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The weakening of conditions imposed on the solution operators of the Cauchy problem for
abstract first- and second-order differential equations has led (see [1-3]) to the notion of integrated
semigroup and integrated cosine function.

In the present paper, we derive formulas relating the integrated cosine function to the solution
operator Y;(t) of the Cauchy problem

u'(t) = Au(t), t >0, (1)
u(0) = uo, u'(0) =0, (2)

for the Euler-Poisson-Darboux equation in a Banach space E. (Here k > 0 is a parameter.)

The operator function Y;(t) was introduced in [4] and named the operator Bessel function.
The set of operators A for which problem (1), (2) is uniformly well posed will be denoted by Gy.
Thus if A € Gy, then problem (1), (2) has a unique solution, which continuously depends on the
initial data; moreover, u(t) = Yj(t)uo, up € D(A), and

VOl < Me*t,  M=1,  w>0, (3)

Note that the condition for problem (1), (2) to be uniformly well posed and the properties of
the operator Bessel function Y} (¢) were given in [4].
Next, recall the definition of integrated cosine function.

Definition 1. Let o > 0. A one-parameter family C,(t), t > 0, of bounded linear operators is
called an a-times integrated cosine function if the following conditions are satisfied:
1.

t+s s

2T () Co (1) Co(s) = /(t +s—r)*tC,(r)dr — /(t +5—r)* 1C,(r)dr

+ /(7" —t+8)* 'O, (r)dr + /(7" +t—8)*1C,(r)dr, L>s>0.
t—s 0

Oé()

(t )LE is a Contlnuous function of ¢ > 0 for each x € F.

2. C
3. C,
4. There exist constants M > 0 and w > 0 such that

ICa()l < Me™, £ 20. (4)



The generator A of an integrated cosine function C,(t) is defined as follows: the domain D(A)
is the set of elements x € I such that there exists an element y € IV satisfying the relation

t

— /(t —r)Co(r)ydr, t>0, (5)

0

Ca(t)$ — F(ofiil)m

where I'(+) is the Euler gamma function; in this case, we set Ax = y.

Theorem 1. Let o > 1, let an operator A be the generator of an a-times integrated cosine
function C,(t), and let ug € D(A). Then problem (1), (2) is uniformly well posed (i.e., A € G},),
and the corresponding operalor Bessel function can be represented in the form

Yoo (t)uto = % Callhto — 5 / 11 (2) Culspmds | (6)

0

where P,(-) is a spherical Legendre function.

Proof. Formula (6) can be obtained heuristically as follows. Consider an operator cosine func-
tion C'(t) and set

o) — / C(r)dr

Then, by the formula [4] for a parameter shift in Eq. (1),

QHRT(R/241/2) [0 gumes d™ (I™C(s)uo)

ds (7)

for k =2m, m € N, or, after simple transformations,

t

2(—1)™ IR (k)2 + 1/2) / dmt ((t2 - Sz)mfl) d(I™C(s)ug)

Yi(t)o = /7 D(k/2) dsm1 PR
C9(m t 1/2) | s\ d(I"C (s)uo)
S e () e )

t

2"I(m+1/2) | . T T N
% I C’(t)uo—g/Pm1 (;)I C(s)uods | ,

0

where P,,_1(-) is a Legendre polynomial.

In (8), we replace m € N by a > 1, I"™C(t) by C,(t), and the Legendre polynomial P,, () by
the spherical Legendre function P, ;(-). Let us show that the function Y5, (¢)uo defined in (6) is a
solution of problem (1), (2) for k = 2a.



Let us compute the first and second derivatives of Y5, (t)uq :

, 2°T' (a4 1/2 a+ P (1 1,
3/204(15),“’0 - (ﬁ / ) B toz+11( )Ca(t)uo + t_aoa(t)uo

t t

14+« , S 1 " s
+ fot2 /Pa1 <¥) Co(s)uods + W/Pal (;) sCL(s)uods | ,
0 0

" 2T (e +1/2) [ P/ () +2(a+ )P, (1) +* + o
Vi~ ZHEAUD (P 2t D) 10

2P (1) + 2ax
- toz+1

t
, L., (a+ D(a+2) , (S
Cltyuo + Oty — 2N ED) / P (2) Culshuods
0
t t

20 + 4 " 8 1 " 5 2
= /Pa1 (;) sCy(8)uods — W/Pal (;) s°Co(s)upds

0 0

Then, after integration by parts, we obtain

1 2a /
Yo (t)uo + TYQQ(t)Uo
2T (4 1/2) [ a — P (1) 1 1
— _ % / - _ A
NG ( oz Call)to = == Calliuo + mrp—ytio + 37 Call) Auo (9)

t t
+ % /P;1 (3) Calshuads + ta%/ (‘z—ngl (3)+ 27313;71 (;)) c;(s)uods>,
0 0

By [5, p. 206], the spherical Legendre function P,_(s) is a solution of the equation
(1 —s*)w"(s) — 2sw'(s) + a(a — Dw(s) = 0;

consequently, the function P, (s/t) satisfies the relation

o (1) 20 (3) = () ot ). o

By taking into account (10) and by integrating by parts, from (9), we obtain

, 2, 2T (o 1/2) 1 1
Yo (t)uo + . Y, (Huo = T NCESE o+ o C(t) Aug
! tP/ (f) S Ou(s) Aup ) d
Tpert | et (g \T(a -1y 0 T el J A8
’ t (11)
22T(a +1) [ 1 1 s
-~ — t—aC’a(t)Auo ~ e /Pa1 <f) Co(s)Augds




We use [6, Eq. 1.12.1.15] to compute the integral

t t

/s‘“ngYl (%) ds tal/Tazpél(T)dT
0 0

t
—e R~ @-2) [P

0
a—2

: (arP(1) — (2a—1)7T° —a +1) Pa1(7)>>

g ta1<7a2Pa1(T) - —

tozfl

= —— (o= )7 Pars(7) — a7 Pa(7)) 5

hence
t

/SMPC;1 (;) ds = o1, (12)

0
It follows from (11), (12), and (6) that

2
YL (0o + T ¥u(0uo = AVaa(t)uo.

Therefore, the function Y5, (t)ug is a solution of Eq. (1).

Note that the representation (6) (after the change of variables s = ¢7 in the integral), together
with (4), implies the estimate

Voo (t)]| < Mye. (13)

To show that the function Ys,(t)ug satisfies the initial condition (2), we use relation (5) and the
integral 2.17.1.4 in [6] and rewrite the expression (6) in the form

t

Yo(O)to 20T (v + 1/2) /Pa1 (;) " (5)uods

Ve
0
t s
2°T (4 1/2) sy [ s7 tug
= - P o —
Jr / o—1 <t) o) +/Ca(g)Auodg ds
0 0

(14)

1 t

— 2“1“(\;%4;&1/2) F(la) /Talpal(T)uodT+/Pa1 (;) ds/Ca(g)Auon

0

1 tr
2°T(a+1/2
= Ug + % /Pal(T)dT/Ca(Q)A’U/on.
0 0

Now the desired assertion follows from (5), since the last term in (14) is of the order of t* as t — 0.
We prove the uniqueness of the solution of problem (1), (2) by contradiction. Let u(t) and us(t)
be two solutions of problem (1), (2). Consider the function w(t, s) = f (Yaa(s) (ui(t) — ua(t))) of
two variables ¢, s > 0, where f belongs to the adjoint space E*. Obviously, it satisfies the equation
(’92w+2a(’9w782w+2a(’9w S0
ot at  9s s Os’ ’ ’
and the conditions
~ ow(0,s)  Ow(t,0)
- at s

w(0, s) =0.



By using the change of variables t; = (t+5)?/4, s; = (t—s)?/4, one can reduce |7, Sec. 5, item 3]
the last problem to the problem whose uniqueness in the class of twice continuously differentiable
functions for ¢,s > 0 was proved in [7, Sec. 5, item 2|. Moreover, the desired uniqueness is also
contained in Theorem 6.1 in [8], where even a more general equation was considered.

Consequently, w(t, s) = 0, and since the functional f € E* is arbitrary, for s = 0, we obtain the
relation u;(t) = us(t), and the proof of the uniqueness is complete.

Thus the operator function Y5, (t) satisfies inequality (13), and the function Y5, (#)ug is the unique
solution of problem (1), (2); consequently, problem (1), (2) is uniformly well posed. The proof of
the theorem is complete.

Remark 1. Theorem 1 remains valid for «« = 1. In this case, the proof is much simpler, and
Yo (t)ug = (1/1)C1(t)ue, where C(t) can naturally be referred to as the operator sine function.

Theorem 2. Let A € Gy, k > 0, and let Y;(t) be the corresponding operator Bessel function.
Then the operator A is the generator of an integrated cosine function C,(t), where n is the least
positive integer such that 2n > k.

Proof. First, note [4] that the operator Bessel function Y3, (f) can be expressed via the operator
Bessel function Y3 (1) with the use of the formula for a parameter shift:

1
/ (1— 32)(7%]{)/271 s"Yy(ts)ds, m > k,

0

2
/2t 1/2,m/2 — k/2)

Ylt) = g

where B(-, ) is the Euler beta function.
Let ug € D (A™). By Theorem 3 in [9], the function

4 1 d " 2n—1
%(t)uo = m (;E) (t S/Zn(t)u0> (15)
is the unique solution of the equation
u”(t) = Au(t), t>0, (16)

with the initial conditions (2).
By using the relation [10, Eq. (1.13)]

1d\", .. 4 2" ICIT(n+ 1/2) 5. (1d Y’
(?E) (£ You (Do) = ) ES (f%) Yau(t)uo

Jj=0

and the expression [4]
t
k+1

for the derivative of the operator Bessel function, we rewrite formula (15) as

Yk/(t)’ll/o = Yk+2(t)A'U/o

n

Yoltyuo = 2njfcgﬂ%l/z)tZ%nHj(t)Ajuo. (17)

Jj=0

This, together with (3), implies the estimate

1Yo ()uoll < Mye! Z | A7uol|, Wy > w.

Jj=0

Therefore, problem (16), (2) is exponentially uniformly n-well posed. It follows from Theorem 1.3
in [11] that the operator A is the generator of an integrated cosine function C,,(t). The proof of
the theorem is complete.



Remark 2. By virtue of the uniqueness of the solution, we have C,(t)ug = I"Yy(t)uo and
ug € D (A™), where Yy(t) is given by (15). After integration by parts, we obtain

(n =12 s ds

e 2()'_(12); —n <32n1 e%)“ (%) Yon(s)to t

o) (o

for n > 2; moreover, the operator function 1"Y;(t), originally defined on the dense [4] set D (A™),
can be extended to the entire space F. For example,

Colthn = Vit~ et (=5 (1) (5 V(o)) s

t

Cilt) = th(t),  Ca(t) = gmt) ¥i / $Vi(s)ds,
ey = Ly 1 L / $Ys(s)ds,

0

and the inverse formulas read
t
1 3 3
Yl = 3G, Yilt) = Calt) 5 [ Calois,
0
t

15 45

Vilt) = o Clt) — /sC’g(s)ds.

In conclusion, we recall the definition of integrated semigroup and show how to use it so as to
weaken the conditions imposed on the operator A occurring in the problem [12]

v'(t) + %fu(t) = Av(t) + %g, t >0, (18)
lim (t*o(t)) = vo. (19)

Definition 2. Let o > 0. A one-parameter family of bounded linear operators T,(t), t > 0, is
called an a-times integrated semigroup if the following conditions are satisfied:

L () To()Tu(s) = [Tt + 5 — r)> M To(r)dr — [3(t + s — 1) " To(r)dr, t,s>0.

2. T,(0) = 0.

3. T,(t)x is a continuous function of ¢ > 0 for each x € F.

4. There exist constants M > 0 and w € R such that | T, (t)|| < Me**, t > 0.

The generator A of an integrated semigroup T, (%) is defined as follows: the domain D(A) is the
set of elements x € IV such that there exists an element y € I satisfying the relation

t

i )LE = /Ta(s)y ds, t >0 (20)

T,(t)x — ot D

0

in this case, we set Ax = y.



Theorem 3. Let k € N, let A be the generator of a k-times integrated semigroup Ty, (t), and let
g € D(A) and vy € D (A¥T). Then the function

o(t) =t (k;! To(t)g + T,§k>(t)vo)

is the unique solution of problem (18), (19), and moreover,

k ik 4
Il < e (gl + [|4%o]) + > _ == [[ 47w (21)

=0

Proof. Note that the representation of the solution v(¢) of problem (18), (19) was obtained
from Theorem 7 in [12], where it was assumed that A is the generator of a Cy-semigroup 7°(t), by
replacing the kth fractional integral of the semigroup 7'(t) by the integrated semigroup 7y (t).

By taking into account the relation (e.g., see [3])

E—1 .
v
T (tyg = T () Ao+ ﬁAJ’UO (22)

=0
and definition (20) of the generator of the integrated semigroup 75 (t), we compute v'(t). We obtain
V() = —kt (k;! To(t)g + T,§k>(t)vo) ot (k;! ATy (bg + ktF g + AT,§k>(t)vo) :
therefore,
, k k
v'(t) + ?U(t) = Av(t) + s

i.e., the function v(t) satisfies Eq. (18).
It also follows from (20) and (22) that the initial condition is satisfied, since

lim (#*v(t)) = KM T (g + im T (v = vo.

t—0
The estimate (21) is a consequence of item 4 of Definition 2 and relations (20) and (22). Indeed,

k-1,
lv@®)| <t * <k;! Mithe!||g|l + MitFe®" || Afvo|| + Z% HAj’UOH>

§=0
wt k - tjik 7
- e (ol + 4l + 3 S 4
=

Finally, to prove the uniqueness, we note that the change of variables

v(t) =t Fwt) F kT (g

reduces problem (18), (19) to the problem
w'(t) = Aw(t),  w(0) = wo,

which, by virtue of Theorem 1.2 in [3], has a unique solution. The proof of the theorem is complete.
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