Литература

- 1. Деградация и охрана почв / Под ред. Г.В. Добровольского. М.: Изд.-во МГУ, $2002.-654~\mathrm{c.}$
- 2. Драган Н.А. Водно-солевой режим почв орошаемых виноградников Присивашья Крыма: автореф. Симферополь, 1972. 24 с.
- 3. Драган Н.А. Почвенные ресурсы Крыма / Н.А. Драган // Научная монография. 2-е изд. Доп. Симферополь: Доля, 2004. 208 с.

УДК 622...271.4:622.882:502/504(470.323)

ТЕХНОГЕННАЯ ТРАНСФОРМАЦИЯ ЛАНДШАФТОВ В РЕГИОНЕ КМА В РЕЗУЛЬТАТЕ ГОРНОПРОМЫШЛЕННОЙ ДЕЯТЕЛЬНОСТИ

Дроздова Е.А., Корнилов А.Г., Добровольская О.А.

Белгородский государственный национальный исследовательский университет, Россия

Активное развитие горнопромышленной деятельности в 60-70е годы 20 века на территории районов КМА привело к интенсивному и быстрому преобразованию существующих природных ландшафтных комплексов в техногенные ландшафты и бедленды. Основные разрабатываемые и перспективные пласты железистых кварцитов располагаются на территории четырех железорудных районов — Белгородском, Старооскольском, Новооскольском и Курско-Орловском, трех областей (Белгородской и Курской) [2].

В настоящий момент в районах активной разработки железных руд можно выделить несколько групп антропогенно преобразованных ландшафтов. К первой категории относятся техногенные ландшафты, коренным образом преобразованные человеком, с нарушенной литогенной основой и не имеющих ничего общего с первоначальным, природным обликом. Это в первую очередь, ландшафты в пределах карьеров, отвалов, хвостохранилищ. Ко второй категории можно отнести природно-техногенные ландшафты, характеризующиеся сниженной биопродуктивностью в связи с загрязнением всех компонентов отходами горного производства и повышенной активностью экзогенных геологических процессов. Такие ареалы сосредоточены вблизи промышленных зон, это промплощадки, пустыри, зоны с интенсивной транспортной сетью.

Таким образом, после 50 лет активной горнодобывающей деятельности в регионе КМА, в районах размещения горнодобывающих предприятий господствуют техногенные геоморфологические формы в виде карьеров, отвалов вскрышных пород, гидроотвалов и хвостохранилищ. Антропогенный рельеф характеризуется большим, чем природный, вертикальным расчленением поверхности, что выражаетсяв трансформации естественных характеристик подземного и поверхностного стока, микроклимата и местного климата. По уровню антропогенного вмешательства Старооскольско-Губкинскийпромышленный район Белгородской области и Железногорский район Курской областиотносятся к категории «антропогенных сильноизмененных», «природнотехногенных» ландшафтов [2].

Для проведения детального анализа современной ландшафтно-функциональной структуры районов горной добычи КМА на основе данных космосьемки разработаны картосхемы функционального зонирования региона КМА. Основное внимание уделено Старооскольско-Губкинскому и Железногорскому промышленным узлам, как территориям открытой добычи железистых кварцитов и Яковлевскому руднику как объекту шахтной добычи (табл.).

Экспликация земель зоны влияния промышленных объектов

Промышленная зона	КМА, в целом		Михайловский ГОК (20 км зона)		Стойленский и Лебедин- ский ГОК (20 км зона)		Яковлевский рудник (20 км зона)	
Вид земель	Площадь, в га	Террито- рия, в %	Площадь, в га	Территория, в %	Площадь, в га	Территория, в %	Площадь, в га	Территория, в %
Лесные массивы	392804,2	7,6	28978,6	12,8	35180,6	8,7	10282,7	5,8
Байрачные леса	148203,7	2,9	17787,9	7,9	1021,7	0,3	3570,3	2,0
Овражно-балочные формы	444521,1	8,6	15098,1	6,7	32969,7	8,1	17316,3	9,8
Пашни	3235041,0	62,6	103758,4	45,9	252820,5	62,1	118158,6	66,7
Сенокосы и пастбища	361709,3	7,0	19449,4	8,6	27042,1	6,7	11256,9	6,4
Населенные пункты	437300,6	8,4	27439,2	12,2	36350,1	8,9	12708,9	7,2
Транспортные магистрали	11978,0	0,2	1040,5	0,5	1410,5	0,3	663,0	0,4
Горно- промышленные территории	18974,4	0,4	6233,5	2,8	13134,8	3,2	153,4	0,1
Болота и заболоченные участки	66630,1	1,3	1998,7	0,9	1887,9	0,5	1154,7	0,7
Водные объекты, в том числе:	54699,3 37631,4	1,0 0,7	3836,5	1,7	4735,5	1,2	1651,8	0,9
- пруды, озера	17067,9	0,3	3155,6	1,4	3253,8	0,8	1234,6	0,7
- реки	·	<u> </u>	680,9	0,3	1481,7	0,4	417,2	0,2
Итого	5171861,7	100	225620,8	100	406553,4	100	176916,6	100

В общей структуре КМА на долю техногеннопреобразованных земель приходиться лишь 0,4 % общей площади, в то время как на территории зон открытых разработок эта цифра гораздо выше. Так в 20 км зоне влияния Михайловского ГОКа горнопромышленные ландшафты занимают более 6 000 га, это 2,8 % территории, в совокупности с высокой степенью распаханности и заселенности (под пашнями 46% территории и под населенными пунктами более 12 %) в целом общий ландшафтный фон образуют техногенные, агроландшафты и селитебные ландшафты. Нарушенные земли подвержены интенсивной водной и ветровой эрозии, что представляет экологическую опасность для окружающих естественных и сельскохозяйственных угодий, селитебных территорий. Формируются чуждые для зоны экотопы, которые заселяются, преимущественно, сорными и адвентивными видами. На долю естественных экосистем в этом районе приходиться около 30 % территории, это преимущественно лесные, овражнобалочные и пойменные ландшафты.

Несколько выше доля техногенных ландшафтов в Староосокльско-Губкинском промышленном узле (включающем Лебединский и Стойленский карьерные комплексы) – более 3% площади в 20 км зоне воздействия, при этомбольшую площадь занимает пашня (62 %), что в совокупности с территорией под населенными пунктами составляет 75 % преобразованных земель. В непосредственной близости от Лебединского комбината (в 1 км от промышленных объектов) находиться заповедный участок «Ямская степь» заповедника кластерного типа «Белогорье», уникальные степные ландшафты которого также отчасти деградируют из-за подъема уровня грунтовых вод.

Наиболее «благоприятная» картина наблюдается в Яковлевском районе Белгородской области, где добыча руды осуществляется закрытым способом на базе Яковлевского месторождения. Общая площадь техногенных ландшафтов составляет лишь 153 га (0,1 % 20 км зоны воздействия) образованных преимущественно инфраструктурным комплексом комбината.

Таким образом, высокая степень сельскохозяйственной освоенности регионов ЦЧР и интенсивная горнодобывающая деятельность за последние 50 лет способствовали деградации и коренной трансформации естественных ландшафтов районов размещения горнодобывающих комплексов где единственным «компенсационным» процессом можно считатьсамозаростание отработанных отваловв Железногорском, Губкинском и Старооскольском районах, когда через 15-20 после окончания отсыпки происходит их полное зарастание травянисто-кустарниковой и древесной растительностью [3].

Исследования выполнены в рамках реализации государственного задания Министерст-ва образования и науки РФ Белгородским государственным национальным исследовательским университетом на 2015 г. (Код проекта: 185)

Литература

- 1. Геоэкологические проблемы оптимизации и биорекультивации отвалов вскрышных пород железорудных месторождений КМА: монография / Корнилов А.Г., Петин А.Н. и др. Белгород: ИД «Белгород» НИУ «БелГУ», 2013.- 124 с.
- 2. Дроздова Е.А., Корнилов А.Г. Трансформации ландшафтов в Железногорском горно-промышленном районе КМА // Регион 2013: общественно-географические аспекты». Харьковский национальный университет им. В.Н. Каразина, Харьков, 2013.— С. 143-145.
- 3. Корнилов А.Г., Петин А.Н., Дроздова Е.А. Геоморфологические и экологоэкономические аспекты рекультивации отвалов вскрышных пород горнодобывающих предприятий региона КМА // Горный журнал, 2014.- № 8.- с. 74-78.