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A bstract. A linear system of differential equations describing the joint 
motion of a thermoelastic porous body and an incompressible thermofluid 
occupying a porous space is considered. Although the problem is linear, it 
is very hard to tackle due to the fact that its main differential equations 
involve non-smooth rapidly oscillating coefficients, inside the differentia- 
tial operators. A rigorous substantiation based on Nguetseng’s two-scale 
convergence method is carried out for the procedure of the derivation 
of homogenized equations (not containing rapidly oscillating coefficients), 
which for different combinations of the physical parameters can represent 
Biot’s system of equations of thermo-poroelasticity, the system consisting of 
Lamë’s non-isotropic equations of thermoelasticity for the solid component 
and the acoustic equations for the fluid component of a two-temperature 
two-velocity continuum, or Lame’s non-isotropic thermoelastic system for 
a two-temperature one-velocity continuum.

Bibliography: 16 titles.

In this paper we consider the problem of a joint motion of a thermoelastic 
deformable solid (the thermoelastic skeleton) perforated by a system of channels 
and pores and an incompressible thermofluid occupying the porous space. We refer 
to this as the (N A ) model. In dimensionless variables (without primes)

the differential equations of the model for small values of the dimensionless dis
placement vector w and small deviations of the dimensionless tem perature 0 in 
a domain fl C K 3 have the following form:

In tro d u c tio n

x ' =  Lx, t ' = rt, w ' =  Lw, O' = i) ,----- 0
T V *

d iv P +  p  F,

_  _  d
div(ovV æ0) — ag—  div w +  »I*.

(0 .1)

_ 00
a TcP jT7m

(0 .2 )

where the stress tensor of the continuous medium

P =  x P /  +  (l - x ) P s (0-3)
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coincides with the viscous stress tensor

P ;  =  o^D ^x, -  (pf + a 9fd )I  (0.4)

in the fluid and the elastic stress tensor

Ps =  a>B(x, w) — (— a v div w +  aes9)I (0-5)

in the skeleton. The pressure p f  in the fluid can be found from the continuity
equation

Pf +  Xa p div w =  0. (0-6)

Here and throughout we use the notation

D(x, u) =  ^ ( V u +  (V u)T).

P =  X P f +  (1 -  x )P s , Cp =  \C p f  +  (1 -  x )c ps,

o v  =  X a x f  +  (1 — I ') a xsi cue =  X a 9f +  (1 — tyctes-

The characteristic function x (x ) °f the porous space i l f  C 0  is assumed to be 
known.

For the derivation of (0.1)-(0.6) and the description of dimensionless constants 
(which are all strictly positive) see [1].

We endow the model (N A ) with homogeneous initial and boundary conditions

i <9w
w lt=o =  0’ ~m t= 0

o, 0 |t= o = o , x e f l ,  (0.7)

w =  0, 0 = 0, x  G 5' =  d i l1 t ^  0. (0-8)

From the mathematical point of view the corresponding initial-boundary value 
problem is well-posed in the following sense: it is uniquely soluble in a suitable 
function space on any finite time interval (see [1]). However, this model is ineffi
cient from the standpoint of possible applications, such as numerical calculations. 
Therefore, the question of finding approximate models is of importance. If the 
model involves a small parameter e, then the optimal approximations must have 
limiting regimes tha t tend to the exact model as e approaches zero. A natural small 
parameter in the model under consideration is the characteristic size I of the pores 
divided by the characteristic size L  of the domain:

I
"  L '

Such an approximation significantly simplifies the original problem and at the same 
time preserves all its main features. However, even with a small parameter the 
model (N A ) remains rather complicated and some additional simplifying assump
tions are required. In terms of the geometric properties of the medium the most 
appropriate such simplification is to postulate tha t the porous structure is periodic. 
In what follows we will call this ‘submodel’ of the model (NA ) the model (N B )e.

Our main aim is to derivate limit regimes (homogenized equations) for the 
model (N B )f .
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We make the following assumptions.

A ssu m p tio n  1. The domain il = (0, l )3 is a periodic repetition of an elementary 
cell Y E = eY, where Y  = (0, l ) 3. The quantity 1/e is integer, so tha t il contains 
an integer number of elementary cells. Let Ys be the ‘solid p a r t’ of Y  and assume 
th a t the ‘fluid p a r t’ Yf  is its open complement. We also set 7  =  dYf  fl dYs . The 
boundary 7  must be a C 1-surface, the porous space il^ is the periodic repetition 
of the elementary cell eY), the solid skeleton i l£s is the periodic repetition of the 
elementary cell eYs, and the C 1-boundary =  dilEs C\dilEj  is the periodic repetition 
in il of the boundary e f̂. The skeleton f is is a connected domain.

In these assumptions

X(x) =  Xe(x) = 

c.p =  4 ( x )  =  X£( * )c p f  +  (1  -  x e ( x ) ) c p s ,

P = PE(x) = XE(*)Pf + (1 -  Xe(*))ps,
=  o4 (x) =  x e(x )a x f  + ( l -  x e(x ) )a xs ,

o-e = a |( x )  =  x e(x )a ef + ( l -  x e(x ) )a 0s,

where x(y) is the characteristic function of Yf  in Y.
We say tha t the porous space is disconnected (isolated pores) if 7  fl d Y  = 0 .
In this paper we suppose tha t all the dimensionless parameters below depend on 

the small parameter e and there exist (finite or infinite) limits

lim a^(e) = po, lim cka(e) =  An, lim a T(e) = to, lim a p(e) = p*.
e\ ,0  e\<0 £\(0  e\(0

Moreover, we only consider the case when rn < 00 and

(ttn =  0 , p* = 0 0 , 0 < An < 0 0 .

If tq = 0 0 , then we renormalize the displacement vector and the tem perature by 
setting

w —*■ a Tw, 0 —*■ a T6

and reduce the problem to the previous case. The condition p* =  00 means that 
the fluid under consideration is incompressible.

Using Nguetseng’s two-scale convergence method (see [2]) we shall show that, 
depending on the relations between the dimensionless parameters of the model
and the geometry of the elementary cells Ys and Yf,  the limit regimes can be:
B iot’s system of equations of thermo-poroelasticity, the system consisting of Lamé’s 
non-isotropic equations of thermoelasticity for the solid component and the acoustic 
equations for the fluid component of a two-temperature two-velocity continuum, or 
Lamé’s non-isotropic system for a two-temperature one-velocity continuum.

We now discuss the subject of this paper in greater detail. Since the differential 
equations under consideration contain discontinuous coefficients inside differenti- 
atial operators, the original system of equations reduces in a natural fashion to
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a, system of integral identities with well-defined terms. The homogenization of this 
system for a family of solution (we, 0E) depending on a small parameter e reduces 
to the following steps:

-  picking a subsequence of solutions convergent as e \  0 (and finding the limit 
solution);

-  finding a system of equations (the homogenized system) solved by the limit 
solution.

For the first step we require bounds for solutions tha t are uniform in e. Finding 
estimates for the solutions in the cases tq = 0 and p* =  oo is non-trivial.

At the second step we must pass to the limit as e \  0 in integrals in the situation 
when some terms are products of several factors each of which converges only weakly 
in L 2(Qt )- It is at this point tha t we use Nguetseng’s method, which is popular in 
homogenization theory (see, for instance, the survey [3] and Zhikov’s papers [4]—[6]). 
This method is fairly simple in concept, but the solution of the corresponding 
microscopic equations on the elementary cell is technically complicated and requires 
many calculations, which we shall normally leave out, presenting only the final 
result.

We also point out an interesting fact: if the entire medium is incompressible from 
the outset (the case when ap = a v = oo or div w £ = 0 ), then the system of equation 
splits: the heat equation can be solved independently of the dynamical equations. 
But if this property holds asymptotically (p* =  i]n =  oo, where i]n =  l im ^ n  a ?;(e ))- 
then the system of equations remain coupled in the general case. Moreover, in 
this case, as in the case of compressible media the homogenized equations contain 
non-local expressions (functionals), which are not taken into account in standard 
phenomenological models.

We point out tha t in this paper we only consider a small number of the possi
ble limit cases (homogenized equations). Obviously, finding all possible consistent 
mathematical models tha t give asymptotic approximations to the original com
monly accepted model is an im portant and interesting problem, both from a m ath
ematical and a practical standpoint. It is equally obvious tha t in the solution of 
actual physical problems one does not resort to a limiting procedure. The researcher 
has at his disposal only concrete physical constants (the density of the medium, 
the viscosity of the fluid, the elastic constants of the solid skeleton, and so on) and 
two variables: the characteristic size L  of the domain under consideration and the 
characteristic time r  of the physical process. Changing these variables within the 
application range of the mathematical model he can discover laws for the behaviour 
of dimensionless complexes a T, a \ ,  . . . ,  which will suggest the choice of one or 
other limit regime in the exact model. It is at this point tha t as complete a list 
of homogenized equations as possible is required, because different limit regimes 
correspond to different physical situations and it is virtually impossible to guess in 
advance whether one situation or another is more likely.

Simpler models for isothermic media were considered in [7]—[13].

§ 1. F o rm u la tio n  o f th e  m a in  re su lts

As usual, equations (0.1), (0.2) are understood in the sense of distributions. 
They involve equations (0.1), (0.2) in the proper sense, in the domains and i l£s,
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and also the boundary conditions

\9\ = 0 , [w] =  0 , x 0 €  T , t  > 0 , (1 .1 )
[P • n] =  0, [o £ V 0 -n ]= O , x 0 € P ,  t ^  0, (1.2)

at the boundary where n  is the unit normal to the boundary and

M (xo) =  V(s)(xo) -  v?(/)(xo),
Vis)(xo) =  xlim, v?(x), tpU)(x0) =  <p(x).

x£Q; x£Qf

Condition (1.1) is a natural consequence of the definition of the solution class: we 
seek solutions (the tem perature 0 and the displacement w) with minimal continuity 
properties. The first condition in (1.2) is a consequence of the momentum balance 
at strong (contact) cracks and the second condition in (1 .2 ) is a consequence of 
energy conservation.

There exist various ways to represent equations (0.1), (0.2) and boundary condi
tions (1.1), (1-2), which are equivalent in the sense of distributions. In what follows 
it will be convenient to write them in the form of integral equalities.

D efin itio n  1. A system of functions (wE,0E,pÊq Êp Es,qEs ) is called a generalized 
solution in the model (N B )e if they satisfy the regularity conditions

w e, V w E, div w E, pEf , pEs, q£f , qEp  0E, V 0 E G L 2(ttT )

in the domain SV x (0, T), boundary conditions (0.8), the equations

= P Ef  +  X e a e f 0 e , ( 1 -3 )

—  p f  = - X Ed iv w E - — /3Ey (1.4)
ap J m

qE = P ES + { 1 -  x e)ote,<f. (1.5)

P Es  =  - (1  - X e)d iv w e +  /3e|  —  (1.6)
av 1 — m

a.e. in (It ̂the integral identity
( a TpEw E ■ -  x £a v P ( x ,  w E) : D ^x, -  pEF  ■ <p

+ {(1 -  X£)«aD(.t, w e) -  (qEf  +  )l} : D(x, ip)J dxd t  = 0 (1.7)

for all smooth vector-valued functions ip = ip(x,t)  such tha t tp\dn = <p\t_T =
d ip /d t\t T = 0 , and the integral identity

J  ^ [a TCpQE + a g d iv w e) ^ -  — • V£ +  \fr£^ dxd t = 0 (1 .8 )

for all smooth functions £ =  £(x,#) such tha t =  £ |t_T =  0 .
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In the definition of a generalized solution we introduced new unknown functions
pEs, qEf  and qE, which by analogy w ithp^ we shall call pressures. In addition, we shall

in the solid and fluid components, respectively. We introduced the normalization 
term

These conditions are necessary to  ensure th a t the family of solutions pEp  pE, qEf 
and qEs is bounded uniformly in e in the L 2(Q>t ) space.

In (1.7) we denote by A  : B  the convolution of two second-rank tensors with

In addition to the assumptions we made in the introduction suppose tha t there 
exist (finite or infinite) limits

In what follows we also make the following assumption.

A ssu m p tio n  2. 1) The dimensionless parameters in the model (N B )e satisfy the 
following restrictions:

Mo =  0; r 0, x / ,  xos, A y, Pos, An < oo;
r0 +  Mi, xqs , Xf,  A0, ?7n > 0.

2) The functions |F |, \d¥/dt\,  'I', d'fy/dt belong to the space L 2{Q,T ).

Throughout what follows the parameters can take all the values perm itted by the
assumptions made in the theorems. For example, if to =  0 or r/Q1 = 0 , then the terms
containing these parameters disappear from the equations.

The main results of this paper are Theorems 1 and 2.

T h e o re m  1. Under the above assumptions, for all t  > 0, on an arbitrary time 
interval [0, T] there exists a unique generalized solution of the model (N B )E and

call (1.4) and (1.6) the continuity equations and (1.3) and (1.5) the state equations

so that

respect to both indices, tha t is, A  : B  = tr(B* o A) =

lim av (e) = i]0. lim a x s (e) x 0s, lim a e f {s) = /30f ,

K ( * ) | +  v / ^ | V w ^ ) |  +  (1 -  ^ ) |V w e(i)|j | 2 n < Co, (1.9)

| |^ | |2,nT +  7 ^ 11x ^ ^ 112, ^  +  ||(1  - x " ) W 1 2,Qt < Cn, (1 .10 )

\\Wf\ +  \pEf \ +  m  +  \pEs\ ^ A  <  (L11)( 1 . 11)

where the constant Co is independent of the small parameter e.
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T h e o re m  2. The functions  w ' and 9E admit, extensions u ' and 0s , respectively, 
from QE T = QE x (0 ,T ) into the domain f ix  such that the sequences {ue} and {i9e} 
converge strongly in L 2(Ht ) and weakly in L 2((0 , T); W ^ fi))  to the functions u 
and $, respectively. A t the same time the sequences {we}, {#e}, {P/}, {'//}, 
{Pg} and {</f} converge weakly in L 2(Ht ) to w, 0 , p f ,  qf, p s and qSy respectively.

(I) I f  Hi = oo, then w =  u , 9 = & and the functions u, $, p f ,  qf, p s and qs 
satisfy the following initial-boundary value problem in <? / :

_<92u
+ V{qf  + q s) -  p F

=  d iv |A 0Ag : D(x, u) +  Bg ^ d iv u  -  +  B{qf j ,  (1-12)

T0cp^  -  div ( B e - w )  -  *  -  ^  ^  =  (/%  -  /30s) ̂  , (1.13)

— ps +  Cq : D(x, u) +  (1 — m +  Og) div u  
»70

=  —  On(^ -  (tf)n) -  osi(9 / -  (g/)n), (1-14)
»7o

<?s =  P s  +  (1  -  qf = P f  +  niflofâ,  ( 1 .1 5 )

— p s + d iv  u  =  0 , (1-16)
»70

where

p = nipf +  (1 -  m)/0s, cp =  racpj +  (1 -  m)cps,

/^=  —  0 2 (wl}si +  «3('?/}f2, (<^)n =  /
»70 . / n

Tft.e quantity m, which is called the porosity of the solid skeleton, is defined by

m  = J  x(y) rfy  =  (™)y-

Tft.e symmetric strictly positive constant rank-4 tensor Ag, the constant matri
ces C g, Bg an.fi B f ,  the strictly positive definite constant matrix B ’0 and the con
stants o |,  fc =  0,1,2, 3, are defined below by formulae (4.38), (4.39) and (4.42).

Tft.e differential equations (1 .12)—(1.16) are endowed with the homogeneous initial 
conditions

du
TgU =  Tg—  = 0 , (1.17)

at

T Q C p d ----- — p s ~  ( P o f  ~  P o s ){3  =  0  ( 1 -1 8 )
»70

for t = 0 and x  G O and wiife the homogeneous boundary conditions

i ? ( x ,  # ) = 0 , u ( x ,  #) =  0 , x g S ,  # >  0 . ( 1 -1 9 )
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(II) I f  the porous space is disconnected, then w =  u  and in Qt  the strong /  weak 
limits u, d, p f ,  qf, p s and qs together with the weak limit 6 f  of the sequence { x £9£} 
satisfy equations (1.12), (1.14), (1.16), the state equations

qs = P s  + { 1 -  m) fasti,  qf =  p f  +  pofOf , (1-20)

and the heat equation

QQf A.O
r°cp /—  +  r 0cps(l -  ~ d iv(B 9 ■ Vi9)

=  *  +  —  %  +  ( & / - & » ) § .  (1 -2 1 )
rjo u t  dt

The temperature Qf of the fluid is defined below by formulae (4.45)—(4.47), where 
the particular choice of the function 6? depends on the parameters and rg.

The problem is endowed with boundary conditions (1.18), initial conditions (1.17) 
for the displacement, and the initial condition

ToCps'd — Ps -  (Pof ~ Pos)P = 0 (1-22)
»?o

for the temperature & in the solid skeleton for t = 0 and x  G il.

(III) I f  p i  < oo, then in Qt  the strong j  weak limits u, d, w ? , 9?, p f ,  q f ,p s and qs
of the sequences {ue}, {№}, {xew e}, { x E9E}, {p£f }, {q£f }, {pf} and {qf} satisfy the 
initial-boundary value problem consisting of the momentum balance equation

(  32w f  , ,<92u \
To \ P f - f t T  + Pst1 ~  ) + v (q f  + q s ) - p F

=  d i v |aoAq : D(x, u) +  Bg ^div u  — +  B®q/1 (1-23)

and the continuity equation (1.14) for the solid component, where Ag, Bg, and B f  
are as in (1 .12 ), the continuity equation

1 f— ps +  d iv w J =  (m — 1) d ivu , (1-24)
»70

the state equation (1 .2 0 ), the heat equation (1 .2 1 ), and the relation 

d w f  8vl ( l
~ ^ - { x , t )  = m — {x,t) + j  B\{ii\, t  — t ) ■ z(x, t ) d.r, (1.25)

1 d2u
z(x,#) =  V q/(x,#) + p f F (x ,t )  - T 0p f W (x,t),

for  tq >  0 and fj,i >  0. or Darcy 's law in the form

dw? d u  (  1 \
S T  =  m m  *  • \ - m V," + P ' F ) '  <'•*'
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for tq = 0 . or finally, the momentum balance equation for the fluid, component, 
which has the following fo rm :

d 2w^ d2u  (  1 \
T°Pf~fr2~  =  r °PfR i  ' +  (m I _  B s) ' ( V(l f  + P f F )> (L27)

for  Mi =  0 .
The problem is completed by the initial and boundary conditions (1.17). (1.18) and 

(1.22) for the displacement u and the temperature 9 of the solid component, the 
boundary condition

w^(x, t) ■ n(x) =  0, (x,#) G S, t > 0, (1-28)

and the initial condition

To w f = To-Qj- = 0 (1-29)

for the displacement w? of the fluid component.
In equations (1.25)—(1.28) n(x) is the unit normal to S  at the point x  G S. 

while the matrix B \ (n \ , t )  and the symmetric positive definite matrices B n ^ i )  and 
(m l — £>3) are defined below by formulae (4.60)—(4.65).

§ 2. P re lim in a rie s

2.1. T w o-scale  convergence. The proof of Theorem 2 relies on the systematic 
use of the method of two-scale convergence put forward by Nguetseng [2].

D efin itio n  2. A sequence {tpE} C L 2(Qt ) is said to be two-scale convergent to
a limit <p G L 2(Qt  x  Y) if and only if for each smooth function a = a{x.,t,y).
1-periodic in y

lim I  <pE (x, #)<7 ( x, — I dx dt = I  I  <£>(x, t, y)<r(x, t, y) dy dx dt. (2 .1 )
Ê ° J n T V e J J ht J y

The existence and the main properties of two-scale convergent sequences are 
established by the following result (see [2], [3]).

T h e o re m  3 (Nguetseng’s theorem). 1. Each bounded sequence in L 2(Qt ) contains 
a subsequence two-scale convergent to a limit, <p G L 2(Qt  x  Y).

2. Let, {ipe} and { e V ^ }  be uniformly bounded sequences in, L 2(Qt ). Then, there 
exist, a function, ip = <£>(x, t, y) 1-periodic in, y  and a subsequence of {tp£} such, 
that <p,Vy<f G L 2(Qt  x Y )  and <pE, s'S/(fE are two-scale convergent to and 'S/yip. 
respectively.

3. Let, {ipe} and { V ^ }  be uniformly bounded sequences in, L 2(Qt ). Then, there 
exist, functions <f G L 2(Qt ) and tjj G L 2(Qt  x  Y )  and a subsequence of {<fE} such, 
that V 99 G L 2(Qt ), the function, tjj is 1-periodic in, y, 'S/yip G L 2(Qt  x  Y), and 'S/ip6 
is two-scale convergent, to V<y?(x, t) +  V ,/i/>(x,f,y).

C o ro lla ry . Let, a  G L 2(Y), crE(x) = a ( x / t ) ,  and let {ipe} C L 2(Qt ) be a sequence 
two-scale convergent, to <p G L 2(Qt  x  Y). Then, the sequence {(jEp E} is two-scale 
convergent, to a\p.
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2.2. A n ex ten sion  lem m a. The following feature is typical in problems similar 
to the (N B )e model: bounds for the displacement gradient V w f are distinct in f2s 
and i l f  (in the liquid and the solid phases), which does not allow one an immedi
ate use of stronger estimates. This difficulty can be overcome by constructing an 
extension to the whole of of the displacement field defined in i l s , while preserv
ing the bound for the norm of the gradient in Qs. We have the following result 
(see [14], [15]), which we state in a form appropriate for us.

Lem m a 1. Suppose that, the assumptions on the geometry o fQ E hold and let i^E € 
), with 'i[}E =  0 at the boundary S E = d ilE fl dil. Then there exists a function

a E G such that its restriction to the subdomain ilEs coincides with ipE, that is,

(1 - X e(x))(cre(x) -  ipE(x.)) =  0, x e t l .  (2.2)

Moreover,

I k l 2,n < c w r h s n ,  l|V<7l2,n < c y v ^ l b . n i ,  (2.3)

where the constant C depends only on the geometry of the cell Y  and does not, 
depend on, e.

2.3. T he Friedrichs Poincare inequality in a period ic structure. The fol
lowing result is well known. It refines the value of the constant in the case of an 
e-periodic geometric structure.

Lem m a 2. Suppose that the assumptions about, the geometry of the domain, Q,Ej 
hold. Then, for each, function, <f G W ^ ^ / )  the inequality

[  \cp\2 d.x < Ce2 [  \Vcp\2 d.x (2.4)
J n Ef J  nEf

holds with constant, C independent, of e.

In what follows we use the following notation:

1) ( $ ) r  =  j C $ d y ,  {$)Yf = J r x $ d y ,  ($ ) rs =  (i -  x ) $ d y ,

( v ) n =  I  <pdx, ((f) qt = I i dxdl:
J q, J il-f

2 ) if a and b are two vectors, then the matrix a <E> b is defined by the formula

(a (g) b) • c =  a(b • c)

for each vector c;
3) if B  and C  are two matrices, then B  <E> C  is a rank-4 tensor such tha t its 

convolution with an arbitrary m atrix A  is defined by the formula

( B ® C )  : A  = B (C  : A);

4) we denote by I'i the m atrix with exactly one non-zero entry: it is equal to 
one and is placed at the intersection of the *th row and the j th  column;

5) J IJ =  T 7 ( P J +  F * )  =  ;y(e. ;  (g) B j  +  B j  (g) B.t) ,  where ( e i , e 2 , e 3 )  are the standard 
Cartesian basis vectors.
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§ 3. P ro o f  o f T h e o re m  1

For tq > 0 the estimates (1.9), (1.10) follow from the energy identity

d 2w ' \  2 ( d0E \  2 \
- W )  )

a y I (1 — x e)D 
■Jn

dx

(  d w E \

{ * ' - r ) :
(  d w £ \

x , ——— dx
v ’ dt /

P j  XE ^div ^ -  j  dx + a v j  (1 -  \ E) ^div

r d0E
1 a V —

Jn dt Jo

d w E 
~dt 

d2w r-
d t2 J  ' “ ■ V "  d t2 )

dx

r f Ĉ“Wc \ ( ^
d x  +  I x^D ( x, ] : D ( x, n ,n | dx

, <9F d2w E
~ wL P dt

dx

[ x -  
V » ’ Jn d t2 1 — m

f  d 2w
/  (1 — \ e ) div  „ .0 dx

■hi d t2

obtained by differentiating the equations for w E and 0" with respect to  time, multi
plying the first equation by d 2w e/ d t 2, the second by d0E/d t ,  integrating by parts, 
and summing. In the process we have expressed the pressures in terms of the 
displacements with the use of the continuity equations and the state equations.

Since

i ( I  e  i- . \ 2 I tfw': V  ,

m \ J 0 x  d" ^ r dx)  w i d , ' ' ^ r / l

1

1 — m I  (1 -  Xs) div ~w~ dx 
Jn dt Jn

the estimates (1.9) and (1.10) follow from the inequality

max ( sJaZ
o < t < T  \  v d t2 -(*) /«A

2,SI
«-7 7 N
v ^ r U) 2,s>;

d0E
dt (*)

2,n

+  V « > - U - : r ) V ^ 1 \ / a W
2

m  9 0 6
X  ' hi 2,^7*

1 v /^ 7
8 2w  

•V v  Sf2
2

< A ,
y ^ T

(3.1)

where Co is independent of e.
The same estimate (3.1) guarantees the existence and uniqueness of the gen

eralized solution for the model (N B )E because here we do not require estimates 
uniform in e. while the boundedness of the pressures non-uniform in e is also an 
easy consequence of (3.1).

Estimate (1.11) for the pressures, which is uniform in e, follows from the integral 
identity (1.7) and the bounds (3.1), as an estimate for the corresponding functional, 
once we recall that

(Pef ( x , t ) + p es ( x , t ) ) d x  =  0.
Jn
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Indeed, expressing the pressures q'j and qE in (1.7) using the state equations (1.3) 
and (1.5), in view of (3.1), we obtain

Now choosing xp such tha t pEf  + p Es = d iv ip we arrive at the desired estimate for 
the sum of the pressures pÊ Y p Es- Such a choice is always possible (see [16]) if we set

Note tha t identity (1.7) allows only an estimate for the sum p^ + p Es . However, 
the product of these functions vanishes, so this is sufficient for the derivation of 
bounds for each of them. We estimate the pressures and qE on the basis of state 
equations (1.3) and (1.5) using (3.1).

The greatest difficulty lies in finding an estimate for w E in the case t q  =  0.
Assume tha t >  0 and t q  =  0. As usual, for the basic estimate we must 

multiply the equation for w E (with pressures expressed in terms of the divergence 
of the displacement and its time derivative, with the help of the state equation 
and the continuity equations) by d w E/d t  and the equations for 0E by 0E, add the 
results and integrate by parts. Only two terms in the result, pEF  • d w E/d t  and 
'I' • 9E, require additional treatm ent. First of all, using Lemma 1 we construct an 
extension u e of the function w E from the domain i lEs into such tha t u e =  w £ 
in u e G W <2 (^), and

After th a t we find an estimate for | | | | 2,0 with the help of Poincare’s inequality 
(Lemma 2 for the difference u e — w e):

We apply the same method to QE; hence there exists an extension t)E of the 
function 0E from Q,ES into such tha t dE = 0E in i lEs, dE G Wj (0) and

ip = V i f + i p  0 , div ip0 = 0, A t p = p Ef + p Es. 

v\dn  =  ° ’ ^  + M s n = 0-

||ue ||2,f2 ^  C ||V u e||2,n < 4= 1 1 (1  -  XE)V a * V w e||2,f2.

< l|ue ||2,Q +  C t ||x eV (u e -  w e)||2,Q

< l|ue ||2,n +  C e||V xu e||2|n +  C1(e« ^ 1/ 2 )llxev/7V V *w e|l2,si

< 4 = 11(1  - X E) V ^ ^ ^ Eh ,n  + C{£aß 1/2)\\xE^/ä^  V xw e||2,f2.

C

Next, we carry over the time derivative from d w E/d t  to pEF  and find bounds for 
all positive terms (including a„x£ div(9w E/d t ) 2) in the usual way, with the help of
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Holder’s and Gronwall’s inequalities. The rest of the proof is as for tq > 0, provided 
th a t we use the following consequence of (3.1):

max a 7
0 < t < T

d2w
d t2 ( t )

2,n

§ 4. P ro o f o f T heorem  2

4.1. W eak and tw o-scale lim its o f sequences o f  d isp lacem ents, tem p er
atures and pressures. In view of Theorem 1, the sequences {9£}, {p£f} ,  {'//}, 
{-Ps}> {'Zsl an(i {w£} are bounded uniformly in e in the space L 2(Qt )- Hence there 
exists a sequence of {e > 0} and functions 0, p f ,  qf, p s , qs and w such that

-*■ 0, p£f  ->■ p f , q£f  ->■ qf , p£s ->■ p s, q£s ->■ qs, w £ ->■ w weakly in L 1{Q,T )

as s \  0 .
By Lemma 1 there exists a function ue G L°°((0,T); Wf(f2)) such tha t ue =  w £ 

in Q,s x (0,T )  and the family {ue} is bounded in the space L°°((0, T); T/t/21(n)) 
uniformly with respect to e. Hence it is possible to  extract a subsequence of {e > 0} 
such that

u e —*■ u  weakly in L 2((0, T ); W}(Q))

as s \  0 .
Using Lemma 1 again we conclude tha t there exists a function

r  e L 2( (0 ,T );W ^Q ))

such th a t &£ = 0£ in Qs x (0, T)  and the family {dE} is bounded in L 2((0, T)\ TU21(^)) 
uniformly with respect to e. Hence there exists a subsequence of {e > 0} such that

r  —*■ t) weakly in L 2((0, T ) ; W\(Q,))

as s \  0. Moreover.

X£otllH){x, w £) —*■ 0, —»■ 0 strongly in L 2(Q,t ) (4.1)

as s \  0 .
Relabelling if necessary we assume tha t the sequences themselves are convergent. 
We now use Nguetseng’s theorem: there exist functions 0 (x ,f ,  y), P f(x . , t ,y ) ,  

Ps(x ,t ,  y), y), Qs(*,t, y), W (x ,# ,y ), 0 s (x, t , y )  and U (x ,# ,y ) tha t are
1-periodic in y, such tha t the sequences {9£}, {p£f},  {.Ps}, { J { w£ }, {Vv^} 
and {V uE} converge two-scale to 0(x ,# , y), Pf(x.,t,  y), Ps(x.,t, y), Qs(x, t , y) ,  
Qf ( x , t , y ) ,  W (x, t , y ) ,  W  +  V y0 s(x ,i ,y )  and Vu +  V yU (x, t, y), respectively.

Note tha t the sequence {divw e} converges weakly to d ivw  and d, |u| e i 2 ((0, T): 
T-%1(n)). For a disconnected porous space the last assertion follows from the inclu
sion d£, |ue | G £ 2 ((0, T); W ^ fi)) . For a connected porous space this follows from 
the Friedrichs-Poincare inequality for ue and in the e-layer at the boundary S  
and from the convergence of the sequences {ue} and to u and d, respectively, 
strongly in L 2(Qt ) and weakly in L 2((0 , T ) ; W j  (^)).
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4.2. M icro- a n d  m acro sco p ic  e q u a tio n s . I.

L em m a 3. For all x  G 0  and y  G Y  -weak and two-scale limits of the sequences 
{p/}, Wf } ,  M } , W sh  {«“}, {wf }, an.fi {ue} satisfy the following relations:

Q f = ~  X^f ,  Qf  = P f  + xPof®,  (4-2)

=  Ps + (1 -  x)Pos&, (4.3)

— Ps =  - ( 1  -  x )  ( ‘d iv u  +  divy U -  ^  Y  (4.4)
»?o V 1 _  m  J

divy W  =  0, (4.5)

W  =  X'W +  (1 -X )U , 0  =  x© +  ( l - x ) ^ ,  (4.6)

<lf = P f  +  PofOf , (4.7)
q s = P s  + (1 -  m.)P o s 'd ,  (4.8)

— P s  = - (1  -  m)  div u  -  (divy U)y„ +  p ,  (4.9)
»7o

— p s + d iv w  =  0, (4-10)
»70

where Qf = {Q)yf and P = ((divy U )y  }q.

Proof. To prove (4.2) we substitute a test function xpE = £xp(x, t, x / e ) in integral 
identity (1.7), where xp(x.,t,y) is an arbitrary function 1-periodic and compactly 
supported in Yf  with respect to y. Passing to the limit as e \  0 we obtain

V yQ f (x, t ,  y ) = 0 ,  y G Yf . (4.11)

The weak and the two-scale limiting procedures in (1.3) yield (4.7) and the second 
equation in (4.2).

Performing now the two-scale limiting procedure in the equalities

( l - X e) P / = 0 , (1 —Xe)<7/=0

we obtain

( i  — x ) P f  =  o, ( i  -  X ) Q f  =  0;

which proves (4.2).
Equations (4.3)-(4.5) and (4.7)-(4.10) are the result of passing to the two-scale 

limit in equations (1.3)—(1.6) with appropriate test functions. For example, equa
tion (4.8) is a consequence of (1.6), while (4.5) and (4.10) result from the two-scale 
limiting procedure for the sum of equations (1.4) and (1.6) with test functions of the 
form 'i[}E = £ip(x, t ,x/e)  and with test functions independent of the ‘fast’ variable 
y  =  x /e .

To prove (4.6) we must consider the two-scale limit in the relations

(1 -  x E)(w E -  u E) =  0 , (1 -  XE)(dE -  &E) =  0 .
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Lem m a 4. For all (x, t) G {It  and y G Y  the relation

div!/|A o (l -x ) (D (y ,U )  +  D(x, u)) -  ^Q s +  q x j  • l |  =  0 (4.12)

holds.

Proof. Substituting a test function of the form x = ex/>(x, #, x /e) in (1.7), where 
x/}{x.,t, y) is an arbitrary function 1-periodic in y, vanishing at the boundary S, 
then passing to the limit as e \  0 we obtain the desired microscopic equation on 
the cell Y .

In the same way, using the continuity equations (1.4) and (1.6) to eliminate the 
terms x e d iv w e and (1 — x e)d iv w e, from the integral identity (1 .8 ) we obtain 
the following result for the temperature.

L em m a 5. For all (x, t) G £It -,

A yOs =  0, y  G Ys,
9QS (4.13)
—— =  -  W  n, y  G 7 .

We now proceed to the macroscopic equations for the solid displacement.

L em m a 6. Let p =  m pf  +  (1 — m)ps , =  ( W ) y f ■ Then in CIt  the functions u,
w^, p s, qf, qs, Qf and t) satisfy the system of macroscopic equations

d2w f  , , 9 2u  ^
Topf ~ d t ~  +  Tops( “  m^~dt^ ~ P

=  div{A0 ((1 -  m )D (x,u) +  (D (y,U ))r J  -  (qf  + q s )l}, (4.14)

(  dQt _l_ (1 /3°S d 'Ps iT/

() Q
= x 0s div{( 1 -  /??.)W  +  (V y0 s) r s } +  [00f  -  /30 s ) - ^  • (4.15)

Proof. Equations (4.14) and (4.15) arise as the limits of (1.7) and (1.8) with test 
functions that have compact support in Q,t arid are independent of e. As in the 
proof of the previous result, we have used the continuity equations (1.4) and (1.6) 
in (1 .8 ).

Remark. Using the same procedure we arrive at the initial conditions

=  0, (4.16)i f  * \ i (  d w  f  ^ u \
To [Pf w J + p s ( 1 -  m)u) | t=Q =  r 0 ( p f  —  +  ps(1 -  m) —  j

)(cp f d f  +  cps(1 -  m ) & ) ------ - (ps)  -  (/30f  -  i30sm )
»?o J

To I

4.3. M icro- and m acroscopic equations. II. 

L em m a 7. I f  =  oo, then  u =  w and 0 =  d.

t=o

=  0. (4.17)
t=o
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Proof. To verify this result it is sufficient to consider the differences u e — w E and 
0E — d£ and use the Friedrichs-Poincare inequality just as in the proof of Theorem 1.

L em m a 8 . Assume that Mi < oo and let V  =  x<9W /dt .  Then

d V  1
T° p f ~ f r  -  P f F  =  P l A yv  ~ v y R - ~  V q f> y e Y f> ( 4 - 1 8 )

<90 0o f dB
T°Cpfi k  = x iA‘iA y0  +  — — +  * , y e  Yf , (4.19)

dvL
V  =  —  , e  = &, y  G 7 , (4.20)

for  mi > 0 and

d V  1
T°Pf ~dt = ~ V y R  ~ m V q f +  /9/F’ Y G Yf)  4̂ '2^

9 0  jSjrf dB
rocP/ —  =  — -  —  +  * , y e * / ,  (4.22)ot in dt

(xW  -  u) • n  =  0, y  G 7 , (4.23)

/o r Ml =  0 .
In either case (mi > 0 or mi =  0) the functions V  and 0  satisfy the homogeneous 

initial conditions

V ( y ,0 ) = 0 ,  0 (y , 0) =  0, y  e Y f .  (4.24)

In the boundary condition (4.21) n  is the outward normal to the boundary 7 .

Proof. The differential equations (4.18) and (4.21) follow as e \  0 from the integral 
identity (1.7) with test functions ip = ip(x/e)h(x,  t), where cp is a solenoidal vector
valued function with compact support in Yf.

The same arguments apply to equations (4.19) and (4.22), provided tha t we use 
continuity equation (1.4) to eliminate the term  x e div(9w £/dt )  in integral iden
tity  (1 .8 )

The first boundary condition in (4.20) is a consequence of the first equation
I/O

in (4.6) and the two-scale convergence of the sequence { a / 'V w E} to the func-
1/2 .tion Mi V yW (x , f, y). In view of this convergence, the function V yW (x ,f ,y )  is 

bounded in L 2(Y)  uniformly in (x, t) for mi > 0. Similar arguments hold for the 
second boundary condition in (4.20). The boundary condition (4.23) follows from 
equations (4.5) and (4.6).

Lem m a 9. I f  the porous space is disconnected ( the case of isolated pores), then 
w  =  u.

Proof. Indeed, for 0 ^  mi < 00 the system of equations (4.5), (4.18)-(4.20) or (4.5), 
(4.21)-(4.23) has the unique solution V  =  d u /d t .
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4.4. H om ogenized  equations. I.

Lem m a 10. I f  i~i>i =  oo, then w =  u, 9 =  d, and the strong/ weak limits u, d, p f .  
qf, ps and qs solve the following initial-boundary value problem in Qt '-

~ d 2u  ^
ToP-Q^~ + ^ ( l f  +  Is)  ~ P  F

=  div|AnAg : D(x, u) +  Bg ^ d iv u  — —- d^j + B*<//j, (4-25)

dt y J ?7o m

— ps +  Cn : D(x, u) +  (1 — m +  Og) div u  
»70

=  —  -  <0>n ) -  a?(9/ -  (9 /)n ), (4.27)
»7o

+  (1 -  m)Pos'd, qf  = P f  + mpofd,  (4.28)

— p s + d iv u  =  0, (4.29)
»70

where the symmetric strictly positive definite constant rank-4 tensor Ag, the con
stant matrices C'g, B g ,  B f ,  the strictly positive definite symmetric matrix B'0, and
the constants ask, k = 0,1, 2, 3, are defined below by formulae (4.38), (4.39) and (4.42).

The differential equations (4.25) and (4.26) are endowed with the homogeneous
initial conditions

du
T g U  =  T g —  = 0 , (4.30)

at

ToCpê-----— ps ~  (Pof ~  Pos) ( —  as2(â)n + as3{qf )n)  = 0 (4.31)
»70 \  »70 /

for t = 0 and x G 0  and with the homogeneous boundary conditions

d(x,  t) = 0, u (x , t )  = 0, x  € S, t > 0. (4.32)

Proof. We observe in the first place tha t u =  w and 0 = d by Lemma 7.
The differential equations (4.25) follows from the macroscopic equations (4.14) 

after substituting the expression

An(0 (y ,U ))r  =  AnA® : D(x, u) +  B® ( d i v u -  —  d ) + B siqf  + A(t).
V »70 J
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In its turn, this expression results from the solution of equations (4.3). (4.5) and 
(4.12) on the pattern  cell Ys. Indeed, setting

U =  V  U lJ(y)D ,,  + U 0 (y) fd iv u  -  ^ ( 0  -
V vo J

+  —  U i ( y ){qf  -  (qf ) n ) +  —  U 2( y ) ( t f ) n  +  U 3 ( y ){qf )n.  
m  Vo

Q s =  An Q*?(y)D 'J + Q»(y )  fd iv u  -  -  (0)n))
i , j=l '  ^0 '

Y — Q \ ( y ) ( q f  -  (qf ) n )  +  —  Q ; { y ) ( & ) n  +  Q 3s { y ) { q f ) n ,m ?7n

where
1 /  thtj
2 I d x j  dx.j

we arrive at the following boundary-value problems in Y:

d iVy{ ( i  -  X ) m v ,  u j j ) +  j 13) -  Ql j  • i }  =  o,
An (4.33)

Q ‘s +  (1 — x )  diVy U ' iJ =  0;
Vo

diVy{A0(l - x ) D ( j / ,U 0) - Q °  -1 } =  0 ,
1 , (4-34)

Qs +  (1 — x)(divy U 0 +  1) =  0;
Vo

divy{A0(l - x ) D (y ,U i)  -  ( Q « + x )  -1} =  0,
1 i (4-35)

- Q s 1 +  ( l - x ) d i v , U 1 = 0 ;
Vo

divy{A0(l - x ) D ( y ,U 2) -  Qs -1} =  0,
1 o (  1 A (4-36)

 Qs =  (! - x ) | d i v y U 2 -  1 -    (divy U 2)y„ i:
Vo \  1 -  m  )

divy |  An (1 -  x)D(y, U 3 ) -  ( q ?  + ±  x  ) n  ()- 

~  Qs = ( i -  x) (d iv y U 3 -  <divy )'

Note that

(4.37)

,3 = ^ ( d i v y U 2)y. <0>n +  (divy U 3)y. (qf )n
Vo '

in view of the homogeneous boundary conditions for u (x ,f).
Under our assumptions about the geometry of the pattern  cell Ys the prob

lems (4.33)-(4.37) have a unique solution (up to  an arbitrary constant vector). To 
get rid of these arbitrary constant vectors we set

(U^')y. =  (U fc)ys =  0, k = 0 , 1 , 2,3, i , j  = 1,2,3.
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Thus.

3 3

Ag =  (i — m) J 2  -Jn ® •, , J + A‘ > A* =  Y .  u 'iJ^  ® JVJ■ (4'38)
i , j  =  1 i , j  =  1

In [10] we proved tha t the tensor Ag is symmetric and strictly positive definite.
F inally the continuity and state equations (4.27)-(4.29) for the pressures follow 

from equations (4.7)-(4.10) after substituting the expression

(divy U)y„ =  Cq : D(x, u) +  as0 f d iv u  -  —  {■& -
\  Vo J

+  —  ° i ( y )( '?/ -  ( q f ) n )  +  - 1  a o i t y n  +  a 3(qf)n-,Til I /0

(4.39)

where
B l  = Ag(D(y, Ufc))ys, a% = (divy U fc) y ,

3

C°0 =  J 2  (d iy y U<J>v. J l ^  k  =  °> 2> 3 -
i , j =  1

Now, for * =  1, 2, 3 we consider the model boundary-value problems

A ye ?  = 0 , y  G Ys, (4.40)
a e f— -  =  - e ,  n, y  G 7 ,
an

and set
3

\  ' ,y- (4-41)
i= 1

Then 0 s solves problem (4.13) and after substituting (Vy0 s)y  in (4.15) we obtain 

B e = M0s ^(1 -  m )I +  E ( V , 0 - ) n  ® • (4-42)

The properties of the m atrix B e are well known (see [5], [15]).

L em m a 11. I f  the porous space is disconnected, then w =  u and in Qt  the -weak 
limits 6?, u, d, p f ,  qf, p s and qs satisfy equations (4.24), (4.26) and (4.28), where 
Ag, Cq, Bq,  B f , B ’0 , a6k, k = 0, 1, 2, 3, are as in Lemma 10, the state equation

qs = Ps +  (1 -  m)Pos'd, qf = p f  +  I3of0f  (4.43)

and the heat equation
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where

Of {x, t) = ^  \ b ef (t -  t ) ( ^ ^  r )^  -  T0cp f ~ { x , T )  + m ^ { x ,  r ) j d r

(4.45)
for p\  > 0 and tq > 0. I f  pi  > 0 and tq = 0, then

0f {x, t) = m $(x, #) -  cef ( - - -  + ^ (x ,# )^  (4.46)
J \  m  at /

and finally, i f  ^ i =  0 , then

O f ^ t ) - —  I  № ^ ( r )  +  * ( x . r ) W  (4.47)
7-0 C p / J o  V m  /

i/ere 6®(#) and c® are defined below by formulae (4.50)—(4.52) and

I 3 = ^ a s2{d)n + as3{qf )n. (4.48)
Vo

The problem has initial and boundary conditions given by (4.30) and (4.32) and 
the initial condition

ToCpsd — ps -  (/3of -  /3os)/3 = 0 (4.49)
Vo

for t — 0 and x  G 0.

Proof. The only difference from the previous Lemma, 10 is the heat equation for d 
and the second state equation in (4.28) because 0 ^  d. The fluid tem perature 
0^ = ( 0 )yf is now determined from the microscopic equation (4.19) with bound
ary and initial conditions (4.20) and (4.24) for pi  > 0 and from the microscopic 
equation (4.22) with initial condition (4.24) for p\ = 0.

Indeed, the solutions of these problems are given by the formula

© =  t f ( x , t ) +  f  © { (y ,t -  r)h(x,r) dr 
Jo

for /<i > 0  and r  > 0 and by

0  =  i?(x,i) -  0,5 (y) ^ { t )  + * (x , /) j ,

for pi > 0 and r  =  0 , where

/3of d(3 d v)
h  ------   I $  — T0Cpf —m  at at

and the functions 0 { and 0 q are solutions tha t are periodic in y  of the following 
problems:

<90{ f
T o C p f ^ r - = x 1p 1Ay&[,  y  G Yf,

p  (4.50)
©{ ( y , 0 )  =  -------- , y  G Yf', 0 { = O ,  y  G 7 ,

7 0  C p /
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and
x u i iA y & l  =  1, y  G Yf,  =  0, y  G 7 . (4.51)

Then (in accordance with the definition) 6? is given by formula (4.45) or (4.46). 
where

b9f (t) = {e{)Yf, cef  = (& l)Y r  (4.52)

If =  0, then 0  is found simply by integrating with respect to time.

4.5. H om ogenized  equations. II. Assume tha t < oo. In the same man
ner as in §4.4 we verify tha t the strong limit u of the sequence {ue} satisfies an 
initial-boundary value problem similar to  (4.25)-(4.29), but different from the lat
ter in general because the weak limit w of the sequence {w e} is distinct from u in 
the general case. More precisely the following result holds.

Lem m a 12. I f  < oo, then the strong /  weak limits u, w^, Q l, d, p f ,  qf, ps and qs 
of the sequences {ue}, {xew e}, { \ E0E}, {dE}, {p^}, {q£f }, { ^ }  and {qf} satisfy the 
initial-boundary value problem inA lj• consisting of the momentum balance equation

(  32w f  , ,<92u \
T° \ Pf ~f t2~ + Ps( j  + v ( q f  + q s ) - p F

=  d iv | AqAq : D(x, u) +  B'q ^div u — —- +  £>*q/1 (4-53)

and the continuity equation (4.27) for the solid component, where Ag, B q and B f  
are the same as in (4.25), the continuity equation

1 ,
— ps + d iv w / =  (m — l)d iv u , (4.54)
m

the state equations (4.43), the heat equation (4.44), and the relation

d w f  8vl f*
TT, ™ ^ r ( x , # ) +  / B i ( / - i i , t  — t ) ■ z ( x ,  t ) cIt , ( 4 . 5 5 )dt dt J g

1 d2u
z ( x , # )  =  V g / ( x , # )  +  p / F ( x , # )  - T 0 p f — j { y L , t ) ,

for  tq >  0 and fj,i >  0, or Darcy’s law

dw ?  <9 u /  1 \
m —  + B 2( ^ ) - ( - - V q f + p f F j ,  (4.56)

dt

for T q  =  0 , or finally, the momentum balance equation for the fluid component in 
the following fo rm :

d 2w f  d 2u  (  \  \
T° P f ^ j f T  = ToPfR i ■ -f tY +  (mI  “  Bs) • Vq/  +  p f F j ,  (4.57)

for  Mi =  0 .
The problem is given the initial and boundary conditions (4.30), (4.32) and (4.49) 

for the displacement u  and the temperature & of the solid component, and the bound
ary condition

w ^ (x ,t) ■ n(x) =  0, (x ,t) G 5', t >  0, (4-58)



and the initial condition
t dw?

r 0w /  =  T0——  =  0 (4.59)

for the displacement w f  of the fluid component.
In  (4 .53)-(4.59) n(x) is the unit normal at x  G S', and the matrices B i(/Wi,#), 

B 2(Mi) an(l E>3 are defined below by formulae (4.60)—(4.65).

Proof. We deduce homogenized equations expressing the momentum balance (4.53) 
and the homogenized continuity equation (4.54) similarly to (4.25) and (4.29). For 
example, to obtain (4.54) it is sufficient to express d ivw  in (4.10) using homo
genization in the first equation in (4.6): w =  w^ +  ( l  —m ) u .  Initial conditions (4.30) 
and (4.59) are easy consequences of conditions (4.16) and (4.24). The derivation of 
boundary condition (4.58) is standard (see [8]).

Thus, the proof of the lemma reduces to the derivation of a homogenized equa
tion for the velocity v  of the fluid component in the form of Darcy’s law or the 
momentum balance law.

a) If /<i > 0 and tq > 0 ,  then the solution of the microscopic equations (4.5). 
(4.18), and (4.20) with homogeneous initial conditions (4.24) is expressed by the 
following formulae:

0\1 /**"
V = ' 4 f t + J  B i ( y ^ - r ) - z ( x , r ) d r .

R =  [  R f ( y f l ~ T ) -z (x ,r )d r ,
Jo

where
3 3

B { ( y , # )  =  ^ 2 V ' l ( y f l )  ®  e t , =  ^ i ? * ( y , # ) e j .
i= 1 i= 1

and the functions V*(y , t)  and R l(y ,t)  are defined by means of the periodic 
boundary-value problem

ToPf,~ W  =  M lA y i  “  V i? i ’ diVy V * =  ° ’ y  G Yfy *' >  0; (4.60)
V* = 0 , y  G 7 , t  > 0; TofJfV'iy,  0) =  e,;, y  G Y).

In (4.60) et is a unit vector along the x4-axis. Therefore.

B i U i u t )  =  ( B [ ) Y f (t).  (4.61)

b) If to = 0 and n i > 0, then the solution of the stationary microscopic equa
tions (4.5), (4.18) and (4.20) is given by the formula

A .M . M elrmanov

£  + b W - > ( + „ f )

in which
3

B 2 (y ) =  ® e i’
i= 1
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and the functions U ' (y) are determined by the periodic boundary-value problem

- u iA U ,; +  V R ‘ =  e , , div„ U ,; =  0, y  G Y f ;
. V 1 (4.62)

U* = 0 , y  G 7 -

Thus,
B 2 (m ) =  (B ^ (y )h v  (4.63)

The matrix £>2(mi) is symmetric and positive definite (see [8], Ch. 8 ).
c) Finally, if tq > 0 and ^  = 0, then to solve the microscopic equations (4.5) 

and (4.21) together with (4.23) and (4.24), we first find the pressure i? (x ,t , y )  
as a solution of the periodic Neumann problem for Laplace’s equation in the 
domain Y f . If

Æ (x,#,y) =  X ^ ;(y )e* ' z (x ^)-
i=  1

where R'  ( y) is the solution of the problem

A R t =0 ,  y  G Y f ; V R t ■ n  =  n  • e, ,  y G 7 , (4.64)

then (4.57) occurs as a result of integration of the homogenized equations (4.21)

3

B 3 =  y ^ ( V i $ j y ) ) y - s <E> e,, (4.65)
i=  1

with respect to time, where m l — £>3 is a symmetric positive definite m atrix (see [8]. 
Ch. 8 ).
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