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Abstract 

The paper presents a methodology for calculating the aggregate global university ranking 

(Aggregated Global University Ranking, or AGUR), which consists of an automated presentation of 

the comparable lists of names for different universities from particular global university rankings 

(using Machine Learning and Mining Data algorithms) and a simple procedure of aggregating 

particular global university rankings (summing up the university ranking positions from different 

particular rankings and their subsequent ranking). The second procedure makes it possible to bring 

lists of universities from particular rankings, which are nonidentical by length, to one size. The paper 

includes a sample AGUR for six particular global university rankings as of 2013, as well as cross-

correlation matrices and intersection matrices for AGUR for 2011-2013, all created by means of 

using the Python-based software. 
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Introduction 

At the moment there are eight most significant global university rankings – THE, QS, ARWU, 

HEEACT, Leiden, SIR, URAP, and Webometrics. Each ranking relies on its calculation 

methodology and databases collected from universities (from 500 universities in HEEACT 

Ranking up to 25,000 universities in Webometrics Ranking). The first two rankings use both 

hard data and survey data, the next five rankings use exclusively hard data, and the last one uses 

the data obtained through testing sites with the help of Google and hard data from the SCImago 

laboratory on high-cited publications. THE, ARWU, HEEACT, Leiden, URAP rankings use in 

their methodologies hard data from The Web of Science, and the remaining three rankings rely 

on the Scopus database. We looked into these rankings in detail when we studied the process of 

joining them by the universities from the countries of the Mediterranean and Black Sea Regions 

(Moskovkin, Pupynina, Zaitseva and Lesovik, 2013). Considering different methodologies and 

scopes of global university rankings, we decided to develop in a software form a procedure of 

aggregating any number of particular global university ratings in the single aggregated ranking. 

We called this The Aggregated Global University Ranking (AGUR). 

The task of constructing an aggregated global university ranking can be broken down into three 

sub-tasks: 

a) selecting a mathematical model to construct an aggregated global university ranking; 

b) receiving and pre-processing the information needed to build an aggregated global 

university ranking (a superposed ranking of universities based on particular global 

university rankings); 

c) automated computation of an aggregated global university ranking and results analysis. 

Further, these subtasks will be considered in this order.  

Methods 

a) Selecting a mathematical model to construct an aggregated global university ranking 

There are a number of studies comparing ranked lists, including university rankings, among the 

most fundamental works is (Aguillo et al., 2010). The comparison of university rankings is 

studied in (Bar-Ilan et al., 2006). Of interest is the work by (Jurman et al., 2009), which 

considers the some general kinds of metrics (Canberra distance) applied in ranking. But the task 

of constructing an aggregated ranking and the task of comparing ranked lists are different tasks, 

though some approaches to solving the arising problems can be borrowed from the above-

mentioned articles. To be more exact, the articles solved the problem of nonidentity of ranking 

structures, when some item could be present on one list, but absent on another. Applying this 
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approach from the above articles to the problem of nonidentity of any two lists, we suggest 

calculating an aggregated ranking in the following way: 

Suppose we have a ranked list of items iR and jR being il  and jl  long respectively. Let there be 

given an item u : iRu  then its rank  uri  on this list equals its number  uni  on this list. Let 

 urj  be a rank of item u on list jR , in this case if jRu then    un=ur jj  where  un j  is the 

number of item u  on list jR , otherwise   1+l=ur jj . That is, if u belongs to list jR , then rank 

of u on list jR equals the number of u  on this list,  otherwise rank of u  on list jR equals 1j +l , 

being a unity longer than list jR . Based on this principle, Judit Bar-Ilan et al. in (Bar-Ilan, Mat-

Hassan, Levene, 2006) built inter-ranking distance between the partially overlapping lists. 

Further, we suggest calculating the aggregate rank kr  of item ku in the following way: 

 


N

j

kjk ur=r
1

, where  kj ur  is rank of ku on list jR , N  is the number of ranked lists 

( Nj ...,3,2,1  are the numbers of the lists), which means that the aggregate rank simply equals 

the sum of all the ranks for all the lists. Other more sophisticated approaches (without attributing 

weight factors to each of the ranks), like those in (Jurman et al., 2009), would produce no 

significant result, as the final ranking in the aggregated ranking would not change. But the 

authors had no reason to attribute weight factors to each ranking without a preliminary study of 

this issue. 

b) Receiving and pre-processing the information needed to build an aggregated global 

university ranking 

As for the second sub-task, it is obvious that it can and should be automated. For this purpose, 

we developed software to collect data from sites (scrapping), to process the information received 

and to calculate an aggregated ranking. As a programming language we chose Python (Python. 

Retrieved from http://www.python.org/doc/), because it is a very powerful and probably the most 

flexible of the common programming languages with a great number of specialized libraries 

designed to solve various problems. In particular, this language (and its libraries urllib2, requests 

(http://docs.python-requests.org) and the framework Scrapy) is de facto considered the standard 

for Internet scrapping. An essential point here is that information was obtained from various 

sources (websites), which are in fact completely different html-files, possibly with javascript, 

which called for creating a unified interface for parsing the received html-files (with use of 

Python library lxml (http://lxml.de) and, in some cases (for the Leiden ranking) the use of special 

facilities to study an http-session between the browser (“pretending” to be a scrapper) and the 

server. 

http://www.python.org/doc/
http://docs.python-requests.org/
http://lxml.de/
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Another problem was how to correctly (unambiguously) match names of universities from 

different rankings. The names would have short forms, different word order, or even include 

characters other than Latin. But through parsing html-pages, we managed to obtain enough 

information to unambiguously match names of universities. The further processing of the data 

was carried out by means of pandas library (McKinney, 2012, http://pandas.pydata.org/pandas-

docs/stable/), designed for analyzing and statistical data processing. 

We should also note here that some data from a number of rankings are available in formats 

other than html, for example, pdf format in SCImago or xls format for Leiden rankings (except 

for the year of 2013). We did not process such cases as they would have required extra time. 

Results and discussion 

c) Automated computation of an aggregated global university ranking and results analysis 

For preliminary experiments with the software we developed, we downloaded various numbers 

of different universities with their ranks from official sites of global university rankings over 

three years (Table 1). 

Table 1. Rankings scope over years  

Rankings 2011 2012 2013 

THE 402 400 400 

QS 724 873 834 

Leiden 0 500 500 

ARWU 500 500 500 

Webometrics 0 500 500 

URAP 2000 2000 2000 

 

The calculated aggregated global university ranking for six particular rankings is provided only 

for 2013 (Table 2).  

http://pandas.pydata.org/pandas-docs/stable/
http://pandas.pydata.org/pandas-docs/stable/
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Table 2. Aggregated global university ranking, 2013 
New 

rank 

Universities THE QS Leiden ARWU Web 

ometrics 

URAP Sum of 

ranks 

1 Harvard University 2 2 5 1 1 1 12 

2 Stanford University 4 7 3 2 3 4 23 

3 Massachusetts Institute of Technology (MIT) 5 1 1 4 2 14 27 

4 University of California, Berkeley (UCB) 8 25 7 3 4 5 52 

5 University of Cambridge 7 3 24 5 20 10 69 

6 University of Oxford 3 6 30 10 18 6 73 

6 Yale University 11 8 10 11 15 18 73 

7 Columbia University 13 14 19 8 11 17 82 

8 University of Pennsylvania 16 13 18 15 10 13 85 

9 University of California, Los Angeles (UCLA) 12 40 25 12 5 9 103 

10 University of Chicago 9 9 16 9 23 42 108 

10 Cornell University 19 15 32 13 8 21 108 

11 California Institute of Technology (Caltech) 1 10 8 6 41 49 115 

12 University of Michigan 18 22 40 23 7 8 118 

13 Johns Hopkins University 15 16 36 17 33 2 119 

14 Princeton University 6 11 4 7 19 86 133 

15 University of Washington 25 59 22 16 6 7 135 

16 Duke University 17 23 29 31 27 20 147 

17 Northwestern University 22 29 17 30 28 28 154 

18 UCL (University College London) 21 4 50 22 39 19 155 

19 University of California, San Diego (UCSD) 41 63 15 14 30 12 175 

20 University of Wisconsin-Madison 30 37 54 19 14 23 177 

21 University of Toronto 20 18 88 28 24 3 181 

22 New York University (NYU) 40 44 28 27 32 55 226 

23 University of British Columbia 31 49 99 40 16 24 259 

23 University of Texas at Austin 27 73 39 36 17 67 259 

24 University of Illinois at Urbana-Champaign 29 56 67 25 26 74 277 

25 University of Minnesota 46 103 61 29 9 35 283 

26 University of Edinburgh 39 17 84 51 52 47 290 

27 National University of Singapore (NUS) 26 24 73 114 54 41 332 

28 University of California, Davis 53 85 82 47 44 32 343 

29 McGill University 35 21 131 58 72 27 344 

30 Boston University 50 79 37 75 62 58 361 

31 University of Pittsburgh 78 106 65 63 42 22 376 

32 University of California, Santa Barbara (UCSB) 33 130 2 35 68 110 378 

33 Pennsylvania State University 49 107 112 54 12 50 384 

34 Utrecht University 75 81 64 53 69 43 385 

35 RMIT University 34 291 9 18 35 11 398 

36 University of Southern California 71 125 52 48 37 70 403 

37 Ohio State University 59 113 113 65 34 34 418 

38 Carnegie Mellon University 24 57 21 52 38 234 426 

39 Georgia Institute of Technology 28 99 34 105 61 125 452 

40 University of Colorado Boulder 97 160 14 33 49 101 454 

41 Brown University 52 47 74 67 85 141 466 

41 Purdue University 62 101 124 57 22 100 466 

42 Leiden University 67 74 58 74 125 72 470 

43 University of California, Irvine  93 149 44 45 58 83 472 

44 Australian National University 48 27 127 66 75 145 488 

45 University of Copenhagen 150 45 132 42 96 25 490 

45 Texas A&M University 159 153 12 46 29 91 490 

… 
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New 

rank 

Universities THE QS Leiden ARW

U 

Web 

ometrics 

URA

P 

Sum of 

ranks 

1826 University of Bolton 401 835 501 501 501 1971 4710 

1827 Arkansas State University 401 835 501 501 501 1972 4711 

1827 Johannes Kepler Universität Linz 372 835 501 501 501 2001 4711 

1828 G B Pant University of Agriculture & Technology 401 835 501 501 501 1973 4712 

1829 University of Calcutta 401 808 501 501 501 2001 4713 

1829 Bozok University 401 835 501 501 501 1974 4713 

1830 Dalian University 401 835 501 501 501 1975 4714 

1831 University of Colombo 401 810 501 501 501 2001 4715 

1831 Blekinge Institute of Technology 401 835 501 501 501 1976 4715 

1832 Sastra University 401 835 501 501 501 1977 4716 

1832 University of Buenos Aires 401 835 477 501 501 2001 4716 

1833 Colby College 401 835 501 501 501 1978 4717 

1834 University of Engineering & Technology (UET) 

Lahore 

401 813 501 501 501 2001 4718 

1834 Adelphi University 401 835 501 501 501 1979 4718 

1834 University of Minho 379 835 501 501 501 2001 4718 

1835 Seikei University 401 835 501 501 501 1980 4719 

1836 Kanazawa Institute of Technology 401 835 501 501 501 1981 4720 

1837 Indiana University – Purdue University Fort 
Wayne 

401 835 501 501 501 1982 4721 

1837 University of Quebec 401 835 501 482 501 2001 4721 

1838 Maharshi Dayanand University 401 835 501 501 501 1983 4722 

1839 University of Tunis 401 835 501 501 501 1984 4723 

1840 United States Military Academy at West Point 401 835 501 501 501 1985 4724 

1840 University of Rovira i Virgili 385 835 501 501 501 2001 4724 

1841 National Technical University of Ukraine 401 835 501 501 501 1986 4725 

1842 Universidade do Vale do Rio Dos Sinos 401 835 501 501 501 1987 4726 

1842 National Autonomous University of Mexico 401 835 487 501 501 2001 4726 

1842 Università degli Studi di Napoli Federico II 401 835 501 501 487 2001 4726 

1843 Western Carolina University 401 835 501 501 501 1988 4727 

1843 Università degli Studi di Genova 401 835 501 501 488 2001 4727 

1844 University of Santo Tomas 401 823 501 501 501 2001 4728 

1844 Lviv Polytechnic National University 401 835 501 501 501 1989 4728 

1845 Universite Rennes 2 Haute Bretagne 401 835 501 501 501 1990 4729 

1846 Free University of Bozen Bolzano 401 835 501 501 501 1991 4730 

1847 Josip Juraj Strossmayer University of Osijek 401 835 501 501 501 1992 4731 

1847 Federal University of São Paulo 401 835 492 501 501 2001 4731 

1848 University of Kashmir 401 835 501 501 501 1993 4732 

1849 North China University of Water Conservancy and 
Electric Power 

401 835 501 501 501 1994 4733 

1849 Federal University of Paraná 401 835 494 501 501 2001 4733 

1850 Irkutskij Gosudarstvennyj Universitet 401 835 501 501 501 1995 4734 

1851 Technological Education Institute of Athens 401 835 501 501 501 1996 4735 

1851 University of Tromsø 396 835 501 501 501 2001 4735 

1852 Lingnan University 401 835 501 501 501 1997 4736 

1853 Mehmet Akif Ersoy University 401 835 501 501 501 1998 4737 

1854 Vytautas Magnus University 401 833 501 501 501 2001 4738 

1854 University of Miskolc 401 835 501 501 501 1999 4738 

1854 Federal University of Viçosa 401 835 499 501 501 2001 4738 

1854 University of Vigo 399 835 501 501 501 2001 4738 

1855 West University of Timisoara 401 834 501 501 501 2001 4739 

1855 Acharya Nagarjuna University 401 835 501 501 501 2000 4739 

1855 York University 401 835 501 500 501 2001 4739 
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When collecting the data for 2013-2014, the Taiwanese website HEEACT Ranking was not in 

operation, and the SIR website held the annual reports in form of pdf-files that are difficult to 

discern. As the resulting rankings tables are voluminous, in the present paper we provide only 

the first and last lines for each table of the aggregated ranking, but no more than fifty lines.  

We also provide the cross-correlation matrices for all three years (the elements of which were 

calculated for each pair of the ranking by using the Spearman rank correlation formula) (Tables 

3-5).  

Table 3. Cross-correlation matrix, 2011 

 New rank THE QS ARWU URAP Sum of ranks 

New rank 1.00 0.48 0.28 0.46 0.94 1.00 

THE 0.48 1.00 0.53 0.61 0.34 0.48 

QS 0.28 0.53 1.00 0.44 0.06 0.28 

ARWU 0.46 0.61 0.44 1.00 0.34 0.46 

URAP 0.94 0.34 0.06 0.34 1.00 0.94 

Sum of ranks 1.00 0.48 0.28 0.46 0.94 1.00 
 

Table 4. Cross-correlation matrix, 2012 

 New rank THE QS Leiden ARWU Webometrics URAP Sum of ranks 

New rank 1.00 0.50 0.36 0.50 0.49 0.54 0.88 1.00 

THE 0.50 1.00 0.51 0.65 0.60 0.63 0.33 0.50 

QS 0.36 0.51 1.00 0.47 0.45 0.50 0.06 0.36 

Leiden 0.50 0.65 0.47 1.00 0.69 0.59 0.34 0.50 

ARWU 0.49 0.60 0.45 0.69 1.00 0.53 0.36 0.49 

Webometrics 0.54 0.63 0.50 0.59 0.53 1.00 0.39 0.54 

URAP 0.88 0.33 0.06 0.34 0.36 0.39 1.00 0.88 

Sum of ranks 1.00 0.50 0.36 0.50 0.49 0.54 0.88 1.00 
 

Table 5. Cross-correlation matrix, 2013 

 New rank THE QS Leiden ARWU Webometrics URAP Sum of ranks 

New rank 1.00 0.50 0.39 0.49 0.48 0.54 0.89 1.00 

THE 0.50 1.00 0.53 0.64 0.60 0.63 0.31 0.50 

QS 0.39 0.53 1.00 0.46 0.43 0.50 0.10 0.39 

Leiden 0.49 0.64 0.46 1.00 0.69 0.60 0.33 0.49 

ARWU 0.48 0.60 0.43 0.69 1.00 0.55 0.34 0.48 

Webometrics 0.54 0.63 0.50 0.60 0.55 1.00 0.39 0.54 

URAP 0.89 0.31 0.10 0.33 0.34 0.39 1.00 0.89 

Sum of ranks 1.00 0.50 0.39 0.49 0.48 0.54 0.89 1.00 
 

URAP is best correlated to AGUR (new rank, sum of ranks) and poorly with the rest of the 

particular rankings; THE is correlated to Leiden, ARWU and Webometrics; QS is correlated to 

THE; Leiden is correlated to THE, ARWU and Webometrics; ARWU is correlated to THE and 

Leiden; and Webometrics is best correlated to THE and Leiden. 
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We also built matrices of pair intersections of universities names in various rankings in absolute 

values (Tables 6-8).  

Table 6. Intersection matrix, 2011 

 THE QS Leiden ARWU Webometrics URAP 

THE  315 268 281 0 328 

QS   0 307 0 404 

Leiden    0 0 0 

ARWU     0 405 

Webometrics      0 

URAP       
 

Table 7. Intersection matrix, 2012 

 THE QS Leiden ARWU Webometrics URAP 

THE  312 274 276 268 309 

QS   359 346 354 481 

Leiden    361 287 379 

ARWU     284 402 

Webometrics      429 

URAP       
 

Table 8. Intersection matrix, 2013 

 THE QS Leiden ARWU Webometrics URAP 

THE  315 268 269 260 308 

QS   348 331 347 499 

Leiden    363 290 381 

ARWU     247 399 

Webometrics      432 

URAP       
 

They are easy to compare for rankings of the same length, which is the case for Leiden, ARWU 

and Webometrics for which we downloaded TOP-500 universities (Table 9).  

Table 9. Intersection matrix for rankings with the same number of university-participants, % 

 Leiden ARWU Webometrics 

2012 2013 2012 2013 2012 2013 

Leiden x x 72.2 72.6 57.4 58.0 

ARWU   x x 56.8 49.4 

Webometrics     x x 

 

As expected, the best intersection of universities names was obtained for Leiden and ARWU 

rankings, because their methodologies were based on hard data from Web of Science. 
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Conclusion 

Thus, the paper presents a methodology for calculating the (Aggregated Global University 

Ranking, or AGUR), which consists of an automated presentation of the comparable lists of 

names for different universities from particular global university rankings (using Machine 

Learning and Mining Data algorithms) and a simple procedure of aggregating particular global 

university rankings (summing up the university ranking positions from different particular 

rankings and their subsequent ranking). The first procedure allowed us to solve the problem of 

creating a unified interface for parsing the received html-files based on diverse sources (sites), 

the information from which is provided in completely different html-files. Besides, the problem 

of unambiguous matching the names of universities in various global university rankings was 

solved. As a result of parsing html-pages, we can extract enough information to unambiguously 

identify the names of the universities. The further processing of the data was carried out by 

means of pandas library. The second procedure (based on Aguillo et al., 2010; Bar-Ilan et al., 

2006; Jurman et al., 2009) makes it possible to bring lists of universities from particular 

rankings, which are nonidentical by length, to one size. As an example of the functioning of the 

Python-based software, the paper includes AGUR calculations for six particular global university 

rankings as of 2013, as well as cross-correlation matrices and intersection matrices for AGUR 

for 2011-2013. 

URAP is best correlated to AGUR (new rank, sum of ranks) and poorly with the rest of the 

particular rankings; THE is correlated to Leiden, ARWU and Webometrics; QS is correlated to 

THE; Leiden is correlated to THE, ARWU and Webometrics; ARWU is correlated to THE and 

Leiden; and Webometrics is best correlated to THE and Leiden. 

We have built the matrices of pairwise intersections of university names in various rankings in 

absolute values. They are easy to compare for same-size rankings, which is the case for Leiden, 

ARWU and Webometrics, for which we downloaded TOP-500 universities. The best intersection 

of university names was recorded, as we had expected, for Leiden and ARWU rankings because 

their methodology was based on hard data from Web of Science. 

For further AGUR calculations for 2014 and following years, we find it possible to add SIR, 

since Scimago Lab has begun to provide the data in normal editable formats, rather than pdf-

files, HEEACT Ranking, which has obtained support from the National Taiwan University (until 

2012 it had been supported by the Higher Education Evaluation and Accreditation Council of 

Taiwan (HEEACT)). Besides, we consider it feasible to use a number of new rankings which 

have recently appeared (Round University Ranking (RUR), U-Multirank, and Global World 

Communicator (GWC) - Worldwide Professional University Rankings). 
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