solution of equationφ(n−1) = ψ, considered in
subsection 2.4. Then by (2.6) we have

∂n−1u

∂xn−1−r∂yr
(Re bφ) =

∂n−1u

∂xn−1−r∂yr

hence u − Re bφ is a polynomial of the form (3.14). Applying lemma 1(b) we get
the following conclusion.

Each solution u of system (3.1) is representable in the form (3.7) with some
multi-valued J-analytic functionφ and its (n−1)th derivative (18) is single-valued and
related via (3.14) with the vector (3.18). In particular, if u = 0 then U = ψ = 0
hence φ = p ∈ Pn−2. In fact, by lemma 1(b) one gets p ∈ P 1

n−2.
(b) By theorem2.5 functionφ can be uniquely represented in the form (2.35).

It is convenient to decompose φ0 in two summands one of which satisfies (3.15)
and is again denoted φ0 while the second belongs to Pn−2. Then for u we get
representation (3.16) where φ0 is single-valued and satisfies (3.15) and pj ∈ Pn−2,
0 ≤ j ≤ m− 1.

Let contours Γj, j = 1, . . . ,m − 1 be the same as in the proof of theorem2.5.
Along Γj element φ gets the increment pj(z). As functionu is single-valued in
multiply connected domain D we have relations Re bpj ≡ 0, j = 1, . . . ,m − 1.
By lemma 1(b) they are equivalent to pj ∈ P 0. As to polynomial p0 ∈ Pn−2 in
(3.16), by lemma 2.1(b) it can be chosen to satisfy p0 ∈ P 1.

It remains to show that representation (3.16) with additional conditions (3.15),
(3.17) is unique. If u ≡ 0 then as mentioned above we have φ = p ∈ Pn−2. In
particular, function

p− φ0 − p0 =
m−1∑
j=1

ln[z − zj]pj

is single-valuedwhich is only possible if p1 = . . . = pm−1 = 0. Thus p = φ0 +p0 and
by (3.15) we get p = p0, φ0 = 0 so that Re bp0 = 0, p0 ∈ P 1. By lemma 3.1 this
implies p0 ∈ P 0 ∩ P 1, i.e. p0 = 0. Hence u = 0 in (3.16) implies φ0 = 0 and pj = 0,
0 ≤ j ≤ m− 1.

Suppose thatD is a neighbourhood of∞ and partial derivatives of (n−1)th order
of solution u(x, y) to (3.1) satisfy the following estimate in a neighbourhood∞:∣∣∣∣ ∂n−1u

∂xn−1−r∂yr

∣∣∣∣ ≤ C|z|−n, 0 ≤ r ≤ n− 1 (3.19)
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with a constant C > 0. In virtue of (3.14) functionψ satisfies ana analogous
estimate, i.e. is of order −n at ∞. As was mentioned in subsection 2.4, in this case
φ is of order n−1 at∞ and has no branching at∞. This is equivalent to

∑
pj = 0

in (3.16). Correspondingly, conditions (3.15) can be changed to φ0(∞) = 0.
As in the case of first order systems, the choice of matrix B in (3.6) can be made

so that (2.2) is satisfied. Then assuming Jk ∈ Csk×sk , b = (b1, . . . , bm), bk ∈ Cl×sk ,
representation (3.16) can be written in the form (3.8) with Jk-analyticmatrices φk.
Expression for φk in (3.16) is written with respect to Jk and conditions (3.15),
(3.17) are understood in this sense.

Substituting representation (2.10) instead of φ in (3.7), with sk-vector-function s
ψk, k = 1, . . . ,m, we get a representation

u(x, y) = Re
m∑
k=1

s−1∑
r=1

bk
yr

r!
(Jk − νk)rψ(r)

k (x+ νky) (3.20)

of the general solution to (3.1) in terms of s-vector ψ = (ψ1, . . . , ψm), with the
components ψk which are analytic inDk = {x+νky |x+iy ∈ D}. This representationwas
obtained by A.Bitsadze [11].

3.2. Complex systems. Let coefficients of (3.1) be complex: ar ∈ Cl×l. Then
solution u is a complex l-vector-function . Ellipticity condition is defined analogously
but the number nl is not necessarily even and the roots of characteristic equation
can be arbitrarily distributed in upper half-plane and lower half-plane . The corresponding
amounts of roots are denoted s±. Instead of (3.4) here one has s+ + s− = nl. Cases
when s+ = 0 or s− = 0 are not excluded. If s+ = s− then equation (3.1) is called
correctly elliptic.

For a first order elliptic system (3.50), ellipticity again means that a ∈ Cs×s does
not have real eigenvalues. In particular, equation (2.1) defining J-analytic function s
is elliptic with s+ = s, s− = 0.

By theorem1.3 matrix a can be reduced to a block-diagonal form analogous to
(3.6)

B−1aB = diag(J+, J−), B = (b+, b−),

J± ∈ Cs±×s± , b± ∈ Cl×s± .
(3.20)

As a result we arrive at representation

u = b+φ+ + b−φ− (3.21)

of the general solution to system (3.5) via a pair of J±-analytic function s φ±.
Matrix B in (3.20) can be chosen so that J± satisfy condition

J± = diag(J±1 , . . . , J
±
m±), σ(J±k ) = ν±k . (3.22)

Then (3.21) changes to

u =
∑

k
b+
k φ

+
k +

∑
k
b−k φ

−
k . (3.23)
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The same takes place for systems of order n ≥ 2. In this case matrix (3.9) is
complex and (3.10) is substituted by

B−1AB = diag(J+, J−), B = (B+, B−),

B± =↓ (b±, b±J±, . . . , b±(J±)n−1), b± ∈ Cl×s± .
(3.24)

Let [z]± be defined by J± as in (2.3) and Pn−2 be the space of all pairs p =
(p+, p−), of J±-analytic polynomials p± of degree n− 2. Correspondingly, consider
in Pn−2 subspaces P j, j = 0, 1, changing Re bJrp(r) in (12) by expression

b+J+(p+)(k) + b−J−(p−)(k).

Then analogously to subsection 3.1 we get the following analog of theorem3.2.

Theorem 3.3. In conditions of theorem 3.2, each solution u(x, y) of a complex
equation (3.1) is uniquely representable in the form (3.21) with J±-analytic function s

φ±(z) = φ±0 (z) + p±0 (z) +
m−1∑
j=1

ln[z − zj]±p±j (z), (3.25)

where φ±0 and pj = (p+
j , p

−
j ) satisfy conditions (3.15), (3.16).

If matrix B in (3.24) is chosen so that J± are block-diagonal of the form (3.22)
then representation (3.21) transforms into (3.230 with representation s (3.25) for
φ±k . For real systems we have s± = s, J± = J, b± = b, so that up to the factor 2
representation (3.21) transforms into (3.16).

Each complex system can be reduced to a real one with respect to 2l-vector
û = (Reu, Im u). The easiest way to do that, is to add the complex conjugate of
equation (3.1) and take into account the connection

û =

(
1 i
1 −i

)
ũ

between û and ũ = (u, u). Then we come to a system

∂nû

∂yn
=

n−1∑
r=0

âr
∂nû

∂xn−r ∂yr
(3.26)

with real coefficients
âr =

(
Re ar − Im ar
Re ar Re ar

)
.

Let P̂ and Â are, respectively , the characteristic polynomial (3.2) and associated
matrix (3.9) for this system. Since

âr =

(
1 i
1 −i

)−1(
ar 0
0 ar

)(
1 i
1 −i

)
,

we have

P̂ (z) =

(
1 i
1 −i

)−1(
P (z) 0

0 P (z)

)(
1 i
1 −i

)
,

Â =

(
1 i
1 −i

)−1(
a 0
0 a

)(
1 i
1 −i

)
.
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In particular, the characteristic equation of system (3.26) transforms into detP (z) detP (z) =

0 and matrix Â can be reduced to the form (10), where J = diag (J+, J−).

3.3. The case of one equation. For l = 1, system (3.1) transforms into a scalar
equation with coefficients ar ∈ C. In this case it is completely determined by its
characteristic equation detP (z) = 0 which can be written as∏m+

k=1
(z − ν+

k )s
+
k

∏m−

k=1
(z − ν−k )s

−
k = 0, (3.27)

where Im ν±k > 0 and s+ + s− = n, s± =
∑
s±k . Denote by J±k the Jordan block

of order s±k with eigenvalue ν±k . According to subsection 1.3 in this case matrix
B from (3.24) can be chosen so that J± have Jordan normal form (3.22). Then
b± = (b±1 , . . . , b

±
m±) with row-matrices b±k = (1, 0, . . . , 0) ∈ C1×s±k . Correspondingly,

representation (3.23) for solution of scalar equation (3.1) in the formulation of
theorem3.3 transforms to

u =
∑m+

k=1
(φ+

k )1 +
∑m−

k=1
(φ−k )1, (3.28)

where (φ±k )1 denotes the first component of s±k -vector φ
±
k .

As an example consider equation(
∂

∂z

)s+ (
∂

∂z

)s−
u = 0, s+ + s− = n, (3.29)

(adopting complex notation (2.15) for derivatives). Solutions of this equation are
called (s+, s−)−polyanalytic function s. They were thoroughly studied in [20]. For
s± = s, we get equation

∆s u = 0, ∆ =
∂2

∂x2
+

∂2

∂y2
.

Its solutions are called s-polyharmonic function s (harmonic for s = 1).
Let J± be Jordan cells of order s± with eigenvalues ν = i. Then representation (3.28)

for equation (3.29) transforms into

u = (φ+)1 + (φ−)1 (3.30)

with J±−analytic s±−vector-function s φ±. In the case of polyharmonic equationmatrices
J± = J coincide and (3.30) reduces to

u = Re (φ)1 (3.31)

with a J-analytic functionφ.
By a remark at the end of subsection 2.1 functionφ can be expressed via an

analytic vector-functionψ by the formula (2.17) with nilpotent matrix Q = (1 −
iJ)−1(1 + iJ). Evidently, this matrix is triangular with zeroes on the diagonal.
Consider the first component of vector equality (2.17):

(φ)1 =
s−1∑
r=0

zr ψr (z) (3.32)

with scalar analytic function s ψr = (1/r!)(Qr ψ(r))1. For s = 2, substitution of
(3.32) into (3.31) gives the well known formulas of Goursat [10] for solutions
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of biharmonic equation . Analogously, combining (3.32) with (3.30) one gets a
representation for (s+, s−)-polyanalytic function s

u(z) =
s+−1∑
r=0

zr ψ+
r (z) +

s−−1∑
r=0

zr ψ−r (z)

using a family (ψ±r ) of analytic function s. This representation can be obtained by
a direct integration of equation (3.29) if one considers z and z as independent
variables, which is admissible in the case of real analytic functions.

3.4. Application to boundary value problems. Results of subsection 3.1 enable
one to reduce the general boundary value problem for equation (3.1) to a boundary
value problem for J-analytic function s. Using Cauchy integral from subsection 2.2
one can further reduce the latter problem to a system of singular integral equation s.
This program was realized in [21], [22] for domains with smooth and piecewise
smooth boundaries, respectively . For this reason below we only outline the reduction
scheme. Details can be found in [21].

Consider equation (3.1) in domain D ⊆ C with sufficiently smooth boundary
Γ = ∂D. Define in Γ differential operators

Bi =
∑

k+r≤ni

Bikr
∂k+r

∂xk∂yr
, i = 1, . . . , s

of orders 0 ≤ n1 ≤ n2, . . . ≤ ns = nΓ (nΓ ≥ n is not excluded). Here Bikr(t), t ∈ Γ
denote sufficiently smooth 1× l-matrix-function s on Γ.

We seek for a solution u ∈ Cn(D) to (3.1) satisfying boundary conditions

(Biu)
∣∣
Γ

= fi, i = 1, . . . , s, (3.33)

where fi are given l-vector-function s on Γ.
Problem (3.1), (3.33) is called Fredholm (elliptic) if
(а) the homogeneous problem has a finite number k of linearly independent

solutions (in the chosen class);
(в) there exist k′ < ∞ linearly independent functionals on the given space of

right hand side s such that their vanishing on f = (f1, . . . , fs) is necessary and
sufficient for the solvability of the problem.

The difference Λ = k − k′ is as usual called the index of the problem.
Substituting the representation (3.7), (3.16) of the general solution to (3.1)

into the boundary condition this problem can be equivalently reduced to the
corresponding problem for pairs (φ, p) consisting of a J-analytic functionφ ∈ Cn(D)
and a family p = (pj, 0 ≤ j ≤ m − 1) of polynomials p0 ∈ P 1 and pj ∈ P 0,
j = 1, . . . ,m− 1.

Summands with pj in the boundary condition do not influence ellipticity of the
problem. For this reason the problem (3.1), (3.33) is Fredholm equivalent to the
problem

Re
∑

k+r≤ni

[BikrbJ
rφ(k+r)]

∣∣
Γ

= fi, i = 1, . . . , s

for J-analytic functionφ ∈ CnΓ(D).
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Let d/ds denote the differentiation operator on Γ with respect to arclength.
Action of this operator does not influence ellipticity. Thus we can pass to a Fredholm
equivalent problem

Re
∑

k+r≤ni

(
d

ds

)nΓ−ni [
BikrbJ

rφ(k+r)
]∣∣∣∣

Γ

= f̃i, f̃i =

(
d

ds

)nΓ−ni

fi (3.34)

with homogenized orders of differentiations.
Let s = (s1, s2) denote the unit tangent vector on Γ oriented positively with

respect toD. It is a sufficiently smooth 2-vector-function . If the differential operator
d/ds is considered as a boundary operator s1∂/∂x+ s2∂/∂y then(

d

ds

)k
=

(
s1
∂

∂x
+ s2

∂

∂y

)k
+ . . . ,

where dots denote lower order terms depending only on derivative s of function s
s1, s2 with respect to arclength. For (3.34) this gives a relation

Re
∑

k+r≤ni

[BikrbJ
r(s1 + s2J)nΓ−niφ(nΓ) + . . . ] = f̃i.

Presence of the lower order terms in this boundary condition does not influence
ellipticity of the problem. Hence the original problem (3.10), (3.33) is Fredholm
equivalent to Riemann-Hilbert problem

ReGφ̃
∣∣
Γ

= f̃ , f̃ = (f̃1, . . . , f̃s). (3.35)

for J-analytic vector-function φ̃ = φ(nΓ). Here an s× s-matrix-functionG is defined
by

G =↓ (G1, . . . , Gs), Gi =
∑

k+r≤ni

BikrbJ
r(s1 + s2J)nΓ−ni . (3.36)

For analytic vector-function s, there exists a well-known method of investigating
boundary value problem (3.35) based on the use of Cauchy integrals and singular
integral equation s [23]. As was already mentioned, this method can be extended
to J-analytic function s [21]. The condition

detG(t) 6= 0, t ∈ Γ, (3.37)

is equivalent to the ellipticity of the problem. For matrix-function (3.36), this
condition is just a different form of the famous Shapiro-Lopatinski condition for
boundary value problem (3.1), (3.33). As a rule, problem (3.35) is considered in
the class C+0(D) of functions satisfying Hölder condition in D (i.e. belonging to
Cµ with some 0 < µ < 1). Correspondingly, the initial problem (3.1), (3.33) may
be naturally considered in the class CnΓ,+0(D).

If D coincides with the upper half-plane the affine transformation (3.7) preserves
D so that in the conditions of theorem2.1 analytic function s ψk are defined in the
whole D.

Let us check that for φ ∈ C+0(D) the analytic functionψ in representation (2.10)
belongs to the same class and coincides with φ on the boundary y = 0 of D.
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Lemma 3.2. Let functionψ(z), z = x + iy be analytic in D and satisfy Hölder
condition

{ψ}µ = sup
z1 6=z2

|ψ(z1)− ψ(z2)|
|z1 − z2|µ

<∞ (3.38)

with some 0 < µ < 1. Then J-analytic functionφ in representation (2.10) satisfies
an analogous condition {φ}µ <∞ and coincides with ψ on the boundary y = 0 of
the half-planeD. The converse is also true.

Proof. Applying Cauchy formula for to the hemi-circle {|z| < R, Im z > 0},
differentiating it, and taking the limit as R→∞ we get

ψ(r)(z) =
1

2πi

∫
R

ψ(t)− ψ(t0)

(t− z)r+1
dt, r = 1, 2, . . . , (3.39)

for each t0 ∈ R. Hence

|ψ(r)(t0 + iy)| ≤ {ψ}µ
2π

∫
R

|t− t0|µ dt
|(t− t0)2 + y2|(r+1)/2

≤ Cr{ψ})µ (3.40)

with some constant Cr, depending only on r and µ.
In particular, |yrψ(r)(z)| ≤ Cr{ψ}µyµ, r ≥ 1. Hence functionφ from (2.10) is

continuous in D and coincides with ψ on the boundary. Differentiating (2.10) and
taking into account (3.40) we get the estimate |φ′(z)| ≤ Cyµ−1 which implies that
{φ}µ <∞.

The converse is proved analogously. Let {φ}µ < ∞ and analytic functionψ is
given by (2.10), where yr is changed by (−y)r. By Cauchy theorem from subsection 2.2,
for derivative s of J-analytic function s φ we have representation

φ(r)(z) =
1

2πi

∫
R
[t− z]−r−1{φ(t)− φ(t0)}dt.

From this we get an estimate analogous to (3.40) for φ(r). The rest of the argument
remains unchanged.

We turn now to the Riemann-Hilbert problem (3.35) in half-planeD (the wave
in notations is omitted). From lemma 3.2 follows that it is sufficient to solve this
problem for analytic vector-functionψ and then return to φ using representation (2.10).

The situation is especially simple if G is constant. Let a real s-vector-function f
be defined on R and {f}µ < +∞. Then solution of problem ReGψ = f(t), t ∈ R in
the class of function s χ(z), {ψ}µ <∞, analytic on D is given by Schwarz formula
[23]

Gψ′(z) =
1

πi

∫
R

f(t) dt

(t− z)2
. (3.41)

Strictly speaking, this formula is only applicable to function s f which are
O(|t|−1) at ∞. In general case it is sufficient to approximate f by functions of
such type. From (3.41), in particular, follows that

ψ(z) =
1

πi

∫
R

[
1

t− z
− 1

t− z0

]
G−1f(t)dt+ ψ(z0).

Substituting this expression in (2.10) we come to an explicit solution of problem
(3.35) with constant matrix G ∈ Cs×s for J-analytic function s φ from {φ}µ <∞.
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If detG = 0 then there exists an infinite set of linearly independent analytic vector-
function s ψ ∈ C∞(D) for which Gψ = 0 on the boundary of half-planeD. These
functions can be chosen to satisfy

|ψ(r)(z)| ≤ C(1 + |z|)−r−1, r = 0, 1, . . . , s. (3.42)

In this case formula (2.10) gives an infinity of linearly independent J-analytic function s
φ satisfying (3.42) and boundary condition Gφ = 0 on the boundary of half-
plane considered.

4. Elliptic systems of second order

4.1. Strongly and weakly coupled systems. For applications, especially important
appear second order real elliptic system s

∂2u

∂y2
= a0

∂2u

∂x2
+ a1

∂2u

∂y2
. (4.1)

For such a system, the characteristic polynomial (3.2) is a matrix quadratic trinomial
P (z) = z2−a1z−a0, quantity s = nl/2 from (3.4) coincides with l and expressions
(3.9) – (3.11) take the form

A =

(
0 1
a0 a1

)
, B =

(
b b
bJ bJ

)
,

B−1AB = diag(J, J), b, J ∈ Cl×l.

(4.2)

Matrices b and J can be considered as solutions to equation

J2 = a0b+ a1bJ, (4.3)

where

det

(
b b
bJ bJ

)
6= 0. (4.4)

For n = 2, the space Pn−2 coincides with Cl so that (3.12) reduces to P 0 = {ξ ∈
Cl | Re bξ = 0} and P 1 = {ξ ∈ Cl | Re bJξ = 0}.

One of the basic boundary value problem s for such system is the Dirichlet
problem which consists in finding a solution u to (3.33) in domain D satisfying
boundary condition

u
∣∣
Γ

= f (4.5)

on its boundary Γ = ∂D. Unlike to the case l = 1 for systems this problem can
appear not well-posed. This fact was discovered by A.Bitsadze. In [24] was indicated
an elliptic 2× 2−system with coefficients

a0 = 1, a1 = ±
(

0 −2
2 0

)
, (4.6)

for which the Dirichlet problem in the unit circle has an infinity of linearly independent
solutions. Later on A.Bitsadze [24] introduced a class of elliptic system s for which
Dirichlet problem is Fredholm. Such systems are called weakly coupled. In notation
(2.34) this class is defined by condition

det b 6= 0. (4.7)
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Correspondingly, the systems for which this condition is not fulfilled are called
strongly coupled.

Using (3.7) Dirichlet problem can be reduced to Riemann-Hilbert problem (3.35)
with constant coefficient G = b. For this reason condition (4.7) determining the
normal solvability of the latter problem is simultaneously an ellipticity criterion
for Dirichlet problem . Acting within the scheme of subsection 3.4 it is not difficult
to show that the index is equal to zero [21].

As shows a remark at the end of subsection 3.4, for strongly coupled systems the
homogeneous Dirichlet problem in the upper half-plane has an infinity of linearly
independent solutions. The following lemma shows that the concept of weakly
coupled system is well-defined, i.e. does not depend of the choice of block matrix
B in (4.2). This lemma gives an answer to a question posed by A.Bitsadze in [11].

Lemma 4.1. System (4.1) is weakly coupled if and only if the real matrix

∆ =

∫
R
(λ2 − a1λ− a0)−1dλ (4.8)

is invertible.
Notice that due to ellipticity, matrix-functionP (λ) = λ2− a1λ− a0 is invertible

for λ ∈ R and elements of its inverse have order −2 at ∞. Thus the integral (4.8)
makes sense.

Proof. For n = 2, identity (1.25) takes the form

(z − A)

(
1 1
0 z

)
=

(
z 0
−a0 P (z)

)
, P (z) = z2 − a1z − a0.

Passing to inverse matrices and applying (3.34) we get(
z−1 0

z−1P−1a0P
−1 p−1

)
=

(
1 −z−1

0 −z−1

)
(z − A)−1 =

(
1 0
0 0

)
B

(
(z − J)−1 0

0 (z − J)−1

)
B−1+

(
0 −1
0 1

)
B

(
z−1(z − J)−1 0

0 z−1(z − J)−1

)
B−1.

(4.9)

Consider a contour Γ in upper half-plane Im z > 0 which embraces all eigenvalues
of A. Then relations

1

2πi

∫
Γ

zk(z − J)−1dz = Jk,

∫
Γ

zk(z − J)−1dz = 0

hold for each k = 0,±1, . . . . The first one follows from (1.11) while the second
follows from Cauchy theorem since matrix-function (z − J)−1 is analytic inside Γ.

Integrating (4.9) along Γ and using the above relations we get

1

2πi

∫
Γ

(
z−1 0

z−1P−1(z)a1 P−1(z)

)
dz =

(
1 0
0 0

)
B

(
1 0
0 0

)
B−1+

+

(
0 −1
0 1

)
B

(
J−1 0

0 0

)
B−1 =

(
0 0
b 0

)
B−1,
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where the block structure of B from (4.2) is taken into account. Hence∫
Γ

P−1
0 (z)dz = 2πibc12, B−1 =

(
c11 c12

c21 c22

)
.

By Cauchy theorem contour Γ can be replaced by the real axis, which gives the
expression

∆ = 2πibc12 (4.10)

for integral (4.8).
The last relation shows that det ∆ 6= 0 implies det b 6= 0. Conversely, let det b 6=

0. According to (2.34) equationBξ = η can be rewritten as the system bξ1 + bξ2 =

η1, bJξ1+bJξ2 = η2. From this we get ξ2 = b
−1

(η1−bξ1) hence qξ1 = −bJb−1
η1+η2,

q = bJ − bJb
−1
b. Since B is invertible the factor q is also invertible so that the

block c12 of B−1 coincides with q−1. Thus all matrices in the right hand side of
(4.10) are invertible hence det ∆ 6= 0.

For Bitsadze system with coefficients (4.6), characteristic polynomial P (z) =
z2 − a1z − a0 and rational function P−1(z) are given by

P (z) =

(
z1 − 1 ±2z
∓2z z2 − 1

)
, P−1(z) =

1

z2 − 1

(
z1 − 1 ∓2z
±2z z2 − 1

)
.

Thus integral (4.8) is equal to the zero-matrix hence this system is strongly coupled .
As was mentioned, (4.3) together with (4.4) are decisive for (4.2). Namely, if

(b, J) satisfies (4.3), (4.4) then (4.2) is automatically fulfilled. This can be also
checked by a direct verification.

Pair (b, J) is not uniquely defined by equation (4.8). For example, the same
property has a pair (b1, J1), where b1 = bd, J1 = d−1Jd, and matrix d ∈ Cl×l is
invertible. The corresponding matrices B and B1 are related by B = B1 diag(d, d)
so that condition (4.9) is fulfilled.

In particular, if (4.7) is fulfilled one can put d = b−1 and then (4.8) transforms
into equation J2

1 = a0 +a1J1 with respect to J1. Thus for weakly coupled systems in
(4.2) one can always put b = 1. In this case detB 6= 0 is equivalent to det(Im J) = 0
and the following analog of theorem1.1 holds (cf. [16]): if J2 = a0 + a1J then
matrix J satisfies equationχ(J) = 0, χ(z) = det(z2− a1z− a0). This result shows,
in particular, that the order of Jordan ν-block in the Jordan normal form of J does
not exceed the multiplicity of ν as the root of characteristic equationχ(z) = 0.

In general case, bringing matrix A in (4.2) to Jordan form we can choose matrix
J in (4.3) to be block-diagonal consisting of Jordan blocks. Then by theorem1.5
columns of matrix b can be distributed into groups consisting of chains of eigenvectors
and associated vectors x0, . . . , xr ∈ Cl of polynomial P (z) = z2 − a1z − a0. In the
case considered, relations (1.26) defining this chain take the form

P (ν)x0 = 0, P (ν)x1 + P ′(ν)x0 = 0,
P (ν)x2 + P ′(ν)x1 + 2x0 = 0, . . . ,
P (ν)xr + P ′(ν)xr−1 + 2xr−2 = 0.

(4.11)

Thus if J = diag(J1, . . . , Jm), where Jk is a Jordan νk-block of order rk (numbers
νk, as well as numbers rk, may coincide for different k), then matrix b has block
structure (b1, . . . , bm), where bk for νk = ν and rk = r + 1 is given by matrix
↓ (x0, . . . , xr) constituted by the chain of vectors x0, . . . , xr ∈ Cl.
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Precisely this structure of matrix b was described in [11] with respect to representation (3.20)
for system (4.1). Condition of weak coupling (4.7) means that the totality of above
chains gives a basis in Cl. In this sense for the correspoding polynomial holds an
analogue of Jordan theorem.

If det b = 0, i.e. system (4.1) is strongly coupled , then the necessary condition
(4.4) imposes a certain restriction on the rank of matrix b.

Lemma 4.2. For a strongly coupled system, rank of matrix b ∈ Cl×l is not less
than l/2.

Proof. As was mentioned, the class of solutions (b, J) to equation (4.3), (4.4)
is invariant under transformation b → bd, J → d−1Jd. Hence by a proper choice
of d one can achieve that first r columns of b are linearly independent and the last
l − r columns are equal to zero. Evidently, multiplication of coefficients of (4.1)
by a non-invertible real matrix e gives an equivalent system which is obtained by
a substitution u = eũ of the sought solution u. Hence matrix b can be multiplied
from the left by non-invertible real matrices. Thus if det b = 0, matrixу b in (4.3)
can be always brought to the form , where the last l − r columns are zero and in
the first l rows and columns stays the identity matrix. According to (4.4) this is
only possible if rang b ≥ l/2.

4.2. Strongly and perfectly elliptic systems. Elliptic system (4.1) is often
written in the form

2∑
i,j=1

aij
∂2u

∂xi∂yj
= 0, x1 = x, x2 = y. (4.12)

Then the ellipticity condition is

det
(∑2

i,j=1
λiλjaij

)
6= 0 (4.13)

for λ = (λ1, λ2) ∈ R2, λ 6= 0. In particular, matrices aii are invertible and (4.12)
may be transformed to a canonical form (4.1) with coefficients

a0 = −a−1
22 a11, a1 = −a−1

22 (a12 + a21). (4.14)

Correspondingly, up to a factor a22 the matrix polynomial (3.2) transforms into

P (z) = a11 + (a12 + a21)z + a22z
2. (4.15)

Obviously, eigenvectors and adjoint vectors which constitute columns of matrix b
in (4.2) (supposing that J is in Jordan form) can be determined with respect to this
polynomial.

Work of A.Bitsadze [24] stimulated introduction of various classes of elliptic
system s for which Dirichlet problem is Fredholm. The most useful appeared introduced
by M.Vishik [25] concept of strong ellipticity. It means the positive definiteness, for
all non-vanishing (λ1, λ2), of the matrix under the sign of determinant in (4.13).
Let us write d > 0 (d ≥ 0) for a positively (negatively) defined matrix d (this
notation tacitly assumes that d is symmetric). Then the strong ellipticity of (4.12)
is expressed by condition

2∑
i,j=1

aijλiλj > 0. (4.16)
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Obviously, matrices P±1(λ), λ ∈ R in (4.15) are also positive definite so that
∆ from (4.8) also has this property. According to lemma 4.1 this implies that
strongly elliptic system s are weakly coupled , i.e. Dirichlet problem for them is
really Fredholm.

An example of strongly elliptic system is given by the self-adjoint (in the sense
of Lagrange) system (4.12) with coefficients

a11 = a22 = 1, a12 = aT
21 = p, (4.17)

where p is an orthogonal matrix without real eigenvalues. In particular, the order
l of the system should be even. For this system P (z) = (z + p)(z + p)T so that the
condition P (λ) > 0 of strong ellipticity (4.16) is fulfilled.

Still more narrow class of elliptic system s is defined by the notion of perfect
ellipticity introduced in [26] which means that the (2l × 2l)-matrix constituted by
the coefficients of the system is non-negatively determined:

a =

(
a11 a12

a21 a22

)
≥ 0, (4.18)

and the homogeneous system aξ = 0 has no non-zero solutions ξ = (ξ1, ξ2) with
linearly independent vectors ξ1, ξ2 ∈ Rl. Obviously, (4.18) is equivalent to

aT
ji = aij,

2∑
i,j=1

(aijξj)ξi ≥ 0 (4.19)

for all ξi, ξj ∈ Rl. In particular, this system is self-adjoint. For ξi = λiξ, λi ∈ R,
inequality (4.19) is strict by the second requirement so that for such systems the
strong ellipticity condition is fulfilled.

Notice that system (4.12) with coefficients (4.17) is perfectly elliptic as∑
(aijξj)ξi = ξ2

1 + 2(pξ1)ξ2 + ξ2
2 ≥ ξ2

1 − 2|ξ1| |ξ2|+ ξ2
2 ≥ 0,

where is used that |pξ1| = |ξ1| by orthogonality of matrix p.
If for ξ 6= 0 inequality (4.19) is strict, i.e. matrix (4.18) is positively defined,

then system (4.12) is called elliptic in the sense of Somilliano [11]. These notions
are especially useful for dealing with Dirichlet problem [26].

Theorem 4.1. For a perfectly elliptic system, Dirichlet problem is uniquely solvable.

Proof.According to subsection 4.1, for this system Dirichlet problem is Fredholm
and has index zero so that it suffices to establish uniqueness of its solution. Let
u ∈ C1(D) be a solution of homogeneous Dirichlet problem . Then applying to the
left hand side of (4.12) Green’s formula one gets

0 = −
∫
D

2∑
i,j=1

(
aij

∂u

∂xj

)
∂u

∂xi
dx+

∫
Γ

u
2∑
i=1

(
aij

∂u

∂xj

)
ni ds. (4.20)

Hence ∫
D

(a∇u)∇udx = 0

for the gradient ∇u = (ux, uy).
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Since a is non-negatively determined, (a∇u)∇u = 0 hence a∇u = 0 or, in more
detailed form.

ai1
∂u

∂x
+ ai2

∂u

∂y
= 0, i = 1, 2. (4.21)

Since u = 0 on Γ vectors ux и uy are linearly dependent at each t ∈ Γ. By definition
of perfect ellipticity we see that ux = uy = 0 on the boundary Γ of D.

Consider J−analytic functionφ participating in representation (3.7) of solution
u. By theorem2.2 its derivative φ′ is related to u by (3.14) so that it also vanishes on
Γ. Applying Cauchy theorem from subsection 2.2 we derive that φ′ = 0 everywhere
in D hence u is constant. Taking into account the boundary condition (4.5) this is
only possible if u = 0.

4.3. Conjugate and degenerate solutions. With each solution u(x, y) of system
(4.12) one can associate function v(x, y) defined by

∂v

∂x
= −

(
a21

∂u

∂x
+ a22

∂u

∂y

)
,

∂v

∂y
= a11

∂u

∂x
+ a12

∂u

∂y
. (4.22)

The necessary condition for existence of this function follows from equation (4.12)
written in the form

∂

∂x

(
a11

∂u

∂x
+ a12

∂u

∂y

)
+

∂

∂y

(
a21

∂u

∂x
+ a22

∂u

∂y

)
= 0.

Function v is called conjugate to solution u of system (4.12). It is determined up
to additive constant and in the case of multiply connected domain it is in general
multi-valued .

Using matrix
c = −(a21b+ a22bJ) (4.23)

the conjugate function v can be expressed via J-analytic functionφ analogously to
(3.7).

Theorem 4.2. The function conjugate to u = Re bφ is given by the formula

v = Re cφ+ ξ, ξ ∈ Rl. (4.24)

Proof. Substituting (3.7) into (4.22) we get

vx = −Re(a21b+ a22bJ)φ′, vy = Re(a11b+ a12bJ)φ′.

Writing equation (4.3) for the system (4.12), (4.14) in the form a11b + a12bJ =
−(a21b+ a22bJ)J (in notation (4.23)), we obtain:

vx = Re cφ′, vy = Re cJφ′.

Hence partial derivative s of function v−Re cφ vanish, which gives representation (4.23).
Conjugate function v may appear constant, i.e. the right hand side of (4.22) is

identically zero. In such case solution u of system (4.12) is called degenerate. Thus
it is determined by an over-determined first order system(4.21). Evident examples
of degenerate solutions give polynomials of first degree

u0(x) = η + ξ1x+ ξ2x2, (ai1ξ1 + ai2ξ2) = 0, i = 1, 2. (4.25)
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Let us describe systems (4.12) whose degenerate soltuions coincide with these
polynomials. Put for brevity

ã1 = a−1
11 a12, ã2 = a−1

22 a21,

X = {x ∈ Rl |x = ã1ã2x = ã2ã1x}.
(4.26)

Theorem 4.3. If X = {0} then each degenerate solution of elliptic system (4.12)
has the form (4.25). Otherwise the class of degenerate solutions is infinite dimensional.

Proof. Adopting notation (4.2), (4.18) let us show that x ∈ X is equivalent to
the system of equations

aξ = aAξ = 0 (4.27)

for vector ξ = (−ã1x, x) ∈ R2l.
Obviously, a can be changed by

ã =

(
1 ã1

ã2 1

)
. (4.28)

It is also clear that ãξ = 0 is equivalent to ξ = (−ã1x, x), x− ã1ã2x = 0, and also
to ξ = (y,−ã2y), y − ã2ã1y = 0. Hence the statement follows from the equality

A

(
−ã1

1

)
=

(
1
−ã2

)
, (4.29)

which can be checked using (4.14), (4.26).
From (4.29) also follows that (4.27) implies

aArξ = 0, r = 0, 1, 2, . . . . (4.30)

Indeed, in the space X ⊆ Rl matrices ãj define mutually inverse transformations
so that (x, ã2x) = (−ã1y, y), y = −ã2x. Thus (4.29) gives relation

Ar
(
−ã1x
x

)
=

(
−ã1y
yr

)
, yr = (−ã2)rx, r ≥ 1,

which implies (4.30).
We pass to the statements of the theorem. Let u = 2 Re bφ be a solution to (4.12).

Then ∇u = (ux, uy) and ψ̃ = (φ′, φ′) are related by ∇u = Bψ̃. Hence solution u is
degenerate, i.e. satisfies system (4.24) if and only if aBψ̃ = 0. Differentiating this
by x and y and using (2.6) we get

aBJ̃rΨ̃(k) = 0, 0 ≤ r ≤ k, (4.31)

where is put J̃ = diag(J, J). By (4.2), BJ̃r = ArB and previous relations are
equivalent to

aArφ̃(k) = 0, 0 ≤ r ≤ k.

Hence if (4.28) has only zero solution then ψ′ = 0 and ψ = φ′ ∈ Cl. In other words,
degenerate solution u has the form (4.25).

Conversely, let the space Y ⊆ R2l of all solutions to (4.27) have non-zero
dimension. Then for ξ ∈ Y are fulfilled all relations (4.30). Choose a bounded
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sequence ξk ∈ Y, k = 0, 1, . . . and put η̃k = (ηk, ηk) = B−1ξk, ηk ∈ Cl. Consider
J-analytic function

ψ(z) =
∞∑
k=0

1

k!
[z]kηk =

∑
0≤r≤k

xk−ryy

(k − r)!r!
Jrηk.

An analogous decomposition is valid for ψ̃ with respect to J̃ and η̃k. Thus

aBψ̃ =
∑

0≤r≤k

xk−ryr

(k − r)!r!
aArξk, ξk = Bη̃k,

and by (4.31) we get aBψ̃ ≡ 0. Hence u = Re bφ, where φ′ = ψ, is a degenerate
solution. It’s clear that the class of such solutions is infinite dimensional.

Lemma 4.3. (a) The dimension of X is even.
(b) The rank of matrix a = (aij)

2
1 lies between l and 2l. For rka = l, the space

X coincides with Rl (so that l is even). For rka ≥ 2l − 1, one has X = 0.
Proof. (a) Matrices ãj define on X mutually inverse transformations denoted

by ã(j). We claim that ã(j) have no real eigenvalues.
Suppose the converse, i.e. that for some µ ∈ R and non-zero x ∈ X we have

relations ã1x = µx, ã2x = µ−1x. Then∑2

i,j=1
(aijλiλj)x = {a11(λ1 + a′1λ2)λ1 + a22(a′2λ1 + λ2)λ1}x

and for λ1+µλ2 = 0 the left hand side of this expression vanishes, which contradicts
ellipticity of system (4.12).

(b) Obviously, rank of ã in (4.29) is not less than l. If it equals l then matrices
ãj, j = 1, 2, are mutually inverse and X = Rl. If rka ≥ 2l− 1 then dimX ≤ 1 and
by (a) this is only possible if X = 0.

First statement in (b) is satisfied by system (4.12), (4.17) with orthogonal matrix
p having no real eigenvalues.

Let us slightly extend the notion of conjugate solution. Consider matrices d ∈
R2l×2l and dB ∈ C2l×2l written in 2× 2-block form

d =

(
d11 d12

d21 d22

)
, dB =

(
c0 c0

c1 c1

)
. (4.32)

Let matrix d be related to coefficients of equation (4.1) by

d21 = d12a0, d22 − d11 = d12a1. (4.33)

Then using an evident identity

∂

∂y

(
d11

∂u

∂x
+ d12

∂u

∂y

)
− ∂

∂x

(
d21

∂u

∂x
+ d22

∂u

∂y

)
=

= d12

(
∂2u

∂y2
− a0

∂2u

∂x2
− a1

∂2u

∂x∂y

)
with each solution u of equation (4.1) one can associate υ for which

∂v

∂x
= d11

∂u

∂x
+ d12

∂u

∂y
,

∂v

∂y
= d21

∂u

∂x
+ d22

∂u

∂y
. (4.34)
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It is called d-conjugate to u and determined up to an additve constant. In general
it may be multi-valued (if domain D is multiply connected).

Analogously to theorem4.2 one checks that there exists representation (4.23)
with matrix c = c0 from (4.32). Indeed, by (4.2), (4.32)

c0 = d11b+ d12bJ, c1 = d12b+ d22bJ.

Taking into account (4.3), (4.33) we get

c0J − c1 = d12(bJ2 − a0b− a1bJ) = 0.

Thus differentiating the equality v = Re c0φ one obtains
vx = Re c0φ

′ = d11 Re bφ′ + d12 Re bJφ′,

vy = Re c0Jφ
′ = d21 Re bφ′ + d22 Re bJφ′,

which proves (4.34).
Under some additional assumptions function v is solution to a certain second

order elliptic system .
Lemma 4.4. If det d 6= 0 then function v is solution to elliptic system

∂2v

∂y2
= ã0

∂2v

∂x2
+ ã1

∂2v

∂x∂y
,

(
0 1
ã0 ã1

)
= dAd−1. (4.35)

In particular, if da = ad then (4.32) is fulfilled and function v is solution of the
same equation (4.1) as u.

Proof. Obvously, gradient ∇u = (ux, uy) satisfies the system

(∇u)y − A(∇u)x = 0.

Writing (4.34) in the form v = du we arrive to system

(∇v)yÃ(∇v)x = 0, Ã = dAd−1. (4.36)

Taking into account special form (4.2) of matrix A, relations (4.32) can be rewritten
in the form

(dA)11 = d21, (dA)12 = d22, (4.37)

hence matrix Ã has a block structure similar to (4.2). Combining this with (4.36)
we arrive to (4.35).

Finally, if Ad = dA then due to (Ad)11 = d21, (Ad)12 = d22, relations (4.37)
are fulfilled hence (4.32) is also fulfilled.

With A commutes, for example, matrix

d = B

(
−i 0
0 i

)
B−1.

Here c0 = −ib hence v = Im bφ.

4.4. Neumann problem. Along with Dirichlet problem (4.5) for elliptic system (4.12)
an important role plays boundary value problem

2∑
i,j=1

(
aij

∂u

∂xj

)
ni

∣∣∣∣
Γ

= g, (4.38)

where n = (n1, n2) is the unit outer normal to the boundary Γ = ∂D of D. In
the scalar case (l = 1) the left hand side of this expression defines differential along
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vector with components (a11n1 +a21n2, a12n1 +a22n2) called conormal. In this case
the problem is called Neumann problem. We preserve this name also for l > 1.

From (4.21) is clear that degenerate solutions satisfy homogeneous boundary
condition (4.38) in any domain D. This and theorem4.3 implies that for dimX > 0
the homogeneous Neumann problem has an infinity of linearly independent solutions.

Degenerate solutions ũ corresponding to elliptic system
2∑

i,j=1

aT
ji

∂2ũ

∂xi∂xj
= 0, (4.12∼)

which is Lagrange conjugate to (4.12), define the natural solvability conditions of
the homogeneous problem (4.38).

Indeed, denote by Lu and L̃ũ the left hand side s of (4.12) and и (4.12∼),
respectively . Then applying Green’s formula to the identity

(Lu)ũ− u(L̃ũ) =
2∑

i,j=1

∂

∂xi

[(
aij

∂u

∂xj

)
ũ− u

(
aT
ji

∂ũ

∂xj

)]
the above solvability conditions can be rewritten as the conditions of orthogonality∫

Γ

gu0ds = 0 (4.39)

to all degenerate solutions u0 of system (4.12∼). For u0 = ξ ∈ Rl, they include the
necessary condition of solvability ∫

Γ

gds = 0.

In particular, on a smooth contour one can introduce function f whose derivativewith
respect to arclength coincides with g. In terms of conjugate function v the left hand
side (4.38) coincides with tangential derivative v′ = vxs1 + vys2 = −vxn2 + vyn1.
Hence the Neumann problem can be rewritten in the form

v
∣∣
Γ

= f

of Dirichlet problem for v. Taking into account theorem4.2, this is Fredholm equivalent
to Riemann-Hilbert problem (3.35) with a constant coefficient G = c determined
by matrix (4.23). Correspondingly, condition

det c 6= 0 (4.40)

is necessary and sufficient for Neumann problem to be Fredholm. As in the case of
Dirichlet problemone checks that the index of this problem is equal to zero.

If (4.40) is fulfilled then the class of degenerate solutions should be finite-
dimensional, which by theorem4.3 is only possible if X = 0. For perfectly elliptic
systems the converse is also true.

Lemma 4.5. Let system (4.12) be perfectly elliptic. Then each solution of homogeneous
Neumann problem is degenerate and condition (4.40) (adopting notation (4.26)) is
equivalent to X = 0.

Proof. Let u ∈ C1(D) be a solution of homogeneous Neumann problem. Then
the second summand in (4.20) vanishes. As in theorem4.2 one deduces that a∇u =
0, i.e. that u is a degenerate solution.
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If det c 6= 0 then the space of solutions of the homogeneous problem is finite-
dimensional and theorem4.3 implies that X = 0.

Let det c = 0. Consider Neumann problem in the half-plane Im z > 0. By a
remark at the end of subsection 3.4 there exist infinitely many linearly independent J-
analytic function s φ satisfying the estimate

|φ′(z)| ≤ C(1 + |z|2)−1

and for which cφ(z) = 0 on the real axis Im z = 0. In virtue of this estimate, relation
(4.20) is valid for u = Re bφ in the whole half-plane hence all such solutions u are
degenerate. By theorem4.3 we conclude that dimX > 0.

As in the case of Dirichlet problem , for perfectly elliptic systems the nature of
solvability of Neumann problem is much simpler.

Theorem 4.4. Let system (4.12) be perfectly elliptic and satisfy (4.40). Then
solutions of the homogeneous Neumann problem reduce to polynomials (4.25) and
the non-homogeneous problem is solvable if and only if the orthogonality conditions
(4.39) are fulfilled with respect to this polynomials.

If (4.40) is violated then the homogeneous Neumann problem has an infinity of
linearly independent solutions.

Proof. Let (4.40) be fulfilled. Then since the problem is Fredholm lemma 4.5
and theorem4.4 imply that the kernel of the homogeneous problem consists only
of polynomials (4.25). As the conjugate system to (4.12) coincides with (4.12∼),
orthogonality conditions (4.39) with respect to these polynomials are necessary for
the solvability of non-homogenous problem. As was mentioned, the index vanishes
so these conditions are also sufficient.

Let now det c = 0. Then according to lemma 4.5 and theorem4.3, the space of
degenerate solutions of system (4.12), i.e. the kernel of the homogeneous problem,
is infinite dimensional.

5. System of two equations of second order

5.1. Classification of systems. For l = 2 elliptic system s (4.12) admit complete
description. In this case the characteristic polynomial is given by a 2× 2-matrix

P (z) = a1 + (a12 + a21)z + a22z
2 = (Pij)

2
1, (5.1)

and the scalar characteristic polynomialχ(z) = detP (z) has degree 4. Thus in the
upper half-plane it has two roots which may coincide. More precisely three cases
are possible: (i) roots ν1 and ν2 differ; (ii) there is one multiple root ν and P (ν) 6= 0
; (iii) P (ν) = 0.

Let us suppose that J in (4.2) is Jordan so that to these three cases correspond

i)

(
ν1 0
0 ν2

)
, ii)

(
ν1 1
0 ν

)
, iii)

(
ν 0
0 ν

)
. (5.2)

As was explained in subsection 4.1 columns x ∈ R2 of matrix b are solutions of the
chain of equation s (4.11). In the three cases (5.2) these equation s take the form :

(i) P (ν1)x = P (ν2)y = 0;
(ii) P (ν)x = 0, P (ν)y + P ′(ν)x = 0;
(iii) P (ν)x = P (ν)y = 0.

(5.3)
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In each of these cases let us find the connection between b ∈ C2×2 and B ∈ C4×4

в (4.2).
Lemma 5.1. Adopting notation

b =

(
x1 y1

x2 y2

)
,

p = Im(x1x2),
q = Im(y1y2),

(5.4)

we have equality

1

4
detB =

 |ν1 − ν2|2pq − (Im ν1)(Im ν2)| det b|2, (i)
p2 − (Im ν)2| detB|2, (ii)
−(Im ν)2| det b|2, (iii).

(5.5)

Proof. Introduce an operation over 2× 2-matrices(
x11 x12

x21 x22

)∗
=

(
x22 −x12

−x21 x11

)
. (5.6)

Obviously, (xy)∗ = y∗x∗ и xx∗ = x∗x = detx. In particular, if detx 6= 0 one has
x−1 = (detx)−1x∗. Consider the equality (4.2). If det b 6= 0 then

detB = det b det(bJ) det

(
1 b−1b
1 J−1b−1bJ

)
,

hence
detB = det ∆, ∆ = b∗bJ − Jb∗b. (5.7)

Since ∆ continuously depends on b, by a density argument (5.6) remains valid when
det b = 0.

Adopting notation (5.4), matrix b∗b in the right hand side of (5.7) can be written
in the form

b∗b =

(
r −2iq

2ip r

)
, r = y2x1 − y1x2. (5.8)

In particular,
|r|2 = | det b|2 + 4pq. (5.9)

Calculating elements of ∆ in (5.7) in each of the three cases (i)) – (iii) and using
(5.9) we conclude that (5.5) holds.

From (5.5) , in particular, follows that in case (iii) matrix b is invertible. Thus
its columns x, y are linearly independent so by (5.3) we have P (ν) = 0. Then
polynomialP (z) is divisible by z − ν and z − ν so it is given by

P (z) = a22[z2 − 2(Re ν)z + |ν|2]. (5.10)

Notice that equality P (ν) = 0 also follows from equation (4.3) satisfied by scalar
matrix J = ν.

Now (5.10) shows that in the case (iii) system (4.12) can be reduced to one
scalar equation by multiplying it on the left by a−1

22 . For this reason in the sequel
the main attention is given to the cases (i) and (ii).

Columns x, y of matrix b in equation s (5.3) are determined up to linear transformations

(i) x′ = λ1x, y′ = λ2y, λj 6= 0;
(ii) x′ = λ1x, y′ = λ1x+ λ2y, λ1 6= 0.

(5.11)

In other words, performing these transformations over the columns does not
change matrix A in (4.2).
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According to subsection 4.1 strongly coupled systems are characterized by the
linear dependence of their columns x and y. For such systems, applying an appropriate
transformation (5.11) one can always achieve that x = y in the case (i) and y = 0
in the case (ii). In other words, the strongly coupled systems are characterized by
the condition

(i) P (ν1)x = P (ν2)x = 0;
(ii) P (ν)x = P ′(ν)x = 0

(5.12)

for some non-zero x ∈ C2.
Vectors x and y in (5.3) can be defined in terms of the elements of the matrix

P (z) itself. Along with b it is convenient to describe matrix c in (4.23) which palys
an important role for the Neumann problem. It suffices to consider the cases (i)
and (ii) since in the case (iii) we can put b = 1 and c = −(a11 + a22ν).

Adopting notation (5.1), (5.6) let us associate with matrix P (z) matrix polynomial s

Q(z) = P ∗(z), R(z) = −(a21 + a22z)Q(z). (5.13)

Lemma 5.2. (i) Let numbers 1 ≤ i, j ≤ 2 be chosen so that ith and jth column
of, respectively , matrices Q(ν1) and Q(ν2) are non-zero. Then we can put

b(1) = Q(i)(ν1), b(2) = Q(j)(ν2),
c(1) = R(i)(ν1), c(2) = R(j)(ν2),

(5.14)

where x(k) denotes the kth column of matrix x.
(ii) Let i = 1, 2 be chosen so that ith column of matrix Q(ν) is non-zero. Then

we can put
b(1) = Q(i)(ν), b(2) = Q′(j)(ν),

c(1) = R(i)(ν), c(2) = R′(j)(ν).
(5.15)

Proof. (i) From definitions (5.6), (5.13) is clear that

P (z)Q(z) = χ(z), (5.16)

where χ = detP. Since χ(ν1) = χ(ν2) = 0 columns x of matrix Q(νk) are solutions
of equationP (νk)x = 0, which implies relations (5.14) for b. According to (1.17) and
(5.2), for the columns of matrix c in (4.23) we have c(k) = −(a21b(k) + a22b(k)νk) =
−[(a21 + a22νk)n](k). According to (5.13) this leads to relations (5.14) for c.

(ii) Since ν is a multiple root of polynomialχ(z) we have χ(ν) = χ′(ν) = 0. By
differentiating (5.16) we derive equality P (ν)Q′(ν) +P ′(ν)Q(ν) = 0. Comparing it
with equation (5.3) for this case and acting as above we get (5.15) for b.

As to c, as above we have: c(k) = −[a21b(k) + a22(bJ)(k)], k = 1, 2. In the case
of Jordan ν-block J , one has (bJ)(1) = b(1)ν, (bJ)(2) = b(1) + b(2)ν, so that c(1) =
−(a21 + a22ν)b(1), c(2) = −(a21 + a22ν)b(2)− a22b(1). Taking into account (5.13) and
relations (5.15) for b we get

c(1) = −(a21 + a22ν)Q(i)(ν) = Q(i)(ν),

c(2) = −(a21 + a22ν)Q′(i)(ν)− a22Q(i)(ν) = R′(i)(ν),

which completes the proof of (5.15) and lemma.
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Let us illustrate preceding considerations in the case of system (4.1) obtained
by separating real and imaginary parts of one complex equation(

∂

∂y
− α ∂

∂x

)(
∂

∂y
− β ∂

∂x

)
(u1 + iu2) = 0.

Following subsection 3.2 we get system (4.1) with matrix coefficients

a0 = −(αβ)∧, a1 = −(α + β)∧, (5.17)

where we use notation

(x+ iy)∧ =

(
x −y
y x

)
, x, y ∈ R.

For appropriate α, β one can get a system of any of the three types (i)-(iii). More
precisely, for α = β = ±i one gets Bitsadze systems with coefficients (4.6). For
α = ν, β = ν, one gets the case (iii) because then polynomialP (z) with coefficients
(5.17) coincides with (5.10). Cases (i) and (ii) are obtained, respectively , for α 6=
β, β and α = β. Moreover, ν1 = Reα + i| Imα|, ν2 = Re β + i| Im β|.

For Reα = Re β = 0, coefficients (5.17) have the form

a0 =

(
x0 0
0 s0

)
, a1 =

(
0 r1

s1 0

)
(5.18)

with some rj, sj ∈ R. Consider system (4.1) with such coefficients for which
polynomialχ(z) has z = i as a multiple root. Since

P (z) =

(
z2 − r0 −r1z
−s1z z2 − s0

)
and χ(z) = detP (z) = z4 − (r0 + s0 + r1s1)z2 + r0s0, the above requirement is
equivalent to conditions

r0 + s0 + r1s0 = −2, r0s0 = 1. (5.19)

For r1 = s1 = 0, equation (4.1), (5.18) transforms into Laplace equation so this
case can be excluded. In remaining cases, for polynomialP (z), matrix Q and its
derivativeQ′ at z = i are equal to

Q(i) =

(
−s0 − 1 ir1

is1 −r0 − 1

)
, Q′(i) =

(
2i r1

s1 2i

)
.

Hence by lemma 5.2 we can put

b =

(
−s0 − 1 2i
is1 s1

)
, b =

(
ir1 r1

−r0 − 1 2i

)
in case s1 6= 0 and r1 6= 0, respectively . In particular, taking into account (5.19) we
see that the system is strongly coupled if s0 = r0 = 1 and weakly coupled in other
cases.
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5.2. Parametric description of systems. Elliptic systems (4.12) are invariant
under linear transformations of eq s and of the vector of unknowns u, and also under
linear transformations of independent variables x, y. In terms of characteristic
polynomial these transformations act as multiplication of P (z) from the left and
from the right by invertible matrices d ∈ R2×2 and application of fractional-linear
substitution

z =
α11u+ α12

α21u+ α22

, detα 6= 0.

If one works with systems (4.1) then the first two transformations can be reduced
to similarity transformations P (z) → dP (z)d−1. Obviously, the three case (i)-(iii)
are invariant for these transformations.

Systems of two equation s of second order were systematically investigated in
the monograph [5]. ipp it was shown there that using these transformations system
(4.1) can be brought to a canonical form of the type (5.19).

Consider another approach based on the relation (4.2) where matrix J belonging
to one the three types (5.2) is fixed and matrix b ∈ C2×2 is considered as parameter.
The only requirement is (4.4), i.e. invertibility of matrix B in (4.2). Lemma 5.1
describes it in an explicit form. If it is fulfilled, to each parameter b ∈ C2×2

corresponds an elliptic system (4.1) с with coefficients a0, a1 determined from(
0 1
a0 a1

)
= B

(
J 0
0 J

)
B−1, B =

(
b b
bJ bJ

)
. (5.20)

The whole set of elliptic system s is decomposed into three subsets corresponding
to the three types (5.2) of matrix J . Using lemma 5.1 it is not difficult to give
homotopy description of each of these subsets.

Theorem 5.1. The set E of elliptic system s corresponding to the case (iii) is
connected. In the cases (i) and (ii) there are three connected components E± and
E0 with parametric descriptions (5.20) as follows

detB > 0, ±p > 0 (5.21±)

detB < 0, (5.210)

where p is taken from (5.4).

Proof. For a fixed J denote by G the set of all matrices b ∈ C2×2 for which
detB 6= 0 in formula (5.5) of lemma 5.1. Dependence of coefficients a0, a1 in (5.20)
on b will be denoted as (a0, a1) = h(b). As a result we get a continuous mapping h
of G ⊆ C2×2 ∼= R8 onto E ⊆ R2 ×R2×2 ∼= R8. As (5.5) shows, set G is open. From
lemma 5.2 follows that h has a continuous right inverse h(−1) : E → G, i.e. one
has h h(−1)(a0, a1) = (a0, a1). Hence E is open and h sends connected components
of G to those of G. The induced mapping of connected components is one-to-one.
Indeed, if to pair (a0, a1) ∈ E correspond two matrices b and b then these two
matrices are related by a transformation (5.11). Hence b и b belong to the same
connected component of G.

Thus it suffices to prove the statement for G. In the case (iii) according to (5.5)
the set G coincides with {b ∈ C2×2, det b 6= 0} and is thus connected. Consider
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now the cases (i) and (ii). Then matrix b by elementary transformations (5.11) can
be brought to one of the following two forms in each of the cases (i), (ii):

b =

(
1 1
x2 y2

)
, b =

(
1 0
x2 1

)
; (5.22i)

b =

(
1 0
x2 y2

)
, b =

(
0 y1

1 0

)
. (5.22ii)

Here is used that in the case (i) inequality x1 6= 0 can be always achieved by
rearranging columns and renumbering ν1, ν1.

The rest of the argument can be performed for these matrices. Consider matrix
of the first type in (5.22). Setting x2− y2 = x− iy, x1 + y2 = u+ iv, equality (5.5)
for (i) can be written in the form

detB = −x
2

a2
− y2

b2
+
v2

c2
(5.23)

with positive constants a, b, c, depending only on ν1, ν2. Hence equationdetB = 0
defines an elliptic cone in the space R3 of variables x, y, v. Its complement consists
of three components K0, K± determined by the signs of detB and v as in (5.21).
In the four-dimensional space of variables x, y, u, v, defining matrix b we get the
corresponding components K0 ×R и K± ×R. It remains to notice that detB > 0
implies that pq > 0 in (5.4), (5.5) hence the signs of p, q and p+ q coincide.

An analogous argument works for matrix b of the first type in в (5.22ii). Here
one should put y2 = x− iy, x2 = u− iv and then (5.5) again takes the form (5.23).

For matrix b of the second type in (5.22), one has detB < 0. It is clear that
such matrices constitute a connected component G0. This completes the proof of
theorem5.1.

It would be interesting to derive theorem5.1 from the general approach to
homotopy classification of elliptic systems and boundary value problems suggested
in [27]. The same refers to ellipticity criteria for systems with constant coefficients
presented in subsection 3.3.

As was noticed in subsection 5.1, strongly coupled systems can only appear in
cases (i) and (ii). From (5.5) and theorem5.1 it follows that they correspond to
matrices b ∈ G±. For example, for Bitsadze system with coefficients (4.6) one has
b ∈ G±. To strongly coupled systems correspond matrices b ∈ G0. This follows from
the fact that matrix polynomial s Pt(λ) = tP (λ) + (1 − t)(1 + λ2) of variable λ,
depending on parameter 0 ≤ t ≤ 1, are positively determined for all t.

Using the mapping h : b → (a1, a2) one can construct elliptic system s with a
prescribed matrix b. For this reason it is useful to describe this mapping explicitly.
Let operation ∗ be the same as in (5.6).

Lemma 5.3. For coefficients a0, a1 ∈ R2×2 of system (4.1) one has

a0 = 2(detB)−1 Re[(det bJ)d2 − (det J)d1d1],

a1 = 2(detB)−1 Re[(det bJ)d1 − d2d
∗
1],

(5.24)

where dk = bJkb∗, k = 1, 2.
Proof. We use explicit expressions for the block elements of B−1. They are

obtained by inverting the system Bξ = η or, in more detail, bξ1 + bξ2 = η1,
bJξ1 + bJξ2 = η2.
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Suppose first that det b 6= 0. Then eliminating ξ из from the first equation and
substituting in the second one we get:

(bJ − bJb−1
b)ξ1 = −bJb−1

η1 + η2,

(bJ − bJb−1b)ξ2 = −bJb−1
η1 + η2.

Using notation (5.7) for matrix bJ−bJb−1
b = b(b

−1
bJ−Jb−1

b) we have b(det b)−1∆ =

(b
∗
)−1∆. From (5.7) and reality of detB it follows that ∆

−1
= (detB)−1∆

∗
. Hence

the formulae for ξ1, ξ2 can be rewritten in the form ξ1 = c0η1 +c1η2, ξ2 = c0η1 +c1η2

with matrices

c0 = −(detB)−1∆
∗
b
∗
bJb

−1
, c1 = (detB)−1∆

∗
b
∗
.

Since ∆
∗

= J∗b∗b−b∗bJ∗ we have ∆
∗
b
∗

= (det b)J∗b∗b
∗−bJ∗b∗ hence δ∗b∗bJb−1

=

J∗b∗bJb
∗ − (det bJ)b∗. Thus

B−1 =

(
c0 c1

c0 c1

)
,

c0 = (detB)−1[(det bJ)b∗ − J∗b∗bJb],
c1 = (detB)−1[(det b)J∗b∗ − b∗bJ∗b∗].

By a density argument these formulae remain valid for det b = 0.
Now by (5.20) we have:(

0 1
a1 a2

)
=

(
bJ bJ

bJ2 bJ
2

)(
c1 c2

c1 c2

)
,

which implies aj = 2 Re bJ2cj, j = 1, 2. Substituting here explicit expressions for
matrices cj we arrive to formulae (5.24).

Notice that in the case (iii) matrices dk = νk det b are scalar and formulae (5.24)
transform into the corresponding coefficients of the polynomial entering in the right
hand side of (5.10).

As an illustration consider a strongly coupled system corresponding to matrix

b =

(
1 1
i i

)
. (5.25)

This is clearly possible only in the cases (i), (ii).
By (5.4), (5.5) we have detB = 4|ν1 − ν2|2 for (i) and detB = 4 for (ii). Hence

substitution of (5.25) into (5.24) gives

aj = Reαj(1 + ie), j = 0, 1, (5.26)

where
α0 =

{
−ν1ν2,
−ν2,

, α1 =

{
ν1 + ν2,
2ν,

, e =

(
0 −1
1 0

)
.

In particular, for ν = i formulae (5.26) agree with (5.18).
Putting a22 = 1 write system (4.1), (5.26) in the form (4.12). Then (4.14) and

(4.23) transform into

a0 = −a11, a1 = −a12 − a21, c = −a21b− bJ.
Here a21 can be chosen to satisfy det c 6= 0. Indeed, by (5.25) we can write

a21b =

(
x x
iy iy

)
with arbitrarily prescribed x, y.
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As a simple verification shows, det c 6= 0 for x 6= y in both cases (i) and (ii).
Thus Neumann problem may appear Fredholm for a strongly coupled system.

On the other hand, condition det c 6= 0 of ellipticity of Neumann problem may
not be fulfilled even for strongly elliptic systems of the type (iii). Indeed, by (5.10)
in this case we have a21 + a12 = −2(Re ν)a22, where a22 is positively determined
and aT

21 = a12. Hence we can put a21 = −(Re ν)a22 − ∆ with a skew-symmetric
matrix ∆. Then c = −a21b−a22ν = [∆− i(Im ν)a22]b. Thus it suffices to show that,
for an appropriate choice of ∆, the matrix in square brackets has zero determinant.
Write

a22 =

(
p r
r q

)
, ∆ =

(
0 sβ
−sβ 0

)
, β = Im ν,

where p, q are positive and pq > r2. Then we have det[∆ − i(Im ν)a22] = 0 for
s2 = pq − r2.

5.3. Lamé system of anisotropic plane elasticity theory. In anisotropic
plane elasticity theory [28], [29] a medium is characterized by stress tensor σ and
deformation tensor ε which can be expressed as symmetric 2× 2-matrix-function s
with the elements written as σii = σi, εii = εi, i = 1, 2 и σ12 = σ21 = σ3,
ε21 = ε12 = ε3. Here εj are expressed through displacement vector u = (u1, u2) by
the formulae

ε1 =
∂u1

∂x
, ε2 =

∂u2

∂y
, 2ε3 =

∂u1

∂y
+
∂u2

∂x
. (5.27)

If one considers a cut in the medium along an arc with normal n = (n1, n2)
then on a unit length of this arc acts force σn called the normal component of
stress tensor. Write columns of 2× 2-matrix σ as σ(1) and σ(2) then vector σn is a
linear combination σ(1)n1 + σ(2)n2. In absence of mass forces matrix σ satisfies the
equilibrium equation s

∂σ(1)

∂x
+
∂σ(2)

∂y
= 0 (5.28)

and is related to deformation tensor ε by Hooke’s law. In the linear theory this
relation is expressed by

σ1 = α1ε1 + α4ε2 + 2α6ε3,
σ2 = α4ε1 + α2ε2 + 2α5ε3,
σ3 = α6ε1 + α5ε2 + 2α3ε3,

α =

 α1 α4 α6

α4 α2 α5

α6 α5 α3

 > 0 (5.29)

with constant coefficients αj, called elasticity modules. Here, as above, inequality
symbol after a matrix means that it is positively determined. In particular, all
principal minors of α including its determinant

detα = α1α2α3 + 2α4α5α5 − α1α
2
5 − α2α

2
6 − α3α

2
4

are positive. Thus αj > 0, j = 1, 2, 3, and α1α2 > α2
4, α1α3 > α2

6, α2α3 > α2
5.

Using (5.27) formulae (5.29) can be written as

σ(i) = ai1
∂u

∂x
+ ai2

∂u

∂y
, i = 1, 2 (5.30)
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with matrix coefficients

a11 =

(
α1 α6

α6 α3

)
, a12 =

(
α6 α4

α3 α5

)
,

a21 =

(
α6 α3

α4 α5

)
, a22 =

(
α3 α5

α5 α2

)
.

(5.31)

Substituting expressions (5.30) into (5.28) we get a system of equation s (4.12) for
displacement vector u = (u1, u2) which is called Lamé system.

Consider block matrix a = (aij)
2
1 ∈ R4×4 composed from matrices (5.31).

Rearranging its columns and rows with numbers 2 and 4 one gets a symmetric
matrix with equal two last columns (and rows) and with the third principal minor
coinciding with matrix α entering in (5.29). Hence matrix a is non-negatively
defined and its rank equals 3. Moreover, the solution space of system ai1ξ1 +ai2ξ2 =
0, i = 1, 2, is spanned by vector e = (e1, e2) ∈ R4 with block components

e1 = (0, 1), e2 = (−1, 0) ∈ R2. (5.32)

Remembering definition 4.2 we see that Lamé system is perfectly elliptic.
As is known typical boundary conditions for Lamé system in a plane domain D

assume that prescribed is either the displacement vector u on its boundary Γ = ∂D
or the normal component σ(1)n1 + σ(2)n2 of stress tensor σ, where n = (n1, n2) is
the unit outer normal on Γ, or else given is a combination of these two conditions.
Taking into account (5.30) this corresponds to Dirichlet problem (4.5) or Neumann
problem (4.38) which are often called the first and the second boundary value
problem , respectively .

In the theory of boundary value problem s of anisotropic plane elasticity one
can distinguish two classical directions. The first one is based on using analytic
functions in the spirit of Kolosov-Muskhelishvili formulae in isotropic case [30],
[31]. The second direction uses the methods of potential theory [29].

Results of preceding sections enable us to develop a functional theoretic approach
based on the use of hyperanalytic function s. In isotropic case it was described in
[32]. In a general anisotropic case this method was used by S.Mitin [33]. Some other
possible approaches were discussed in [34], [35], [36].

For Lamé system (4.12), (5.31) consider matrices b and c appearing in (4.2) and
(4.23). By the strong ellipticity of Lamé system we have det b 6= 0. According to
lemmas 4.3(a) and 4.5 an analogous condition is fulfilled for c. Thus theorem s 4.1
and 4.4 lead to the following result.

Theorem 5.2. For Lamé system, Dirichlet problem is uniquely solvable, while
solutions of homogeneous Neumann problem reduce to polynomials u0(x, y) = c +
λ1xe1+λ2ye2, c ∈ R2, where λj ∈ R and vectors ej are as in (5.32). Correspondingly,
the non-homogeneous problem is solvable if and only if orthogonality conditions
(4.39) are fulfilled with respect to these polynomials.

Matrices b and c discussed earlier may be explicitly described applying lemma 5.2
to Lamé system (4.12), (5.31). Let us make this more concrete. The characteristic
polynomial (4.25) and associated polynomialQ in (5.13) can be written as

P =

(
g1 g3

g3 g2

)
, Q =

(
g2 −g3

−g3 g1

)



53

with polynomials
g1(z) = α1 + 2α6z + α3z

2,
g2(z) = α3 + 2α5z + α2z

2,
g3(z) = α6 + (α3 + α4)z + α5z

2.
(5.33)

Along with 3× 3-matrix α in (5.29) consider matrix

β = (detα)α−1 =

 β1 β4 β6

β4 β2 β5

β6 β5 β3

 ,

which is also positively determined. In more detail:

β1 = α2α3 − α2
5, β2 = α1α3 − α2

6, β3 = α1α2 − α2
4,

β4 = α5α6 − α3α4, β5 = α4α6 − α1α5, β6 = α4α5 − α2α6.
(5.34)

In this notation the scalar characteristic polynomialχ(z) = g1g2−g2
3 can be written

as

χ(z) = h1(z)− zh2(z) + z2h3(z),
h1(z) = β2 − β5z + β4z

2,
h2(z) = β5 − β3z + β6z

2,
h3(z) = β4 − β6z + β1z

2.
(5.35)

Notice that polynomial s hj(z), j = 1, 2, 3, never vanish simultaneously. Indeed,
if h1(z) = h2(z) = h3(z) = 0 then (1,−z, z2) is a solution of the homogeneous
system with determinant equal to det β. However this contradicts the inequality
det β > 0.

Simple computations show that for matrix

R(z) = −(a21 + a22z)Q(z) =

(
α6 + α3z α3 + α5z
α4 + α5z α5 + α2z

)(
−g2 g3

g3 −g1

)
in (5.13) we get the following expression:

R =

(
−zh3 −h1

h3 h2 − zh3

)
. (5.36)

In particular, pol s gj(z), j = 1, 2, 3, also do not vanish simultaneously. Thus for
Lamé system only first two cases in (5.20) are actually possible. Notice that in the
case (i) one of the numbers h3(ν1), h3(ν2) is certainly non-zero as only one of the
roots of h3 may lie in the upper half-plane . In both cases (i), (ii) matrices b and
c can be described as follows.

Theorem 5.3. Let for definiteness h3(ν2) 6= 0. Then

b =

(
g2(ν1) g2(ν2)
−g3(ν1) −g3(ν2)

)
, c =

(
−ν1h3(ν1) −ν2h3(ν2)
h3(ν1) h3(ν2)

)
, h3(ν1) 6= 0,

b =

(
−g3(ν1) g2(ν2)
g1(ν1) −g3(ν2)

)
, c =

(
−ν1h2(ν1) −ν2h3(ν2)
h2(ν1) h3(ν2)

)
, h3(ν1) = 0.

(ii) Moreover,

b =

(
g2(ν) g′2(ν)
−g3(ν) −g′3(ν)

)
, c =

(
−νh3(ν) −h3(ν)− νh′3(ν)
h3(ν) h′3(ν)

)
.
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In particular, we see that here determinants of matrices b and c are always non-
zero, which was earlier derived from general reasons.

Proof. (i) If h3(ν) 6= 0 then by (5.36) the first column of Q(ν) is non-zero. If
h3(ν) = 0 then by (5.35) each of the numbers h2(ν), h3(ν) is non-zero, hence the
second column of Q is non-zero. Thus the desired conclusion follows from lemma
5.2.

(ii) Acting as in (i) it is sufficient to show that h3(ν) 6= 0. Suppose the contrary:
χ(ν) = χ′(ν) = h3(ν) = 0. Then by (5.35) we have hj(ν) 6= 0, j = 1, 2. Putting
p = α6 + α3ν, q = α3 + α5ν from (5.36) we deduce that pg2(ν) − qg3(ν) = 0,
−pg3(ν)+qg1(ν) = h1(ν). Since g1(ν)g2(ν) = g2

3(ν) and pq 6= 0, this is only possible
if g2(ν) = g3(ν) = 0. Using equalities χ = g1g2 − g2

3, χ
′ = g′1g2 + g1g

′
2 − 2g3g

′
3 we

see that g1(ν) = 0, which gives a contradiction.

5.4. Orthotropic and anisotropic cases. An elastic medium is called orthotropic
if coordinate axes are the axes of symmetry. This case corresponds to

α5 = α6 = 0 (5.37)

for modules of elasticity of matrix α appearing in Hooke’s law (5.29). In particular,matrix
α is block-diagonal. Then expressions (5.33) and (5.35) are simplified:

g1 = α1 + α3z
2, g2 = α3 + α2z

2, g3 = (α3 + α4)z,
h1 = β2 + β4z

2, h2 = −β3z, h3 = β4 + β1z
2,

χ = β2 + (β3 + 2β4)z2 + β1z
4.

(5.38)

In particular, the roots νj of biquadratic equationχ(z) = 0 are defined from

2β1ν
2 = −β3 − 2β4 ±

√
γ, (5.39)

where γ = (β3+2β4)2−4β1β2. In particular, for γ ≥ 0 the roots lie on the imaginary
axis. The case (ii) of multiple roots corresponds to γ = 0, i.e. β3 + 2β4 = 2

√
β1β2.

By (5.34) this is equivalent to

2α3 + α4 =
√
α1α2. (5.40)

From (5.38), (5.39) follows that 2h3(ν) = −β3 ±
√
γ. Hence h3(νj) = 0 is

equivalent to β3β4 = β1β2 − β2
4 , or, in terms of α, to α3 + α4 = 0. Thus (5.40)

corresponds to theorem5.3(ii), while the first and second cases of theorem5.3(i)
are obtained, respectively , for α3 + α4 6= 0 and α3 + α4 = 0.

As to the formulae for matrices b и c given in the theorem, one should substitute
there expressions (5.38).

Suppose that in addition to (5.37) are fulfilled relations α1 = α2 = α4 + 2α3 or,
equivalently,

α1 = α2 = λ+ 2µ, α3 = µ, α4 = λ (5.41)

with some positive λ and µ. Then we get the isotropic case when each straight
line is an axis of symmetry of medium. In such case linear relations (5.27), (5.29)
transform into

σ1 = λ

(
∂u1

∂x
+
∂u2

∂y

)
+ 2µ

∂u1

∂x
,

σ2 = λ

(
∂u1

∂x
+
∂u2

∂y

)
+ 2µ

∂u2

∂y
,

σ3 = µ

(
∂u1

∂y
+
∂u2

∂x

)
, (5.42)
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and Lamé system can be written in the form

µ∆u1 + (λ+ µ)
∂

∂x

(
∂u1

∂x
+
∂u2

∂y

)
= 0,

µ∆u2 + (λ+ µ)
∂

∂y

(
∂u1

∂x
+
∂u2

∂y

)
= 0.

(5.43)

In this case (5.40) is obviously fulfilled so that ν is multiple and equal to i.
Thus we are in the conditions of case (ii) with Jordan block J corresponding to
eigenvalue ν = i.

From (5.34), (5.41) we have β1 = β2 = µ(λ + 2µ), β3 = (λ + 2µ)2, β4 = −µλ,
β5 = β6 = 0. Thus by theorem5.3(ii)

b =

(
−(λ+ µ) 2i(λ+ 2µ)
−i(λ+ µ) −(λ+ µ)

)
, c = 2µ

(
i(λ+ µ) 2λ+ 3µ
−(λ+ µ) i(λ+ 2µ)

)
.

Adding to the second column the first multiplied by 2i(λ + 2µ)/(λ + µ) and
reducing the common scalar multiple −(λ+ µ) these matrices can be also brought
to the form [37]

b =

(
1 0
i −Λ

)
, c = µ

(
2i Λ− 1
2 i(Λ + 1)

)
, Λ =

λ+ 3µ

λ+ µ
. (5.44)

By theorem3.2 the general solution of Lamé system (5.43) is expressed through
a J−analytic function by formula

u = Re bφ. (5.45)

On the other hand, we have the classical formulae due to Kolosov-Muskhelishvili
[30] which give representation of σ and u by a pair of analytic function s:

σ1 + σ2 = 4Reχ′1(z),

σ2 − σ1 + 2iσ3 = 2[zχ′′1(z) + χ′2(z)],

2µ(u1 + iu2) = Λχ1(z)− zχ′1(z)− χ2(z).

(5.46)

Connection of these formulae with (5.45) is established using theorem2.1 in the
form (2.17). In our case formula (2.17) takes the form

φ(z) = ψ(z) +
z

2

(
0 i
0 0

)
ψ′(z),

Substituting this into (5.45) we get for the components of vector

u = Re bφ = Re

(
1 0
i −Λ

)
ψ +

1

2
Re z

(
0 i
0 −1

)
ψ′

expressions
2u1 = ψ1 + ψ1 + (izψ′2 − izψ

′
2)/2,

2u2 = iψ1 − Λψ2 − iψ1 − Λψ2 − (zψ′2 + zψ
′
2)/2,

and, respectively , 2(u1 + iu2) = 2ψ1 − iΛ(ψ2 + ψ2) − izψ
′
2. Putting here χ1 =

−µiψ2, χ2 = −2µψ1 − iΛµψ2, we come to the last equality in (5.46).
As to the first two equalities in (5.46), they can be obtained from the last

one using (5.42). It is also possible to use vector-function v conjugate to u as in
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subsection 4.3. By theorem4.2 it is expressed through a J-analytic functionφ by
formula (4.24) with matrix c from (5.42). From (5.30) the tangential derivative of
function v along a smooth arc coincides with the normal component of stress tensor

dv

ds
= σn, (5.47)

which gives the desired expression for elements σj of matrix σ.

6. Douglis-Nirenberg systems

6.1. Analog of Jordan’s theorem. Let a natural number l be decomposed into
sums of non-negative integers l = l1 + l2 = m1 + m2. Given matrices aijk ∈ Rmi×lj

consider a system of equation s

a11
0

∂2u1

∂x2

+ a11
1

∂2u1

∂x∂y
+ a11

2

∂2u1

∂y2

+ a12
0

∂u2

∂x
+ a12

1

∂u2

∂y
= 0,

a21
0

∂u1

∂x
+ a21

1

∂u1

∂y
= 0,

(6.1)

for real lj-vector-function s uj,j = 1, 2. As usual under a regular solution are meant
function s u1 ∈ C2,u2 ∈ C1 satisfying (6.1). As in (3.2), (3.3), with system (6.1)
one can associate its matrix characteristic polynomial

P (z) =

(
a11

0 + a11
1 z + a11

2 z
2 a12

0 + a12
1 z

a21
0 +a21

1 z 0

)
(6.2)

and scalar polynomial
χ(z) = detP (z). (6.3)

System (6.1) is called elliptic in the sense of Douglis-Nirenberg (in short DN-
elliptic) if the degree of polynomialχ is equal to l1+m1 and characterisitc equationχ(z) =
0 does not have real roots. Such systems were introduced by M.Douglis and L.Nirenberg
in 1995 in a slightly different form [38]. For l2 = 0, such systems were earlier
considered by I.Petrovsky [39].

Lemma 6.1. If system (6.1) is ND-elliptic then number l1 + m1 is even and
m2 ≤ l1, l2 ≤ m1. In particular,

2s = l1 +m1 = m1 +m2 + s0 = l1 + l2 + s0 (6.4)

for some s0 ≥ 0.
Proof. According to (6.2) product

diag(1 ∈ Cm1×m1 , z ∈ Cm2×m2) P (z) diag(1 ∈ Cl1×l1 , z ∈ Cl2×l2)

is a matrix polynomial P̃ (z) = P̃0 + P̃1z + P̃2z
2 with highest coefficient

P̃2 =

(
a11

2 a12
1

a21
1 0

)
.

By definition, det P̃ (z) is a polynomial of degree 2l = m2 + l2 + m1 + l1 hence
det P̃2 6= 0. This implies that rows of a21

1 are linearly independent so that m2 ≤ l1.
Analogously, considering columns of a12

1 we get inequality l2 ≤ m1. Finally, the fact
that m1 + l1 is even follows from the reality of coefficients of polynomialχ(z).
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As in subsection 1.3 roots ν of characteristic equationχ(z) = 0 are called the
eigenvalues of polynomialP (z) of corresponding multiplicity. The order of ν is the
order of pole of matrix-functionP−1(z) at z = ν.

The main aim of this subsection is to establish an analog of theorem1.5 for
polynomial (6.2). Write it in the form

P (z) = P0 + P1z + P2z
2 (6.5)

Unlike to subsection 1.3 determinant of P2 vanishes. Let J ∈ Cs×s be a Jordan
matrix with eigenvalues in the upper half-plane . By analogy with subsection 1.3
we say that matrix b ∈ C(l1+l2)×s transforms P (z) to Jordan form J if

P0b + P1bJ + P2bJ
2 = 0. (6.6)

As in theorem1.5 it is easy to see that columns of b are given by the chains of
eigenvectors and adjoint vectors of polynomialP (z), i.e. by vectors x0, x1, . . . , xr ∈
Cs satisfying equalities (1.26):

P (ν)x0 = 0, P (ν)x1 + P ′(ν)x0 = 0,

P (ν)xi + P ′(ν)xi−1 + (1/2)P ′′(ν)xi−2 = 0, i = 2, ..., r,

where is used that P (k) = 0 for k > 2.
Here number ν corresponds to the eigenvalue of the corresponding Jordan block.

By the first equality it is also an eigenvalue of polynomialP (z).

Theorem 6.1. There exists matrix b =↓ (b1, b2), bj ∈ Clj×s, transforming polynomialP (z)
to Jordan normal form J. Matrix J has the same eigenvalues that polynomialP (z)
in the upper half-plane {Im z > 0} and their multiplicities and orders coincide.
Columns of (2l1 + l2)× 2s-matrix B defined as

B = (B0, B0), B0 =↓ (b1, b1J, b2), (6.7)

are linearly independent .

Proof. Comparing (6.5) with the block form (6.2) equality (6.6) can be written
as : ∑

k,j
aijk bjJ

k = 0, i = 1, 2, (6.8)

where bj ∈ Clj×s are determined by (6.7). With polynomial (6.2) are associated two
block matrices

a0 =

 0 −1 0

a11
0 a11

1 a12
0

a21
0 a21

1 0

 , a1 =

 1 0 0

0 a11
2 a12

1

0 0 0

 , (6.9)

which according to (6.4) are square matrices of order 2l1 + l2= 2s+m2. By a direct
verification one gets that

(a0 + a1z)

l1 l1 l2 0 1 0

1 z 0

0 0 1

 =


-1 | 0

−−−−−|− −−
a11

1 + a11
2 z

a21
1

|
| P(z)

 . (6.10)
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This identity which is an analog of (1.25) shows that polynomial s P (z) and
a0 + a1z have the same eigenvalues with the same multiplicities and orders. It is
also easy to see that adopting notation (6.7) equalities (6.8) and

a0B0 + a1B0J = 0 (6.11)

are equivalent. Thus it suffices to prove the theorem for affine polynomial a0 + a1z.
According to (6.9) matrices aj have block structure

a0 =↓ (a1
0, a

2
0), a1 =↓ (a1

1, 0), a1
j ∈ R2s×(2s+m2). (6.12)

By (6.5) rows of a2
0 are linearly independent , hence there existm2 linearly independent columns.

Choose an invertible matrix d such that a0 d is block-diagonal with identity (m2×
m2)-block in the right low corner and a1 d is a column with vanishing last m2

elements.
Denoting ajd and d−1B0 again by aj and B0 we may count that a2

0 = (0, 1),
1 ∈ Rm2×m2 . Then by putting B0 =↓ (B1

0 , 0), B1
0 ∈ C2s×s (6.12) is reduced to the

case
a1

0 + a1
1B

1
0J = 0 (6.13)

of 2s × 2s-matrices a1
j . Since equation det (a1

0 + a1
1z) = 0 has exactly s roots in

the upper half-plane and det a1
1 6= 0, equality (6.13) expresses the statement of

theorem1.4.

6.2. Representation of solutions. For the general solution u of equation (6.1)
we have an analog of theorem3.2. As in §4 we notice that for n = 2 relations (3.12)
define the corresponding subspaces in Cs.

Theorem 6.2. (a) Adopting notation (6.7) each solution u = (u1, u2) of equation (6.1)
in simply connected domain D is representable in the form

u1 = Re b1φ, u2 = Re b2φ
′ (6.14)

with some J-analytic functionφ and u = 0 implies φ ∈ Cs. Function φ is uniquely
representable as a sum φ0 + c, where c ∈ Cs and φ0 satisfy conditions

φ0(z0) = 0, Re b1Jc = Re b2c = 0, (6.15)

at a fixed point z0 ∈ D.
(b) Let D be a m-connected domain, m ≥ 2, and points zj, j = 1, . . . ,m − 1,

belong to different components of the complement C\D. Then in representation (6.14)
functionφ is multi-valued and uniquely representable as a sum

φ(z) = φ0(z) + c+
m−1∑
j=1

ln[z − zj]cj, c, cj ∈ Cs, (6.16)

where φ0 is single-valued and, in addition to (6.15), conditions Re b1cj = Re b1cj =
0, j = 1, . . . ,m− 1, are fulfilled.

Proof. Let (u1, u2) be a solution of (6.1) and

U =

(
∂u1

∂x
,
∂u1

∂y
, u2

)
. (6.17)
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Comparing (6.1) with (6.9),(6.12) one sees that vector-functionU satisfies system
of equation s

a1
0

∂U

∂x
+ a1

1

∂U

∂y
= 0, a2

0U = 0. (6.18)

Analogously, system (6.11) can be written as :

a1
0B0 + a1

1B0J = 0, a2
0B0 = 0. (6.19)

Consider in R2l1+l2 subspace X of vectors ξ, a2
0ξ = 0. Since rows of a2

0 are linearly
independent its dimension equals 2l1 + l2 − m2 = 2s. By (6.18) transformation
ξ → ReB0ξ acts as Cs → X. By theorem6.1 columns of matrix B = (B0, B0) are
linearly independent hence this transformation defines an isomorphism of Cs onto
X. Consequently, equality

U = ReB0ψ (6.20)

establishes a one-to-one correspondence between (2l1+l2)− vectors U satisfying the
second equation in (6.18) and complex s-vector-function s ψ. Substituting (6.20) in
the first equationwe get

0 = a1
1ReB0

∂ψ

∂y
− J ∂ψ

∂x
.

Comparing (6.5) with (6.9), (6.12) one sees that equalities a1
1ξ = 0, a2

0ξ = 0 take
place only if ξ = 0. In particular, the figure bracket in the latter expression vanishes,
which means J−analyticity of functionψ. The remaining part of the argument is
the same in in the proof of theorem3.2.

Similarly, the remark at the end of subsection 3.1 remains valid. Namely, let D
be a neighbourhood of ∞ and solution u1, u2 satisfies in some neighbourhood of
this point estimate ∣∣∣∣∂u1

∂x

∣∣∣∣+

∣∣∣∣∂u1

∂y

∣∣∣∣+ |u2| ≤ C|z|−2.

Then functionφ in (6.14) does not have branching at∞, i.e.
∑

j = 0 in (6.16) and
its order at ∞ equals 0 so that it is bounded in a neighbourhood of ∞.

A complex version of (6.1) can be studied in the same way as in subsection 3.2.
In this case number l1 +m1 need not be even and (6.4) is changed by equalities

s+ + s− = l1 +m1 = m1 +m2 + s0 = l1 + l2 + s0,

where s+(s−) is the number of roots of characteristic equationχ(z) = 0 in the upper
(lower) half-plane . Some changes should also be done in theorem6.1. Equality (6.7)
should be changed to

B = (B+, B−), B± =↓ (b±1 , b
±
1 J
±, b±2 ), b±j ∈ Clj×s± .

Matrices J± correspond to the roots of polynomial (6.3) in the upper and lower
half-plane s. Matrix relation (6.6) should hold for b± =↓ (b±1 , b

±
2 ) and J± :

P0b
± + P1b

±J± + P2b
±(J±)2 = 0.

In this notation an analog of theorem6.2 holds in the complex case. One only
needs to change (6.14) by

u1 = b+
1 φ

+ + b−1 φ
−, u2 = b+

2 (φ+)′ + b−2 (φ−)′,

and make corresponding changes in conditions (6.15) (as it was done in subsection 3.2).
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The case when J is a direct sum of blocks can be treated analogously. The scalar
case l1 = l2 = 1 corresponds to situation in subsection 3.3.

Consider now systems elliptic in the sense of Petrovsky which are obtained from
(6.1) for l2 = 0:

a1
0

∂2u

∂x2
+ a1

1

∂2u

∂x∂y
+ a1

2

∂2u

∂y2
= 0,

a2
0

∂u

∂x
+ a2

1

∂u

∂y
= 0,

(6.21)

where aik ∈ Rmi×l, m1 + m2 = l. For such systems, matrix b2 in (6.7) is absent
and representation (6.14) for their solutions coincides with representation (3.7) for
systems of classical type (3.1).

In the complex case system (6.21) can be approached differently. Namely, applying
Cauchy-Riemann operator ∂/∂z to the second equation one gets a system

a1
0

∂2u

∂x2
+ a1

1

∂2u

∂x∂y
+ a1

2

∂2u

∂y2
= 0,(

∂

∂y
− i ∂

∂x

)(
a2

0

∂

∂x
+ a2

1

∂

∂y

)
= 0,

which is elliptic in the classical sense.
Thus theorem6.2 for system (6.21) can be deduced from theorem3.2. In principle,

analogous considerations are applicable to general system (6.1) if, in addition to
differentiation, one makes a substitution

u2 =

(
∂

∂y
− i ∂

∂x

)
ũ2

in the first equation of the system. Finding then representationu1, ũ2 of the resulting
system as in §3 one can get representation for functionu2 by differentiating ũ2. In
a slightly different form theorem6.2 was established by N.Zhura [15].

6.3. Conjugate functions. Concepts from subsection 4.3 can be naturally extended
to systems (6.1). Suppose we are given li-vector-function s ui, vi,i = 1, 2, subject to
linear relations

∂v1

∂x
= d11

∂u1

∂x
+ d12

∂u1

∂y
+ d13u2,

∂v1

∂y
= d21

∂u1

∂x
+ d22

∂u1

∂y
+ d23u2,

v2 = d31
∂u1

∂x
+ d32

∂u1

∂y
+ d33u2,

(6.22)

where dij are constant matrices of corresponding orders. The vector-function v =
(v1, v2) is uniquely determined from u by these (up to an additive constant vector
(ξ, 0)) and it is called conjugate to u.

Square (2l1 + l2)× (2l1 + l2)-matrix d = (dij) is called admissible for system (6.1)
if each of solutions u = (u1, u2) of the latter admits conjugate function . Description
of such matrices can be given as in lemma 4.4

Lemma 6.2. Matrix d is admissible for (6.1) if and only if

(d11b1 + d12b1J + d13b2) J = d21b1 + d22b1J + d23b2. (6.23)
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Granted this condition function v conjugate to (6.14) is given by

v1 = Re c1φ+ ξ, v2 = Re c2φ
′ (6.24)

with matrices c1 = d11b1 + d12b1J + d13b2, c2 = d31b1 + d32b1J + d33b2.
Condition (6.23) is fulfilled if there exist matrices ãj such that in the block

structure (6.9) their first rows coincide with the first row of aj and

d aj = ãj d, j = 0, 1. (6.25)

In particular, if d commutes with aj then function v is solution of the same system
(6.1).

Proof. Existence of function υ in (6.22) is equivalent to

∂

∂y

(
d11

∂u1

∂x
+ d12

∂u1

∂y
+ d13u2

)
−

− ∂

∂x

(
d21

∂u1

∂x
+ d22

∂u1

∂y
+ d23u2

)
≡ 0.

By theorem6.2 each solution u of (6.1) is representable in the form (6.14). Substituting
it in the previous identity rewrite it as

ReQφ′′ = 0,

where Q is the difference between the left hand side and right hand side of (6.23).
Since J-analytic functionφ is arbitrary, this implies Q = 0.

For the second part of the lemma suppose that (6.25) holds with indicated ãj.
Then multiplying (6.11) from the left by d we get a similar equality

ã0B̃0 + ã1B̃0J = 0 (6.26)

for B̃0 = dB0. As in the proof of theorem6.1, we conclude that B̃0 has a block
structure analogous to (6.7). This , in particular, implies (6.23).

Let b̃j be determined by B̃0 as in (6.7). Then for ãj = aj equality (6.26) ca
be rewritten in block form (6.8), where bj should be marked by wave. Putting
c1 = b̃1, c2 = b̃2 in (6.24) we come to equation (6.1) for v.

If matrix d is invertible, then analogously to (4.32) condition (6.25) can be
rewritten in terms of relations between elements of matrices a and d. According
to block structure (6.9) represent vectors ξ ∈ R2l1+l2 in the form (ξ1, ξ2, ξ3), where
ξ1, ξ2 ∈ Rl1 , ξ3 ∈ Rl2 . Then element of the first row of aj in (6.9) can be described
by conditions

(a1ξ)1 = −ξ2, (a2ξ)1 = ξ1.

The same conditions should be satisfied by matrices ãj appearing in (6.25). Putting
ξ = dη assumption (6.25) can be changed to conditions (d a1 η)1 = −(d η)2, (d a2 η)1 =
(d η)1 or, in matrix notation,

(d a1)1j = −d2j, (d a2)1j = d1j, j = 1, 2, 3.

In order to calculate here matrix products write l1 × (l1 + l2)−matrix (d12, d13) in
block form

(d(12), d(13)), d(12) ∈ Rl1×m1 , d(13) ∈ Rl1×m2 .
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Then taking into account (6.9) preceding equalities take the form

d(12)a
11
0 + d(13)a

21
0 = −d21, d(12)a

11
1 + d(13)a

21
1 = d11 − d22,

d(12)a
12
0 = −d23, d(12)a11

2 = d12, d(13)a12
2 = d13.

(6.28)

Hence if matrix d is invertible and, in notation (6.27), is related to a0, a1 by
relations (6.28) then this matrix is admissible for system (6.1).

It is easy to write down a system of equation for conjugate function υ. By
assumption matrices ãj have block structure

ã0 =
l1
m1

m2

l1 l1 l2 0 −1 0
p11 p12 p13

p21 p22 p23

, ã1 =

 1 0 0
q11 q12 q13

q21 q22 q23

 .

Differentiating the second equation in (6.18) we get system

a0
∂U

∂x
+ a1

∂U

∂y
= 0.

Since ãj = dajd
−1 we have

ã0
∂V

∂x
+ ã1

∂V

∂y
= 0, V = dU.

By (6.22) vector V is constructed from function s v1, v2 as in (6.17), hence taking
into account expressions for ãj, for these function s we get the following equation s:

pi1
∂2υ1

∂x2
+ (pi2 + qi1)

∂2υ1

∂x∂y
+ qi2

∂2υ1

∂y2
+

+ pi3
∂υ2

∂x
+ qi3

∂υ2

∂y
= 0, i = 1, 2.

Each of them has the same form as the first equation of system (6.1).
Despite relations (6.28) express conditions of compatibility of d with (6.1),

conditions (6.23) are practically more convenient.

6.4. Stokes system. Linearized two-dimensional stationary Navier-Stokes system
describing viscous incompressible fluid [40] is called Stokes system. In dimensionless
variables it has the form

∂2u1

∂x2
+
∂2u1

∂y2
− ∂p

∂x
= 0,

∂2u2

∂x2
+
∂2u2

∂y2
− ∂p

∂y
= 0,

∂u1

∂x
+
∂u2

∂y
= 0,

(6.29)

where u = (u1, u2) is velocity vector and p is the pressure. With respect to u1 =
u,u2 = p this system is elliptic in the sense of Douglis-Nirenberg of the form (6.1)
with m1 = l1 = 2, m2 = l2 = 1.
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Its solutions can be represented using analytic functions [40]. Put ω = u1 + iu2

and add the second equation in (6.29) multiplied by i to the first one. Then system
(6.29) can be written in the form

2
∂2ω

∂z∂z
− ∂p

∂z
= 0,

∂ω

∂z
+
∂ω

∂z
= 0, (6.30)

which shows analyticity of function

4ϕ′ = 2
∂ω

∂z
− p.

Since

4ϕ′ = 2
∂ω

∂z
− p,

for p we get expression
p = −4Reϕ′. (6.31)

Eliminating p from preceding equalities and using the second equation in (6.30) we
obtain

∂ω

∂z
= ϕ′ − ϕ′,

hence
ω = ϕ − zϕ′ + ψ (6.32)

with some analytic functionψ. Representation (6.31) , in particular, shows that
function p is harmonic.

On the other hand, Stokes system (6.30) can be treated using results of subsection 6.2.
Putting u1 = u, u2 = p, write characteristic polynomial (6.2) of this system as

P (z) =

 1 + z2 0 −1
0 1 + z2 −z
1 z 0

 .

Since detP (z) = (1+z2)2, characteristic polynomial has in the upper half-plane one
root ν = i of multiplicity 2. By theorem6.1 matrix b ∈ C3×2 transforming P (z) to
Jordan form is constructed from eigenvector x0 and adjoint vector x1:

P (i)x0 = 0, P (i)x1 + P ′(i)x0 = 0.

Thus

b =

 1 0
i −1
0 2

 , J =

(
i 1
0 i

)
,

and representation (6.14) from theorem6.2 takes the form

u = Re

(
1 0
i −1

)
φ, p = Re (2iφ′2), (6.33)

where φ2 is the second component of 2-vector φ.
By theorem2.1 functionφ can be expressed via an analytic vector-functionψ by

formula (2.17)

φ = ψ +
iz

2

(
0 1
0 0

)
ψ′.
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Substituting this into (6.33) we get

2u1 = Re(2ψ1 + izψ′2), 2u2 = Re(2iψ1 − 2ψ2 − zψ′2),
p = Re(2iψ′2),

or putting ω = u1 + iu2,

2ω = ψ1 − 4i(ψ2 + ψ2) + ziψ′2, p = Re(2iψ′2).

For 2ϕ = −iψ′2, 2ψ = ψ1 + 4iψ2, these formulae transform into (6.31), (6.32).
By analogy with subsection 5.3 introduce stress tensor

T =

(
T1 T3

T3 T2

)
(6.34)

with elements

T1 =
∂u1

∂x
− p

2
, T2 =

∂u2

∂y
− p

2
, T3 =

1

2

(
∂u1

∂y
+
∂u2

∂x

)
.

With a solution (u, p) of Stokes system one can associate pair of function s (v, q)
by formulae

∂v

∂s
= Tn, q =

∂u1

∂y
− ∂u2

∂x
, (6.35)

first of which has the same sense as equality (5.47). These formulae can be rewritten
in the form (6.22). Namely, denoting by T(j), j = 1, 2, columns of matrix T , its
definition (6.34) can be rewritten in the form

T(1) =

(
1 0
0 1/2

)
∂u

∂x
+

(
0 0

1/2 0

)
∂u

∂y
+

(
−1/2

0

)
p,

T(2) =

(
0 1/2
0 0

)
∂u

∂x
+

(
1/2 0
0 1

)
∂u

∂y
+

(
0
−1/2

)
p.

Writing out the first equation (6.35)

T(1) n1 + T(2) n2 =
∂υ

∂x
(−n2) +

∂υ

∂y
n1,

we arrive to relations (6.22)

∂υ

∂x
=

(
0 −1/2
0 0

)
∂u

∂x
+

(
−1/2 0

0 −1

)
∂u

∂y
+

(
0

1/2

)
p,

∂υ

∂y
=

(
1 0
0 1/2

)
∂u

∂x
+

(
0 0

1/2 0

)
∂u

∂y
+

(
−1/2

0

)
p,

q = (0,−1)
∂u

∂x
+ (1, 0)

∂u

∂y

(6.36)

for pair (v, q). Direct verification shows that the main condition (6.23) of lemma
6.2 holds for given matrices dij and matrices

b1 =

(
1 0
i −1

)
, b2 = (0, 2i), J =

(
i 1
0 i

)
,



65

appearing in (6.33). Adopting notation (6.24) we also have

c1 =

(
−i 0
1 i

)
= −i b1, c2 = (0, 2) = i b2.

Thus pair (υ, q) admits a representation analogous to (6.33):

v = Im

(
1 0
i −1

)
φ, q = Im(2iφ′2), (6.37)

and , in particular, it is a solution of the same system (6.29). It is not difficult
to show that matrix d in (6.36) commutes with matrices (6.9) corresponding to
system (6.29). This agrees with the last statement of lemma 6.2.

Relations (6.35) are natural analogs of Cauchy-Riemann conditions for the real
and imaginary parts of an analytic function . Along with representation s (6.33),
(6.37) they were obtained by N.Zhura and used for investigation of new non-local
problems of hydromechanics [41]. Notice that changing in (6.33), (6.37) functionφ
to iφ Cauchy-Riemann conditions (6.35) can be reversed. In particular, we have

p =
∂v2

∂x
− ∂v1

∂y
, q =

∂v1

∂y
− ∂v2

∂x
.

From the physical point of view this enables one to interpret pressure as the curl
of conjugate velocity vector v while the conjugate pressure is equal to the minus
curl of the original velocity vector.
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