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Abstract. The problem of the motion of high energy wave packets combined of free
electromagnetic waves is considered. It is demonstrated that the transformation of such packets
to the packet of spherically diverging waves happens on long distances along the packet’s
motion direction, that substantially exceed the radiated wavelength. The transition radiation
by the “half-bare” ultrarelativistic electron is considered. It is demonstrated that the transition
radiation by such electron on the targets located inside and outside the coherence length of the
radiation process would be substantially different.

1. Introduction
Moving electron is the charge and the eigenfield (Coulomb field) moving together with it.
Changing the electron’s trajectory disturbs that field. The disturbance of the field could be
treated as a packet of free plane electromagnetic waves. On large distances from the region
where the acceleration had happened the packet transforms to the packet of diverging waves
(the radiation field). For non-relativistic particles that happens on the distances of order of the
length λ of radiated wave [1]. High energies make the stabilizing influence to wave packets that
leads to a substantial increase of the length on which the packet’s transformation takes place.
This length could have macroscopic size, exceeding not only interatomic distances in matter, but
also the size of the target and just the size of the experimental installation (detector). Hence it
is important to know the behavior of such high-energy packets of electromagnetic waves in the
region where that transformation happens. The present article is devoted to the examination of
this problem.

Primarily, we consider the motion of Gaussian packet combined of plane waves with directions
of the wave vector k close to each other. It is demonstrated that the shape of such a packet
changes on the lengths that substantially exceed the wavelength λ = 1/|k| corresponding to the
given absolute value of the wave vector |k|.

Then we consider the motion of the wave packet that coincides in the time moment t = 0
with the eigenfield of the ultrarelativistic electron. It is demonstrated that the last packet also
conserves its shape for a long time interval. Fourier component of this packet with the wavelength
λ changes only on the distances z along the packet’s direction of motion that exceed the length



2γ2λ, where γ is the electron’s Lorentz factor. This length coincides with the coherence length
of the radiation process of the relativistic electron l = 2γ2λ [2, 3].

The problem of special interest is the radiation under sharp (at the time moment t = 0)
changing of the ultrarelativistic electron’s velocity [3 - 5]. We demonstrate that the packets of
electromagnetic waves arising in this case are close in their structure to the packets considered
above. However, their manifestations in the direction of the initial and final motion of the
electron are substantially different. Namely, on the distances z < 2γ2λ, Fourier components
with the wavelength λ of the packet moving along the direction of the initial electron motion will
practically coincide with the Fourier components of the initial packet and, consequently, to the
Fourier components of the Coulomb field of the electron moving in the initial direction without
scattering. Oppositely, in the final electron’s direction of motion, the field of the packet of free
waves will screen the particle’s eigenfield. The electron under such conditions was called in [4]
as “half-bare particle”, that is the particle whose specific Fourier components of the surrounding
field are practically absent for a long time. We put attention to that the transition radiation
by such particles and wave packets on the targets placed on the distances from the point of
scattering larger and smaller than 2γ2λ would be substantially different. The corresponding
experiment would permit to observe direct manifestation of the “half-bare” electron and the
process of its dressing.

Let us note that for the charged particle the Gauss theorem is applicable, according to which
the number of force lines of the electromagnetic field surrounding the electron does not change
with time [1]. Under this the radiation process by electron can be presented as bending of these
force lines [6 - 10]. Such a concept of radiation process relates to the complete electromagnetic
field surrounding the electron. However, it does not contain such characteristics of the radiation
process as coherence length and wave zone which are connected with specific Fourier components
of this field. The term “half-bare electron” relates also to a specific Fourier component of the
field surrounding the electron which is defined by the wavelength λ. So, the analysis of a space-
time evolution of these Fourier components (wave packets) gives us a supplement for the picture
of evolution of complete field surrounding the electron which is in accelerated motion.

We use the system of units in which the speed of light in vacuum is taken equal to the unit:
c = 1.

2. Gaussian packet
The scalar potential of the packet of free electromagnetic waves could be expressed in the form
of the following Fourier decomposition:

ϕ(r, t) =
∫

d3q

(2π)3
ei(qr−qt)Cq, (1)

where Cq are the coefficients of the decomposition, q = |q|. Consider at first the behavior of the
packet combined at t = 0 of plane waves with the wave vectors k directed closely to some given
direction (the z axis). Supposing for simplicity that the distribution of the waves over directions
of the vector k is Gaussian at t = 0, let us write the potential (1) in the form

ϕk(r, 0) =
1

π∆2

∫
d2ϑe−ϑ2/∆2

eikr, (2)

where ϑ is the angle between k and the z axis, and ∆2 is the mean square value of the angle ϑ,
∆2 ¿ 1. Coefficients Cq of such packet have the form

Cq = (2π)3
∫

d2ϑ

π∆2
e−ϑ2/∆2

δ(k− q), (3)



where δ(k− q) is the delta-function. In this case, according to (1),

ϕk(r, t) =
1

1 + ikz∆2/2
exp

{
ik(z − t)− (kρ∆/2)2

1 + i(kz∆2/2)

}
, (4)

where ρ is the transverse (in relation to the z axis) component of r.
Equation (4) demonstrates that under kz∆2/2 ¿ 1

ϕk(r, t) ≈ exp
{
ik(z − t)− (kρ∆/2)2

}
, (5)

and under the condition kz∆2/2 À 1

ϕk(r, t) ≈ − 2i

kz∆2
exp

{
ik(z − t) + ik

ρ2

2z
− ρ2

z2∆2

}
. (6)

In the case z À ρ the last formula could be written in the form of diverging wave:

ϕk(r, t) ≈ − 2i

kr∆2
exp

{
ik(r − t)− ρ2

z2∆2

}
, (7)

where r =
√

ρ2 + z2 ≈ z + ρ2/2z.
So, on the distances z from the center of the packet that satisfy the condition

kz∆2/2 ¿ 1, (8)

the shape of the packet (4) coincides with the packet’s shape at t = 0. Only on the distances z
that satisfy the condition

kz∆2/2 > 1, (9)

the transformation of the packet of plane waves (4) into the packet of diverging spherical waves
happens.

In the theory of radiation of electromagnetic waves, the spatial region where the field of
moving charges acquires the form of spherically diverging waves, is called as wave zone (see,
e.g. [1, 11]). Particularly, for non-relativistic charged particles the wave zone begins just on the
distances from the radiating system that exceed the radiated wavelength (see [1]). Condition
(9) demonstrates, however, that under ∆2 ¿ 1 the formation of the wave zone takes place not
on the distances z > λ, like in the problem of radiation of the non-relativistic particle, but on
the distances

z > 2λ/∆2, (10)

which are much larger than the wavelengths λ = 1/k, of which the packet is composed (4). For
small values of ∆2 the length z = 2λ/∆2 could reach macroscopic sizes.

3. Approximation of Coulomb field by the packet of plane waves
Such problem arises in the equivalent photons method (or the method of virtual quanta) when
the Coulomb field of relativistic electron is replaced at some specific time moment (t = 0) by
the packet of free electromagnetic waves. Indeed, the Fourier decomposition of the electron’s
Coulomb field could be written in the form

ϕc(r, t) = Re
∫

d3k

(2π)3
ei(kr−kvt)Cc

k, (11)



where v is the electron’s velocity directed along the z axis, and

Cc
k =

8πeΘ(kz)
k2
⊥ + k2

z/γ2
. (12)

Here γ is the electron’s Lorentz factor, kz and k⊥ are the components of the vector k, parallel
and orthogonal to the z axis, Θ(kz) is the Heaviside’s step function.

It is supposed in the equivalent photons method that at t = 0 the packet (1) composed of
free electromagnetic waves coincides with the electron’s Coulomb field moving with the velocity
v [11 - 13]. That corresponds to Fourier decomposition (1) with the coefficients Cq = Cc

k.
For γ À 1 the main contribution to (1) would be made by the values q = k which directions

are close to the direction of the electron’s velocity v. Taking this into account, the packet (1)
could be written in the form

ϕ(r, t) = Re
∫ ∞

0
dk ϕk(r, t), (13)

where
ϕk(r, t) =

2
π

exp [ik(z − t)]
∫ ∞

0

ϑdϑ

ϑ2 + γ−2
J0(kρϑ) e−ikz ϑ2/2. (14)

Here ϑ is the angle between k and v (ϑ ¿ 1), and J0(x) is the Bessel function.
The function ϕk(r, t) has the same structure as the function (4) corresponding to Gaussian

distribution of the vectors k over the angles ϑ. Namely, if kzϑ2/2 ¿ 1, the main contribution
to the integral (14) is made by the values ϑ ∼ γ−1 and

ϕk(r, t) ≈ 2
π

K0(kρ/γ) eik(z−t), (15)

where K0(x) is the modified Bessel function of the third kind. In this case after integration over
k in (13) we find that

ϕ(r, t) ≈ e√
(z − t)2 + ρ2/γ2

. (16)

The main contribution to (13) is made by the values k ∼ γ/ρ, hence equation (16) is valid in
the range of coordinates ρ and z that satisfy the condition z < γρ. In this range of coordinates
the packet under consideration moves with the velocity of light in the z axis direction.

So, on the distances z . 2γ2λ the considered wave packet practically coincides with the initial
one (at t = 0). Substantial transformation of the packet would happen only on the distances

z > 2γ2λ. (17)

In this case for the evaluation of the integral in (14) over ϑ one could apply the method of
stationary phase. As a result we find that

ϕk(r, t) = −2i

π

1
ϑ2

0 + γ−2

1
kr

eik(r−t), (18)

where r ≈ z + ρ2/2z and ϑ0 = ρ/z is the point of stationary phase of the integral (14). We
see that the components (18) of our packet have in the case under consideration the form of
diverging spherical waves. Under this condition the angle ϑ0 corresponds to the direction of
radiation, and the function before the diverging wave describes the angular distribution of the
radiation. So, the condition (17) draws out the wave zone in application to given problem.

The value 2γ2λ presenting in the condition (17) is known in the theory of radiation by
ultrarelativistic particles as the formation length or the coherence length [2, 3].



4. Transition radiation by a “half-bare electron”
High-energy packets of electromagnetic waves considered above manifest themselves in many
problems connected with bremsstrahlung and diffraction radiation (see, e.g., [5, 14, 15]). Let
us pay attention to some manifestations of such packets in the problem of transition radiation
arising after sharp scattering of the high energy electron on large angle.

The retarded solution for the potential of the electromagnetic field after the scattering of the
electron at the time moment t = 0 on large angle could be expressed in the following form [3]:

ϕ(r, t) = Θ(r − t)ϕv(r, t) + Θ(t− r)ϕv′(r, t), (19)

where ϕv(r, t) and ϕv′(r, t) are potentials of the Coulomb field of the electrons moving all the
time with the velocity v along the z axis and with the velocity v′ along the z′ axis, respectively.
Equation (19) demonstrates that after scattering of the electron at t = 0 its eigenfield strips out
and after that transforms into the radiation field. In the direction of the final particle’s motion
the electron’s eigenfield arises only in the region r < t which is achieved by the signal about the
scattering act at t = 0 (see figure 1, where the isolines of the scalar potential (19) are presented).
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 z < 2γ2λ  z > 2γ2λ

Figure 1. Equipotential
surfaces of (19) and pos-
sible positions of targets
for producing the transi-
tion radiation

Consider the Fourier decomposition of (19):

ϕ(r, t) =
e

2π2
Re

∫
d3k

k
eikr

{
1

k − kv
e−ikt +

1
k − kv′

[
1− e−i(k−kv′)t

]
e−ikv′t

}
. (20)

The first term in this formula has the form of the packet of free waves moving along initial
direction of the electron’s velocity v. This packet coincides with the electron’s eigenfield at
t = 0. According to (17), (18), the transformation of the Fourier components of this packet
with the wavelength λ to the packet of diverging waves would happen on z > 2γ2λ. On smaller
distances the packet of waves with the given value of |k| would be close to the initial one.

The length l = 2γ2λ on which the formation of the wave zone takes place could have
macroscopic size. For example, for the electrons of energy 50 MeV in the range of wavelengths
λ ∼ 10−1 cm this length is about 20 meters (the measuring technique in such conditions is
developed today — see, e.g. [15, 16] ). So in the frames of that length one could arrange
a thin target (see the target on figure 1 which is arranged along the z-axis at z < 2γ2λ) and
examine the “transition radiation” of the considered packet (reflection of the waves, their passage
through target etc.). The characteristics of such “transition radiation” practically would not
differ from the characteristics of the transition radiation of the electron moving in the same
direction (however, the electron in the packet under consideration is absent). But if the target



would be located on the distance z > 2γ2λ (see dashed-line box on figure 1), the features of
the considered “transition radiation” would change due to the changing of the packet’s shape
(formation of the diverging waves).

The second term in (20) describes the field surrounding the electron after its scattering at
t = 0, when its velocity became equal to v′. This field consists of the electron’s eigenfield
moving with the velocity v′ (the first term in square brackets in (20)) and the packet of free
waves moving in the direction of v′ coinciding at t = 0 with the opposite sign with Coulomb
field of the electron (the second term in square brackets).

As it was demonstrated above, transformation of the packet of plane waves to the packet
of diverging waves takes place on the distances z′ ∼ 2γ2λ, where the axis z′ is directed along
v′. During the time interval t over which the electron passes that distance, the substantial
cancellation of the terms in the square brackets in (20) takes place. This mean that the electron
stays on that distance in a “half-bare” state: the Fourier components with the wave vector
k of its surrounding field would be suppressed comparing to the case z′ > 2γ2λ. Transition
radiation of the electron with such field (“half-bare” electron) on the target located on the
distance z′ < 2γ2λ from the point of scattering (see the target on figure 1 which is arranged
along the z′-axis) would be suppressed in comparison to the case z′ > 2γ2λ. The results obtained
are valid for sharp scattering of an electron at a large angle. Sharp scattering means that it
takes place on the length which is much smaller than the coherence length.

Note that the “half-bare” state of the electron manifests itself in the suppression of
bremsstrahlung arising under collisions with atoms in the frames of the coherence length
[5, 17, 18]. That leads to such phenomena as Landau-Pomeranchuk-Migdal effect, the effect
of suppression of the coherent bremsstrahlung in crystals and the effect of suppression of the
radiation in thin layers of substance (see, e.g., [19 - 23]). Examination of the process of transition
radiation by “half-bare” electron creates one more opportunity for study of manifestations of
such electron under its interaction with matter.
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