= УРАВНЕНИЯ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ :

УДК 517.956.2

ЗАДАЧА ДИРИХЛЕ ДЛЯ СЛАБО СВЯЗАННЫХ ЭЛЛИПТИЧЕСКИХ СИСТЕМ НА ПЛОСКОСТИ

© 2013 г. А. П. Солдатов

Посвящается Владимиру Александровичу Ильину в связи с его 85-летием

Рассматриваются эллиптические системы второго порядка на плоскости с постоянными (и только старшими) матричными коэффициентами. Показано, что для этих систем понятие слабо связанности (по терминологии А.В. Бицадзе) равносильно выполнению известного условия дополнительности для задачи Дирихле. В рамках теоретико-функционального подхода введены аналоги потенциалов двойного слоя для решений слабо связанных систем. С помощью этих потенциалов получено полное описание решений слабо эллиптических систем как в классах Гёльдера, так и в классах Харди $h^p(D)$ и $C(\overline{D})$.

DOI: 10.1134/S0374064113060058

Рассмотрим однородную эллиптическую систему второго порядка

$$a_0 \frac{\partial^2 u}{\partial x^2} + a_1 \frac{\partial^2 u}{\partial y^2} + a_2 \frac{\partial^2 u}{\partial y^2} = 0 \tag{1}$$

с постоянными (и только старшими) коэффициентами $a_j \in \mathbf{R}^{l \times l}$. Его регулярным решением служит вещественная l-вектор-функция $u = (u_1, \ldots, u_l)$ класса C^2 . С этой системой связан матричный трехчлен $p(z) = a_0 + a_1 z + a_2 z^2$. Условие эллиптичности означает, что det $a_2 \neq 0$ и характеристическое уравнение det p(z) = 0 не имеет вещественных корней. Множество этих корней в верхней полуплоскости обозначим через σ , и пусть k_{ν} – кратность корня $\nu \in \sigma$.

Как установлено в работе [1], справедлива

Лемма 1. Для любой эллиптической системы вида (1) найдутся такие матрицы $b, J \in \mathbb{C}^{l \times l}$, что спектр J совпадает с σ , выполнено матричное равенство

$$a_0 b + a_1 b J + a_2 b J^2 = 0 \tag{2}$$

и блочная матрица В с элементами $B_{11} = \overline{B_{12}} = b$, $B_{21} = \overline{B_{22}} = bJ$ обратима. При этом любая другая пара (b_1, J_1) с теми же свойствами связана с (b, J) соотношениями $b_1 = bd$, $J_1 = d^{-1}Jd$ с некоторой обратимой матрицей d.

Последнее утверждение леммы легко вытекает из соответствующих рассуждений, приведенных в [1]. Оно означает, что матрица J определена с точностью до подобия и ее естественно назвать характеристической матрицей системы (1). По отношению к равенству (2) будем говорить также, что матрица b приводит систему (1) к характеристической матрице J. Заметим, что в случае диагонализируемой системы, когда матрицы $a_2^{-1}a_0$ и $a_2^{-1}a_1$ диагональны, можно положить b = 1 с характеристической диагональной матрицей J.

Очевидно, в общем случае матрицу J всегда можно выбрать в жордановой форме, т.е. в виде блочно-диагональной матрицы $J = \text{diag}(J_1, \ldots, J_n)$ с клетками Жордана

$$J_{i} = \begin{pmatrix} \nu_{i} & 1 & 0 & \dots & 0 \\ 0 & \nu_{i} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & 0 & \dots & \nu_{i} \end{pmatrix} = \nu_{i} + \Delta_{i} \in \mathbb{C}^{l_{i} \times l_{i}}.$$

В этом случае равенство (2) можно интерпретировать следующим образом. Если столбцы матрицы b с номерами, отвечающими номерам блока J_i , обозначить через x_1, \ldots, x_{l_i} и рассматривать как элементы \mathbb{C}^l , то выполняются векторные равенства

$$p(\nu)x_1 = 0, \quad p(\nu)x_2 + p'(\nu)x_1 = 0,$$
$$p(\nu)x_j + p'(\nu)x_{j-1} + \frac{1}{2}p''(\nu)x_{j-2} = 0, \quad 2 \le j \le l_i.$$

Согласно терминологии М.В. Келдыша [2, с. 309], набор этих векторов естественно назвать цепочкой собственных и присоединенных векторов квадратичного пучка p(z), отвечающих собственному значению $\nu_i \in \sigma$. Эта цепочка образует матрицу $b_i \in \mathbb{C}^{l \times l_i}$, так что матрица b запишется в блочном виде (b_1, \ldots, b_n) . В этих обозначениях А.В. Бицадзе [3, с. 111–112] установлено, что любое решение u эллиптической системы (1) представляется в виде

$$u(x,y) = \sum_{i=1}^{n} \operatorname{Re} b_i \sum_{k=0}^{l_i-1} \frac{y^k}{k!} \Delta_i^k \psi_i^{(k)}(x+\nu_i y)$$
(3)

с некоторыми аналитическими l_i -вектор-функциями $\psi_i(\zeta)$ переменной $\zeta = x + \nu_i y$.

Следуя А.В. Бицадзе [3, с. 113], систему (1) назовем слабо связанной, если матрица $b = (b_1, \ldots, b_n)$ обратима, и сильно связанной в противном случае. В силу леммы 1 это определение можно использовать по отношению к любой матрице b, приводящей систему (1) к характеристической матрице.

Как показано в [1], слабо связанные системы можно определять непосредственно по коэффициентам системы. Заметим, что в силу эллиптичности матрица-функция p(t) обратима для $t \in \mathbb{R}$ и элементы обратной к ней матрицы $p^{-1}(t)$ имеют порядок -2 на бесконечности. Поэтому имеет смысл интеграл от этой матрицы-функции на прямой. В этих обозначениях система (1) слабо связана тогда и только тогда, когда

$$\det \int_{\mathbb{R}} p^{-1}(t) \, dt \neq 0. \tag{4}$$

Из этого критерия, в частности, следует, что переход от (1) к системе

$$a_0^{\mathrm{T}} \frac{\partial^2 \widetilde{u}}{\partial x^2} + a_1^{\mathrm{T}} \frac{\partial^2 \widetilde{u}}{\partial y^2} + a_2^{\mathrm{T}} \frac{\partial^2 \widetilde{u}}{\partial y^2} = 0, \qquad (\widetilde{1})$$

формально сопряженной по Лагранжу, не изменяет ее типа.

Рассмотрим для системы (1) задачу Дирихле

$$u|_{\Gamma} = f \tag{5}$$

в области D, ограниченной гладким контуром Γ . С помощью параметрикса H.E. Товмасяну [4] удалось свести эту задачу, рассматриваемую в классе Гёльдера, к эквивалентной системе сингулярных интегральных уравнений с ядром Коши на Γ , которая при выполнении условия (4) принадлежит к нормальному типу и имеет индекс нуль. Таким образом, условие (4), т.е. условие слабой связанности системы (1), необходимо и достаточно для фредгольмовости задачи Дирихле.

Позднее в работах [5] и [6] был доказан аналогичный факт исходя из представления (3).

С другой стороны, с точки зрения современной общей эллиптической теории [7, с. 10] фредгольмовость задачи (1), (5) обеспечивается так называемым условием дополнительности, которое может быть сформулировано следующим образом.

Пусть $n = n_1 + in_2$ – единичная внешняя нормаль в фиксированной точке контура Г. С помощью этой нормали составим матричный трехчлен

$$p(n,z) = (n_2 - n_1 z)^2 a_{11} + (n_2 - n_1 z)(n_1 + n_2 z)a_{12} + (n_1 + n_2 z)^2 a_{22},$$
(6)

который при n = i переходит в p(z). Нетрудно видеть, что его определитель $\chi(n, z)$ как многочлен степени 2l не имеет вещественных корней, так что в верхней полуплоскости расположено ровно l корней $z_1(n), \ldots, z_l(n)$, взятых с учетом кратностей. Пусть многочлен $\chi_+(n, z)$ составлен из множителей $z - z_j(n)$, $j = \overline{1, l}$, и аналогичный смысл имеет $\chi_-(n, z)$ по отношению к $z - \overline{z_j(n)}$. Введем еще матрицу p^* , присоединенную к транспонированной матрице p^{T} , ее элемент $p_{ij}^*(n, z)$ представляет собой определитель матрицы, полученной из p(n, z) вычеркиванием i-й строки и j-го столбца. В частности,

$$p^*(n,z) = [\det p(n,z)](p^{\mathrm{T}})^{-1}(n,z).$$
(7)

В принятых обозначениях условие дополнительности в рассматриваемой граничной точке контура заключается в том, что если $\xi = (\xi_1, \ldots, \xi_l) \in \mathbb{C}^l$ и все компоненты l-векторамногочлена $p^*(n, z)\xi$ кратны $\chi_+(n, z)$, то $\xi = 0$. Поскольку многочлен χ_- всюду отличен от нуля в верхней полуплоскости, с учетом (7) это условие можно переформулировать также следующим образом: если мероморфная вектор-функция $(p^{\mathrm{T}})^{-1}(n, z)\xi$ не имеет полюсов в верхней полуплоскости, то $\xi = 0$.

Теорема 1. Эллиптическая система слабо связана тогда и только тогда, когда выполнено условие дополнительности.

Доказательство. Когда точка пробегает весь контур Γ , нормаль n принимает все возможные значения, так что условие дополнительности должно выполняться для каждого единичного вектора $n = n_1 + in_2$. В действительности это условие достаточно проверять для n = i, когда многочлен (6) совпадает с p(z). В самом деле, с каждым многочленом $h(z) = c_0 + c_1 z + \ldots + c_k z^k$ свяжем многочлен $\hat{h}(z)$ той же степени по формуле

$$\hat{h}(z) = (n_2 - n_1 z)^k c_0 + (n_2 - n_1 z)^{k-1} (n_1 + n_2 z) c_1 + \dots + (n_1 + n_2 z)^k c_k$$

или, что равносильно,

$$\widehat{h}(z) = (n_2 - n_1 z)^k h\left(\frac{n_1 + n_2 z}{n_2 - n_1 z}\right).$$
(8)

Очевидно, полученное преобразование $h\to \hat{h}$ обратимо и обратное к нему действует по аналогичной формуле

$$g(z) \to (n_2 + n_1 z)^k g\left(\frac{-n_1 + n_2 z}{n_2 + n_1 z}\right).$$

При n = i оно переходит в тождественное преобразование. Из определения (8) также видно, что для любых двух многочленов справедливо соотношение

$$\widehat{h_1h_2} = \widehat{h}_1\widehat{h}_2.$$

В частности, если коэффициентами c_j являются числовые $l \times l$ -матрицы, так что к этому типу принадлежат и значения $h = (h_{ij})_1^l$ многочлена h, то $\widehat{\det h}(z) = \det[\widehat{h}(z)]$.

Рассмотрим матричный многочлен p(z) эллиптической системы (1) и его определитель $\chi = \det p$, который может быть записан в виде

$$\chi(z) = (\det a_{22})\chi_+(z)\chi_-(z), \tag{9}$$

где χ_+ и χ_- определяются соответственно сомножителями $(z - \nu)^{k_{\nu}}$ и $(z - \overline{\nu})^{k_{\nu}}$ по $\nu \in \sigma$. В принятых обозначениях многочлен (6) совпадает с $\widehat{p}(z)$ и соответственно его определитель

$$\chi(n,z) = \widehat{\chi}(z). \tag{10}$$

Поскольку дробно линейное преобразование, фигурирующее в правой части (8), переводит верхнюю полуплоскость на себя, имеем аналогичное (10) равенство $\chi_+(n,z) = \hat{\chi}_+(z)$. Точно

так же можно записать и равенство $p^*(n,z) = \widehat{p^*}(z)$, где $p^*(z)$ – матрица, присоединенная к транспонированной матрице $p^{\mathrm{T}}(z)$. Следовательно, если $\xi \in \mathbb{R}^l$ и выполнено равенство

$$p^*(n,z)\xi = \chi(n,z)(p^{\mathrm{T}})^{-1}(n,z) = \chi_+(n,z)h(z)$$

с некоторым вектором-многочленом h, то оно равносильно равенству

$$\chi(z)(p^{\mathrm{T}})^{-1}(z) = \chi_{+}(z)g(z), \quad \widehat{g} = h.$$

Итак, условие дополнительности для эллиптической системы (1) заключается в том, что если мероморфная вектор-функция $(p^{T})^{-1}(z)\xi$ не имеет полюсов в верхней полуплоскости, то $\xi = 0$. Соответственно для системы, сопряженной к (1) по Лагранжу, это условие должно выполняться по отношению к $p^{-1}(z)\xi$.

Проверка справедливости этого условия для слабо связанной системы почти очевидна: если вектор-функция $p^{-1}(z)\xi$ аналитична в верхней полуплоскости, то в силу теоремы Коши

$$\int_{\mathbb{R}} p^{-1}(t)\xi \, dt = \left[\int_{\mathbb{R}} p^{-1}(t) \, dt\right]\xi = 0.$$

Согласно критерию (4), матрица в квадратных скобках этого равенства обратима, так что $\xi = 0$.

Предположим теперь, что система (1) сильно связана и матрица *b* приводит ее к характеристической матрице *J*. Тогда, согласно определению, det b = 0, так что $b\eta = 0$ для некоторого ненулевого вектора $\eta \in \mathbb{C}^l$. Заметим, что в силу обратимости блочной матрицы *B* с элементами $B_{11} = \overline{B_{12}} = b$, $B_{21} = \overline{B_{22}} = bJ$ выполняется неравенство $bJ\eta \neq 0$. Рассмотрим на полуоси t > 0 вектор-функцию $be^{iJt}\eta$. Поскольку спектр матрицы *J* совпадает с σ и, следовательно, лежит в верхней полуплоскости, элементы этой матрицы-функции убывают на бесконечности быстрее любой степени и, очевидно, при t = 0 обращаются в нуль. Поэтому можем ввести аналитическую в верхней полуплоскости вектор-функцию

$$U(z) = \int_{0}^{\infty} b e^{i(z+J)t} \eta \, dt.$$

Интегрируя по частям, получаем равенство

$$zU(z) = \int_{0}^{\infty} bJ e^{i(z+J)t} \eta \, dt,$$

поскольку внеинтегральные члены равны нулю. Из тех же соображений имеем

$$z^{2}U(z) = \int_{0}^{\infty} bJ(-i)(e^{izt})'e^{iJt}\eta \, dt = ibJ\eta + \int_{0}^{\infty} bJ^{2}e^{i(z+J)t}\eta \, dt.$$

Таким образом,

$$p(z)U(z) = (a_{11} + a_{12}z + a_{22}z^2)U(z) = a_{22}bJ\eta + \int_0^\infty (a_{11}b + a_{12}bJ + a_{22}bJ^2)e^{iJt}\eta \,dt.$$

С учетом (2) отсюда следует, что для $\xi = a_{22}bJ\eta$ функция $p^{-1}(z)\xi = U(z)$ аналитична в верхней полуплоскости, а это противоречит условию дополнительности.

При исследовании краевых задач для эллиптической системы (1) удобнее использовать не аналитические функции в представлении А.В. Бицадзе (3), а решения $\phi = (\phi_1, \ldots, \phi_l)$ эллиптической системы специального вида

$$\frac{\partial \phi}{\partial y} - J \frac{\partial \phi}{\partial x} = 0,$$

которая была введена в работе [8] для ганкелевых матриц J в теории гиперкомплексных чисел и обобщает классическую систему Коши–Римана. Ее решения называем J-аналитическими функциями, поскольку их можно описать как функции класса C^1 , допускающие в каждой точке z обобщенную производную

$$\phi'(z) = \lim_{t \to z} (t - z)_J^{-1} [\phi(t) - \phi(z)],$$

которая совпадает с частной производной по x. Здесь и ниже с комплексным числом z = x + iyсвязывается матрица $z_J = x + yJ$, где x = x1 означает скалярную матрицу. Аналогичный смысл имеет и матричный дифференциал $dz_J = dx + J dy$ в криволинейных интегралах.

В дальнейшем роль J играет жорданова матрица $J = (J_1, \ldots, J_n)$ с клетками Жордана J_i указанного выше вида. Существует обратимое преобразование $\phi = E\psi$, переводящее аналитические l-вектор-функции ψ в J-аналитические. Если матрица J имеет единственное собственное значение ν такое, что $J = \nu + \Delta$, то это преобразование описывается формулой

$$\phi(x+iy) = \sum_{k\geq 0} \frac{y^k}{k!} \Delta^k \psi^{(k)}(x+\nu y).$$

Обратное преобразование задается аналогичной формулой

$$\psi(x + \nu y) = \sum_{k \ge 0} \frac{y^k}{k!} (-\Delta)^k \phi^{(k)}(x + iy).$$

В общем случае в соответствии с блочно-диагональной структурой *J* эти равенства определяются поблочно.

Подстановка $\psi = E^{-1}\phi$ в формулу А.В. Бицадзе (3) приводит к следующему результату [9].

Теорема 2. Пусть матрица b приводит эллиптическую систему (1) к характеристической матрице J. Тогда общее решение и этой системы в односвязной области представимо в виде $u = \text{Re} b\phi$, где J-аналитическая функция ϕ определяется по и с точностью до постоянного слагаемого однозначно. Более точно, справедливо равенство

$$\frac{\partial \phi}{\partial x} = 2\left(b^0 \frac{\partial u}{\partial x} + b^1 \frac{\partial u}{\partial y}\right), \quad \begin{pmatrix} b^0 & b^1 \\ \overline{b}^0 & \overline{b}^1 \end{pmatrix} = \begin{pmatrix} b & \overline{b} \\ bJ & \overline{bJ} \end{pmatrix}^{-1}$$

Аналогичный результат справедлив, конечно, и для формально сопряженной эллиптической системы $(\tilde{1})$, которая слабо связана вместе с исходной системой (1).

Рассмотрим однородную задачу Дирихле

$$\widetilde{u}|_{\Gamma} = 0 \tag{5}$$

для этой системы. Записывая выражение

$$u\left[\frac{\partial}{\partial x}\left(a_{0}^{\mathrm{T}}\frac{\partial\widetilde{u}}{\partial x}+a_{1}^{\mathrm{T}}\frac{\partial\widetilde{u}}{\partial y}\right)+\frac{\partial}{\partial y}\left(a_{2}^{\mathrm{T}}\frac{\partial\widetilde{u}}{\partial y}\right)\right]-\left[\frac{\partial}{\partial x}\left(a_{0}\frac{\partial u}{\partial x}+a_{1}\frac{\partial u}{\partial y}\right)+\frac{\partial}{\partial y}\left(a_{2}\frac{\partial u}{\partial y}\right)\right]\widetilde{u}$$

в дивергентном виде и используя формулу Грина, легко убедиться в том, что условия ортогональности

$$\int_{\Gamma} f\left[\left(a_0^{\mathrm{T}} \frac{\partial \widetilde{u}}{\partial x} + a_1^{\mathrm{T}} \frac{\partial \widetilde{u}}{\partial y} \right) n_1 + \left(a_2^{\mathrm{T}} \frac{\partial \widetilde{u}}{\partial y} \right) n_2 \right] |dt| = 0,$$

в которых |dt| означает элемент дуги Γ , решениям \tilde{u} однородной задачи (1), (5) необходимы для разрешимости задачи (1), (5). Меняя местами системы (1) и $(\tilde{1})$, отсюда нетрудно вывести, что указанные условия ортогональности и достаточны для разрешимости задачи (1), (5).

Существуют и другие теоретико-функциональные подходы (см., например, [10, 11]) к исследованию системы (1).

Для функций, аналитических по Дуглису, справедливы все основные результаты классической теории аналитических функций, основанные на интеграле Коши [9]. В частности, в окрестности изолированной особой точки для J-аналитической функции имеем разложение в ряд Лорана $\phi(z) = \sum (z - z_0)_J^k c_k$, $c_k \in \mathbb{C}^l$, по целым степеням матрицы $(z - z_0)_J$. Если функция ϕ ограничена в окрестности этой точки, то она устранима и данное разложение переходит в ряд Тейлора

$$\phi(z) = \sum_{k=0}^{\infty} (z - z_0)_J^k \frac{\phi^{(k)}(z_0)}{k!}, \quad \phi^{(k)} = \frac{\partial^k \phi}{\partial x^k}.$$

Если функция ϕ непрерывна в замкнутой области \overline{D} , ограниченной гладким контуром Γ , то имеют место теорема и формула Коши

$$\int_{\Gamma} dt_J \phi^+(t) = 0, \quad \frac{1}{2\pi i} \int_{\Gamma} (t-z)_J^{-1} dt_J \phi^+(t) = \begin{cases} \phi(z), & z \in D, \\ 0, & z \notin \overline{D}. \end{cases}$$
(11)

Здесь и ниже предполагается, что контур Γ ориентирован положительно по отношению к области D. При этом область D может быть как конечной, так и бесконечной, в последнем случае предполагается, что в окрестности бесконечности функция ϕ ведет себя как $o(|z|^{-1})$ в теореме Коши и как o(1) в формуле Коши.

Пусть область D ограничена гладким контуром Γ , ориентированным положительно по отношению к D. Тогда можем ввести обобщенный интеграл типа Коши

$$(I_J\varphi)(z) = \frac{1}{2\pi i} \int_{\Gamma} (t-z)_J^{-1} dt_J \varphi(t),$$

определяющий J-аналитическую функцию $\phi = I_J \varphi$, и соответствующий сингулярный интеграл Коши

$$(S_J\varphi)(t_0) = \frac{1}{\pi i} \int_{\Gamma} (t - t_0)_J^{-1} dt_J \varphi(t), \quad t_0 \in \Gamma,$$

который понимается в смысле главного значения. Определяемый этим интегралом оператор I_J ограничен в пространствах Гёльдера $C^{\mu}(\Gamma) \to C^{\mu}(\overline{D})$, причем справедлива формула Сохоцкого–Племеля $2\phi^+ = \varphi + S_J\varphi$ для граничных значений функции $\phi = I_J\varphi$. Если область D бесконечна, то в окрестности бесконечности функция ϕ имеет оценку $O(|z|^{-1})$ и разлагается в ряд по степеням z_J^{-k} , $k \ge 1$.

Произвольную J-аналитическую функцию $\phi \in C^{\mu}(\overline{D})$ можно представить интегралом типа Коши $I_{J}\varphi$ с вещественной плотностью φ и с помощью этого представления привести задачу Дирихле [12] к эквивалентной системе сингулярных интегральных уравнений на контуре Г. Если область D бесконечна, то решение u системы (1) в окрестности бесконечности подчиняется оценке

$$\left|\frac{\partial u}{\partial x}\right| + \left|\frac{\partial u}{\partial y}\right| = O\left(\frac{1}{|z|^2}\right),\tag{12}$$

в частности, имеет предел $u(\infty) = \lim u(z)$ при $z \to \infty$. Отсюда получаем следующий результат [9, 12].

Теорема 3. Пусть контур $\Gamma = \partial D$ принадлежит классу $C^{1,\mu+0}$ (т.е. $C^{1,\mu+\varepsilon}$ с малым $\varepsilon > 0$) и система (1) слабо связана. Тогда оператор задачи (5), действующий из класса $u \in C^{\mu}(\overline{D})$ решений этой системы (с указанным выше поведением на бесконечности в случае

неограниченной области) в $C^{\mu}(\Gamma)$, фредгольмов и его индекс равен нулю. Если дополнительно $\Gamma \in C^{1,\nu+0}$, $\mu < \nu < 1$, то и любое решение $u \in C^{\mu}(\overline{D})$ задачи с правой частью $f \in C^{\nu}(\Gamma)$ принадлежит $C^{\nu}(\overline{D})$.

Существует, однако, более простой подход, основанный на обобщенных потенциалах двойного слоя, который позволяет редуцировать задачу Дирихле непосредственно к системе интеральных уравнений Фредгольма второго рода.

Рассмотрим на контуре Γ единичный касательный вектор e(t), $t \in \Gamma$, направление которого согласовано с этой ориентацией. В частности, n = -ie является вектором внешней (по отношению к D) нормали. Хорошо известно, что ядро

$$Q_0(t,\xi) = \frac{n_1(t)\xi_1 + n_2(t)\xi_2}{|\xi|^2}$$
(13)

определяет классический потенциал двойного слоя для уравнения Лапласа по формуле

$$(P_0\varphi)(z) = \frac{1}{\pi} \int_{\Gamma} Q_0(t, t-z)\varphi(t)|dt|, \quad z \in D.$$

Поскольку

$$Q_0(t,\xi) = \operatorname{Im} \frac{e_1(t) + ie_2(t)}{\xi_1 + i\xi_2}$$

функция $P_0\varphi$ совпадает с вещественной частью интеграла типа Коши и, следовательно, удовлетворяет уравнению Лапласа.

Обобщенный потенциал двойного слоя для слабо связанной эллиптической системы (1) построим по аналогичной схеме исходя из интеграла типа Коши для J-аналитических функций. Для этого, используя матрицу b, приводящую систему к характеристической форме J, введем четную и однородную степени нуль матрицу-функцию

$$H(\xi) = \operatorname{Im}[b(-\xi_2 + \xi_1 J)(\xi_1 + \xi_2 J)^{-1}b^{-1}], \qquad (14)$$

которая в силу леммы 1 не зависит от выбора пары (b, J).

Лемма 2. Пусть эллиптическая система (1) слабо связана и матрица в приводит ее к характеристической форме J. Тогда в обозначениях (13), (14) справедливо равенство

$$\operatorname{Im}[be_J(t)\xi_J^{-1}b^{-1}] = Q_0(t,\xi)H(\xi).$$
(15)

Доказательство. Полагая $\mathcal{J} = bJb^{-1}$, равенство (15) можем записать в виде

$$\operatorname{Im}[e_{\mathcal{J}}(t)\xi_{\mathcal{J}}^{-1}] = Q_0(t,\xi)\operatorname{Im}[(-\xi_2 + \xi_1\mathcal{J})(\xi_1 + \xi_2\mathcal{J})^{-1}].$$
(16)

Зафиксируем ненулевой вектор $\xi = \xi_1 + i\xi_2 \in \mathbb{C}$ и рассмотрим ортогональный ему вектор $\eta = -\xi_2 + i\xi_1$. Тогда касательный вектор e = e(t) к контуру Γ в фиксированной точке t можно представить в виде линейной комбинации $s_1\xi + s_2\eta$ с коэффициентами

$$s_1 = \frac{e_1\xi_1 + e_2\xi_2}{|\xi|^2}, \quad s_2 = \frac{-e_1\xi_2 + e_2\xi_1}{|\xi|^2}.$$

В частности, выражение для коэффициента s_2 в точности совпадает с (13). В этих обозначениях $e_{\mathcal{J}}\xi_{\mathcal{J}}^{-1} = (s_1\xi_{\mathcal{J}} + s_2\eta_{\mathcal{J}})\xi_{\mathcal{J}}^{-1} = s_1 + s_2\eta_{\mathcal{J}}\xi_{\mathcal{J}}^{-1}$ и, значит,

$$\operatorname{Im}[e_{\mathcal{J}}\xi_{\mathcal{J}}^{-1}] = s_2 \operatorname{Im}[(-\xi_2 + \xi_1 J)(\xi_1 + \xi_2 J)^{-1}],$$

что завершает доказательство равенства (16) и леммы.

Если система (1) диагонализируема, то матрица b = 1 приводит ее к диагональной характеристической матрице $J = \text{diag}(\nu_1, \ldots, \nu_l)$, где в отличие от (3) корни ν_i записаны с учетом их кратности. В этом случае матрица H также диагональна и имеет вид

$$H = \text{diag}(H_1, \dots, H_l), \quad H_k(\xi) = \frac{|\xi|^2 \operatorname{Im} \nu_k}{|\xi_1 + \nu_k \xi_2|^2}$$

В частности, для уравнения Лапласа можно положить b = 1, J = i и, следовательно, H = 1. Как и в случае этого уравнения, рассмотрим интеграл

$$(P\varphi)(z) = \frac{1}{\pi} \int_{\Gamma} Q(t, t - z)\varphi(t)|dt|, \quad z \in D,$$
(17)

с ядром $Q(t,\xi) = Q_0(t,\xi)H(\xi)$. В силу равенства (15) он связан с обобщенным интегралом типа Коши $I_J\varphi$ соотношением

$$P\varphi = 2\operatorname{Re}[b(I_J b^{-1}\varphi)].$$
(18)

В частности, интеграл (17) описывает решения слабо связанной системы (1) и его естественно назвать обобщенным потенциалом двойного слоя этой системы.

Рассмотрим интегральный оператор K, который определяется аналогично (17) по отношению к точкам контура, точнее, равенством

$$(K\varphi)(t_0) = \frac{1}{\pi} \int_{\Gamma} Q(t, t - t_0)\varphi(t)|dt|, \quad t_0 \in \Gamma.$$
(19)

Если контур Γ ляпуновский, то его ядро $Q(t_0, t - t_0)$ имеет слабую особенность при $t = t_0$. Более точно, в предположении $\Gamma \in C^{1,\mu+0}$ функция $k(t_0,t) = |t - t_0|Q(t_0,t-t_0)$ принадлежит классу $C^{\mu+0}(\Gamma \times \Gamma)$ и обращается в нуль при $t = t_0$. Как показано в [13], в этом случае интегральный оператор K ограничен $C(\Gamma) \to C^{\mu}(\Gamma)$ и, в частности, компактен в пространстве $C^{\mu}(\Gamma)$.

Согласно равенству (18), граничные свойства функции $u = P\varphi$ изнутри области D полностью определяются аналогичными свойствами интеграла типа Коши, а именно оператор P ограничен $C^{\mu}(\Gamma) \to C^{\mu}(\overline{D})$ и справедлива формула граничных значений

$$(P\varphi)^+ = \varphi + K\varphi. \tag{20}$$

Представление решений слабо связанной эллиптической системы с обобщенными потенциалами двойного слоя определяет

Теорема 4. Пусть контур $\Gamma = \partial D$ принадлежит классу $C^{1,\mu+0}$ и состоит из связных компонент $\Gamma_1, \ldots, \Gamma_m$, кроме того, области D'_j , $1 \leq j \leq m$, с границей $\partial D'_j = \Gamma_j$ составляют дополнение $D' = \mathbb{C} \setminus \overline{D}$, причем для определенности в случае конечной области D компонента D'_m является бесконечной. Пусть, наконец, s_j – размерность пространства решений слабо связанной системы (1) однородной задачи Дирихле в области D'_i и

$$k = s + (m - \varkappa_D)l, \quad s = s_1 + \ldots + s_m,$$
(21)

где $\varkappa_D = 1$, если область D конечна, $u \varkappa_D = 0$ в противном случае. Тогда найдутся такие линейно независимые системы вещественных l-вектор-функций $g_1, \ldots, g_k \in C^{\mu+0}(\Gamma)$ и решений $u_1, \ldots, u_k \in C^{\mu+0}(\overline{D})$ системы (1), что любое решение $u \in C^{\mu}(\overline{D})$ этой системы единственным образом представимо в виде

$$u = P\varphi + \sum_{j=1}^{k} (\varphi, g_j) u_j, \quad (\varphi, g) = \int_{\Gamma} \varphi(t) g(t) |dt|,$$
(22)

с некоторой вещественной l-вектор-функцией $\varphi \in C^{\mu}(\Gamma)$, где $\varphi(t)g(t)$ – скалярное произведение l-векторов.

Доказательство основывается на описании ядра ker $P = \{\varphi | P\varphi = 0\}$ оператора P. Пусть $P\varphi = 0$, рассмотрим в области D интеграл типа Коши $\phi = I_J(b^{-1}\varphi)$ и аналогичный интеграл в ее дополнении D', который обозначим через $\psi = I'_J(b^{-1}\varphi)$. Для этих функций формулы Сохоцкого–Племеля принимают вид

$$2\phi^{+} = b^{-1}\varphi + S_J(b^{-1}\varphi), \quad 2\psi^{-} = -b^{-1}\varphi + S_J(b^{-1}\varphi), \tag{23}$$

где учтено, что контур Γ ориентирован отрицательно по отношению к D'. По условию с учетом соотношения (18) имеем равенство $\operatorname{Re} b\phi = 0$, так что функция ϕ постоянна в области D, более точно, $b\phi = i\xi$, $\xi \in \mathbb{R}^l$. На основании формулы (23) и вещественности функции φ имеем

$$\operatorname{Im} b\psi^{-} = \xi, \quad \varphi = -\operatorname{Re} b\psi^{-}. \tag{24}$$

Обратно, пусть некоторая J-аналитическая функция ψ_1 задана в D', принадлежит $C^{\mu}(\overline{D'_j})$ в каждой области D'_j и исчезает на бесконечности (в случае j = m, когда область D конечна). Утверждается, что тогда $P\varphi = 0$ для плотности φ , определяемой вторым равенством в (24) по отношению к ψ_1 .

в самом деле, для пары $\phi_1 = ib^{-1}\xi$ и ψ_1 имеем соотношение $\phi_1^+ - \psi_1^- = b^{-1}\varphi$. С другой стороны, это же соотношение справедливо и для пары функций $\phi = I_J(b^{-1}\varphi)$ и $\psi = I'_J(b^{-1}\varphi)$. Следовательно, для разностей $\phi_0 = \phi - \phi_1$ и $\psi_0 = \psi - \psi_1$ справедливо равенство $\phi_0^+ = \psi_0^-$. В силу формулы Коши (11), примененной к областям D и D'_j , $1 \le j \le m$, это равенство возможно только тогда, когда ϕ_0 и ψ_0 равны нулю. Таким образом, $I_J(b^{-1}\varphi) = ib^{-1}\xi$ и, следовательно, $P\varphi = 0$.

В силу теоремы 3 функция ψ в (24) принадлежит классу $C^{\mu+0}(\overline{D'_j})$ в связных компонентах D'. Конечномерный класс таких функций обозначим через X. Напомним, что в его определение включается требование $\psi(\infty) = 0$ в случае, когда область D конечна. С каждой функцией $\psi \in X$ свяжем решение

$$v(z) = [\operatorname{Im} b\psi(z)] - \xi = -\operatorname{Re} b[i\psi(z) + b^{-1}\xi], \quad z \in D',$$
(25)

однородной задачи Дирихле для системы (1). Любое решение v этой однородной задачи представимо в указанном виде. В самом деле, если область D'_j конечна, то она односвязна и возможность подобного представления обеспечивается теоремой 2. То, что функция ψ в этом представлении вместе с v принадлежит классу $C^{\mu+0}(\overline{D'_j})$, составляет аналог теоремы Привалова для J-аналитических функций, установленный в [14]. Если область D конечна, то в силу оценки (12) для v в бесконечной области D'_m и теоремы 2 аналогичная оценка справедлива и для $\psi'(z) = \partial \psi/\partial x$. Следовательно, функция

$$\psi(z) = \int\limits_{-\infty}^{z} dt_J \, \psi'(t)$$

однозначна в области D'_m .

Таким образом, отображение $\psi \to v$ по формуле (25) переводит X на все пространство решений однородной задачи Дирихле в D', размерность которого равна s. Ядро этого отображения состоит из функций ψ , принимающих в D'_j постоянное значение $\eta_j \in \mathbb{C}^l$, $\operatorname{Im} b\eta_j = \xi \in \mathbb{R}^l$. Кроме того, если область D конечна и, например, D'_m бесконечна, то $\xi = \eta_m = 0$. Таким образом,

$$\dim X = \begin{cases} s + (m-1)l, & \varkappa_D = 1, \\ s + (m+1)l, & \varkappa_D = 0. \end{cases}$$
(26)

С другой стороны, из тех же соображений оператор $\psi \to -\operatorname{Re} b\psi^-$, действующий из X в $C^{\mu+0}(\Gamma)$, взаимно однозначен, если область D конечна, и имеет своим ядром пространство функций ψ , принимающих в D' постоянное значение $\eta = ib^{-1}\xi$. Поэтому образ Y этого оператора имеет размерность

$$\dim Y = \begin{cases} 0, & \varkappa_D = 1, \\ l, & \varkappa_D = 0. \end{cases}$$

Вместе с соотношениями (21), (26) отсюда следует, что размерность ядра ker P равна k, и пусть g_1, \ldots, g_k составляют базис этого пространства.

Из равенства (20) вытекает, что композиция RP оператора R задачи Дирихле (1), (5) с P дает фредгольмовый оператор 1 + K, поэтому с учетом теоремы 3 оператор $P : C^{\mu}(\Gamma) \rightarrow C^{\mu}(\overline{D})$ фредгольмов и его индекс равен нулю. Напомним, что под $C^{\mu}(\overline{D})$ понимается соответствующее пространство решений уравнения (1). Таким образом, существует система элементов $u_1, \ldots, u_k \in C^{\mu}(\overline{D})$, линейно независимых по модулю подпространства Im $P = P(C^{\mu})$ – образа оператора P. В действительности эти функции можно выбрать в классе $C^{\mu+0}$. Для доказательства выберем $\nu > \mu$ так, чтобы контур Γ принадлежал классу $C^{1,\nu+0}$ и соответственно функция $k(t_0,t) = |t-t_0|Q(t_0,t-t_0)$, связанная с ядром оператора (19), принадлежала классу $C^{\nu+0}(\Gamma \times \Gamma)$. В этом случае оператор K ограничен $C^{\mu}(\Gamma) \to C^{\nu}(\Gamma)$.

Заменяя в предыдущих рассуждениях μ на ν , выберем систему функций $\widetilde{u}_1, \ldots, \widetilde{u}_k \in C^{\mu}(\overline{D})$, линейно независимых по модулю подпространства $P(C^{\nu})$. Тогда эти функции будут линейно независимыми и по модулю $P(C^{\mu})$. В самом деле, если это не так, то найдется линейная комбинация $\widetilde{u} = \sum \lambda_j \widetilde{u}_j$, совпадающая с $P\varphi$ для некоторой $\varphi \in C^{\mu}(\Gamma)$. Следовательно, $\varphi + K\varphi = \widetilde{u}^+ \in C^{\nu}(\Gamma)$, так что и $\varphi = \widetilde{u}^+ - K\varphi \in C^{\nu}(\Gamma)$. Поэтому $\widetilde{u} = P\varphi \in P(C^{\nu})$ и в силу выбора \widetilde{u}_j все коэффициенты λ_j линейной комбинации равны нулю.

Таким образом, опуская волну в обозначениях, можно считать, что система функций $u_1, \ldots, u_k \in C^{\mu+0}(\overline{D})$ линейно независима по модулю подпространства Im $P = P(C^{\mu})$. Пусть оператор P_1 определяется правой частью равенства (22), очевидно, он также фредгольмов индекса нуль. Если $P_1\varphi = 0$, то линейная комбинация $\sum(\varphi, g_j)u_j$ принадлежит Im $P = P(C^{\mu})$ и, следовательно, ее коэффициенты удовлетворяют равенствам

$$(\varphi, g_j) = 0, \quad 1 \le j \le k. \tag{27}$$

Но тогда и $P\varphi = 0$, так что φ есть линейная комбинация функций g_j . С учетом равенств (27) отсюда следует, что $\varphi = 0$. Поэтому оператор P_1 обратим $C^{\mu}(\Gamma) \to C^{\mu}(\overline{D})$, что завершает доказательство теоремы.

Как видно из доказательства, ядро ker $P = \{g_1, \ldots, g_k\}$ содержит функции g, постоянные на контурах Γ_j (и обращающиеся в нуль на Γ_m в случае конечной области D). Особенно простой случай имеем при m = 1, когда область D ограничена простым контуром Γ . В этом случае величина k в (21) совпадает с размерностью s ядра задачи Дирихле в области D', если область D конечна, и k = s + l в противном случае. В последнем случае ядро ker Pсодержит пространство \mathbb{R}^l постоянных на Γ функций, что соответствует второму слагаемому в равенстве k = s + l.

Из теоремы 4 непосредственно следует, что задача Дирихле (1), (5) редуцируется к эквивалентной системе интегральных уравнений Фредгольма

$$\varphi + K\varphi + \sum_{j=1}^{k} (\varphi, g_j) u_j^+ = f.$$

Связь между решениями задачи и этого уравнения осуществляется равенством (22).

До сих пор все рассмотрения проводились в рамках пространств Гёльдера. Предыдущие результаты сохраняют свою силу и по отношению к более широким пространствам Харди [15, 16]. Для J-аналитических функций, заданных в области D с ляпуновской границей $\Gamma = \partial D$, пространство $H^p(D)$, $1 , проще всего ввести как замыкание класса непрерывных в <math>\overline{D}$

функций по норме $|\phi| = |\phi^+|_{L^p(\Gamma)}$. Аналогично вводим и пространство $h^p(D)$ для решений слабо связанной эллиптической системы (1) по отношению к норме

$$|u| = |u^+|_{L^p(\Gamma)} + |u|_{C(\overline{D_0})},$$

где ограниченная область D_0 содержится в D вместе со своим замыканием. Наличие второго слагаемого в этом определении объясняется тем, что однородная задача Дирихле может допускать ненулевые решения.

Для элементов так определенных пространств существуют угловые предельные значения, принадлежащие $L^p(\Gamma)$. Интеграл типа Коши I_J ограничен $L^p(\Gamma) \to H^p(D)$ с сохранением формулы Сохоцкого–Племеля для граничных значений. Точно так же оператор P ограничен $L^p(\Gamma) \to h^p(D)$, а интегральный оператор K компактен в пространстве $L^p(\Gamma)$. Кроме того, имеет место аналог Рисса: если $u \in h^p(D)$, то в представлении теоремы 2 функция ϕ принадлежит $H^p(D)$ (при дополнительном предположении ее однозначности). Можно показать также, что оператор P ограничен $C(\Gamma) \to C(\overline{D})$, а интегральный оператор K компактен в пространстве $C(\Gamma)$.

Первое утверждение теоремы 3 сохраняет свою силу и по отношению к $h^p(D)$, при этом любое решение $h^p(D)$ задачи Дирихле с правой частью $f \in C^{+0}(\Gamma)$ (т.е. удовлетворяющей условию Гёльдера на Γ) обладает аналогичным свойством в замкнутой области \overline{D} . В соответствии с этим схема доказательства теоремы 4 может быть использована как по отношению к классу Харди, так и к классу $C(\overline{D})$.

Теорема 5. Пусть ляпуновский контур $\Gamma = \partial D$ состоит из связных компонент $\Gamma_1, \ldots, \Gamma_m$. Тогда в обозначениях теоремы 4 такие линейно независимые системы вещественных l-вектор-функций $g_1, \ldots, g_k \in C^{+0}(\Gamma)$ и решений $u_1, \ldots, u_k \in C^{+0}(\overline{D})$ системы (1), что любое решение $u \in h^p(D)$ этой системы единственным образом представимо в виде (22) с некоторой вещественной l-вектор-функцией $\varphi \in L^p(\Gamma)$. Если $u \in C(\overline{D})$, то и плотность φ в этом представлении принадлежит $C(\Gamma)$.

Работа выполнена при поддержке Министерства образования и науки Российской Федерации (проект 14.А18.21.0357).

СПИСОК ЛИТЕРАТУРЫ

- 1. Солдатов А.П. О первой и второй краевых задачах для эллиптических систем на плоскости // Дифференц. уравнения. 2003. Т. 39. № 5. С. 674–686.
- 2. Келдыш М.В. Математика // Избр. труды. М., 1985.
- 3. Бицадзе А.В. Краевые задачи для эллиптических уравнений второго порядка. М., 1966.
- 4. Товмасян Н.Е. Задача Дирихле для эллиптических систем дифференциальных уравнений второго порядка // Докл. АН СССР. 1964. Т. 159. С. 995–997.
- 5. Товмасян Н.Е. Общая краевая задача для эллиптических систем второго порядка с постоянными коэффициентами. I, II // Дифференц. уравнения. 1966. Т. 2. № 1. С. 3–23; № 2. С. 163–171.
- 6. Золотарева Е.В. О задаче Дирихле для некоторого класса эллиптических систем // Докл. АН СССР. 1962. Т. 145. С. 983–985.
- 7. *Назаров С.А., Пламеневский Б.А.* Эллиптические задачи в областях с кусочно гладкой границей. М., 1991.
- 8. Douglis A.A. A function-theoretic approach to elliptic systems of equations in two variables // Comm. Pure Appl. Math. 1953. V. 6. P. 259–289.
- 9. Солдатов А.П. Гипераналитические функции и их приложения // Совр. математика и ее приложения. 2004. Т. 15. С. 142–199.
- Gilbert R.P., Wendland W.L. Analytic, generalized, hyper-analytic function theory and an application to elasticity // Proc. Roy. Soc. Edinburgh, 1975. V. 73A. P. 317–371.
- Hile G.N. Function theory for a class of elliptic systems in the plane // J. Differ. Equat. 1979. V. 32. № 3. P. 369–387.

- 12. Солдатов А.П. Метод теории функций в краевых задачах на плоскости. І. Гладкий случай // Изв. АН СССР. Сер. мат. 1991. Т. 55. № 5. С. 1070–1100.
- 13. Солдатов А.П., Чернова О.В. Задача Римана–Гильберта для эллиптической системы первого порядка в классах Гёльдера // Научные ведомости БелГУ. 2009. № 13 (68). Вып. 17/2. С. 115–121.
- 14. Soldatov A.P. On representation of solutions of second order elliptic systems on the plane. More progresses in analysis // Proceedings of the 5th International ISAAC Congress, Catania, Italy, 25–30 July 2005 / Editors Begehr H. and oth. Singapore, 2009. V. 2. P. 1171–1184.
- 15. Солдатов А.П. Пространство Харди решений эллиптических систем первого порядка // Докл. РАН. 2007. Т. 416. № 1. С. 26–30.
- 16. Солдатов А.П. Пространство Харди решений эллиптических систем второго порядка // Докл. РАН. 2008. Т. 418. № 2. С. 162–167.

Белгородский государственный национальный исследовательский университет Поступила в редакцию 27.12.2012 г.